
Control Flow Integrity for COTS 
Binaries

Mingwei Zhang and R. Sekar
Stony Brook University

--
Summarized by Navid Emamdoost

University of Minnesota



Outline

• Background
– Control Flow attacks
– Control Flow Integrity

• Control Flow Integrity for COTS Binaries

2



Control Flow

• The order of instruction execution
• A subset of possible paths are intended by 

program
• An attacker can change this order due to

– Programming mistakes 
– Insufficient security primitives provided by PL
– Intrinsic complexity of architecture

3



Control Flow attacks

• Code injection
– Overflow a buffer on system stack
– Overwrite the return address
– Divert control to injected code

4



Control Flow attacks

• Return to Libc
– Overflow a buffer on system stack
– Overwrite the return address
– Divert control to an existing module

• system(/bin/sh)

5



Control Flow attacks

• Return Oriented Programming (ROP)
– Overflow a buffer on system stack
– Overwrite the return address
– Divert control to start of gadget

• inc eax; ret;
• pop eax; ret;

6



Control Flow Integrity

• Protect program’s control flow integrity
– Resist deviation from CFG

• Identify legal control transfer targets
• Prevent transfers to other targets
• Restrict program execution to the set of 

intended paths

7



Control Flow Integrity

• By Abadi et. al presented at 2005
• Computed control transfers are instrumented

8



CFI

• Unique IDs: the bit patterns chosen as IDs must 
not be present anywhere in the code memory 
except in IDs and ID-checks

• Non-Writable Code: It must not be possible for 
the program to modify code memory at runtime

• Non-Executable Data: It must not be possible for 
the program to execute data as if it were code

• One ID value for the start of functions and 
another ID value for valid destinations for 
function returns

9



CFI

• Is not vulnerable to information leakage 
attacks, unlike
– Stack canary
– ASLR

• Protect against existing code reuse
– Return-to-libc
– ROP

10



Control Flow Integrity for COTS 
Binaries

• Goal:
– Enforce CFI on COTS binaries

• There is no source-code
• No assembly-level information
• No relocation information (unlike ASLR on windows)
• Like shared libraries
• Operate with less information available

11



Control Flow Integrity for COTS 
Binaries

• Steps
– Disassemble

• Correctly identify instructions

– ICF analysis
• Provide missing information (instead of using relocation 

info)

– Instrument the binary
• Enforce CFI

12



Disassembly 

• Linear
– Start from the first instruction of the segment
– Assume nest instruction starts from the end of 

previous one
– Problem: gaps

• Data
• Instruction alignment

13



Disassembly 

• Recursive 
– Depth-first approach
– A set of entry points
– Add target of each direct CF transfer to the set of 

EP
– Continue linearly up to an unconditional CF 

transfer
– Problem: can not indentify codes reachable via ICF

• Available from relocation infromation

14



COTS Disassembly

• Combination of linear and recursive
• Use static analysis of ICF to identify gaps
• Steps:

– Linearly disassemble entire binary
– Check for erroneous instructions

• Invalid opcode
• Direct CF transfer to outside of module
• Direct CF transfer to the middle of another instruction

15



COTS Disassembly (cont’d)

• On an erroneous instruction
– Move backward to reach a direct CF transfer

• Mark as gap start

– From ICF analysis find the first target after 
erroneous instruction

• Mark as gap end

– Repeat disassembly by avoiding gaps

16



ICF analysis
• Code pointer constants (CK) 

– consists of code addresses that are computed at compile-
time.

• Computed code addresses (CC) 
– include code addresses that are computed at runtime.

• Exception handling addresses (EH) 
– include code addresses that are used to handle exceptions.

• Exported symbol addresses (ES) 
– include export function addresses.

• Return addresses (RA) 
– include the code addresses next of a call.

17



Code pointer constants (CK) 

• In general, there is no way to distinguish a 
code pointer from other types of constants in 
code

• Every constant having properties
– Be within the rage of code addresses

• For shared libraries consider it as offset
• Because there is no knowledge about base address at 

compile time

– Is consistent with instruction boundaries

18



Computed code addresses (CC) 

• Any arithmetic computation on pointers are 
possible in binary

• But they observed pointer arithmetic occurs just 
in jump tables
– Switch case

• Properties of jump tables
– Intra-function
– Simple form: *(CE1+ Ind)+CE2
– Within fixed sized window of instructions

• 50 instructions

19



Computed code addresses (CC) 

• Determine function boundaries
– Exported functions

• Identify indirect jump and move backward to 
find the expression
– CE1 and CE2 are constants

• Enumerate possible values of Ind
– for every possible value if the result falls within 

the current region

20



Other code addresses

• Exception handling addresses (EH) 
– From ELF headers

• Exported symbol addresses (ES) 
– From ELF headers

• Return addresses (RA)
– The address of instruction after the call

• Computable after disassembly

21



CFI classes

• reloc-CFI
– Types of ICF

• Indirect Call
• Indirect Jump
• Return Address

• strict-CFI
– Same as reloc-CFI
– But uses static analysis instead of relocation info
– Extensions for EH and Context switch

• bin-CFI
– Has a new type of ICF: Program Linkage Table

22



bin-CFI

23



CFI Instrumentation

• After instrumenting the binary, new object file 
is generated

• The new object file is injected into ELF file
• Prepare new segment for execution
• Update Entry point
• Mark original code segments as un-executable

24



CFI Instrumentation
• New code is in different segment 

– Function pointers are invalid
• Keep a table for address translation

<original address, new address>
• For each valid ICF target 
• addr_trans: a trampoline code performing translation 

by a hash table
• If target is within current module

– lookup the hash
– If no entry found, an error is sent

• If not, use a global translation table loaded by ld.so

25



CFI Instrumentation

• Signals
– Intercept signal and sigaction system calls
– Store the handlers address
– Update system calls arguments to point to a 

wrapper function
– The wrapper performes redirection to 

instrumented code

26



Evaluation 

• Disassembely

27



Evaluation 

• CFI effectiveness:
– Average Indirect target Reduction (AIR)
– For n ICF transfers, and S initial targets for them

28



Evaluation 

29



Evaluation 

• Gadget elimination

30



Evaluation 

• Performance overhead

31



Evaluation 

• Space overhead:
– 139% increase in file size
– 2.2% for resident memory use

32



Thank You

33


	Control Flow Integrity for COTS Binaries
	Outline
	Control Flow
	Control Flow attacks
	Control Flow attacks
	Control Flow attacks
	Control Flow Integrity
	Control Flow Integrity
	CFI
	CFI
	Control Flow Integrity for COTS Binaries
	Control Flow Integrity for COTS Binaries
	Disassembly 
	Disassembly 
	COTS Disassembly
	COTS Disassembly (cont’d)
	ICF analysis
	Code pointer constants (CK) 
	Computed code addresses (CC) 
	Computed code addresses (CC) 
	Other code addresses
	CFI classes
	bin-CFI
	CFI Instrumentation
	CFI Instrumentation
	CFI Instrumentation
	Evaluation 
	Evaluation 
	Evaluation 
	Evaluation 
	Evaluation 
	Evaluation 
	Slide Number 33

