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Outline

• Background
– Control Flow attacks
– Control Flow Integrity

• Control Flow Integrity for COTS Binaries
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Control Flow

• The order of instruction execution
• A subset of possible paths are intended by 

program
• An attacker can change this order due to

– Programming mistakes 
– Insufficient security primitives provided by PL
– Intrinsic complexity of architecture
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Control Flow attacks

• Code injection
– Overflow a buffer on system stack
– Overwrite the return address
– Divert control to injected code
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Control Flow attacks

• Return to Libc
– Overflow a buffer on system stack
– Overwrite the return address
– Divert control to an existing module

• system(/bin/sh)
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Control Flow attacks

• Return Oriented Programming (ROP)
– Overflow a buffer on system stack
– Overwrite the return address
– Divert control to start of gadget

• inc eax; ret;
• pop eax; ret;
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Control Flow Integrity

• Protect program’s control flow integrity
– Resist deviation from CFG

• Identify legal control transfer targets
• Prevent transfers to other targets
• Restrict program execution to the set of 

intended paths
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Control Flow Integrity

• By Abadi et. al presented at 2005
• Computed control transfers are instrumented
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CFI

• Unique IDs: the bit patterns chosen as IDs must 
not be present anywhere in the code memory 
except in IDs and ID-checks

• Non-Writable Code: It must not be possible for 
the program to modify code memory at runtime

• Non-Executable Data: It must not be possible for 
the program to execute data as if it were code

• One ID value for the start of functions and 
another ID value for valid destinations for 
function returns
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CFI

• Is not vulnerable to information leakage 
attacks, unlike
– Stack canary
– ASLR

• Protect against existing code reuse
– Return-to-libc
– ROP
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Control Flow Integrity for COTS 
Binaries

• Goal:
– Enforce CFI on COTS binaries

• There is no source-code
• No assembly-level information
• No relocation information (unlike ASLR on windows)
• Like shared libraries
• Operate with less information available
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Control Flow Integrity for COTS 
Binaries

• Steps
– Disassemble

• Correctly identify instructions

– ICF analysis
• Provide missing information (instead of using relocation 

info)

– Instrument the binary
• Enforce CFI
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Disassembly 

• Linear
– Start from the first instruction of the segment
– Assume nest instruction starts from the end of 

previous one
– Problem: gaps

• Data
• Instruction alignment
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Disassembly 

• Recursive 
– Depth-first approach
– A set of entry points
– Add target of each direct CF transfer to the set of 

EP
– Continue linearly up to an unconditional CF 

transfer
– Problem: can not indentify codes reachable via ICF

• Available from relocation infromation
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COTS Disassembly

• Combination of linear and recursive
• Use static analysis of ICF to identify gaps
• Steps:

– Linearly disassemble entire binary
– Check for erroneous instructions

• Invalid opcode
• Direct CF transfer to outside of module
• Direct CF transfer to the middle of another instruction

15



COTS Disassembly (cont’d)

• On an erroneous instruction
– Move backward to reach a direct CF transfer

• Mark as gap start

– From ICF analysis find the first target after 
erroneous instruction

• Mark as gap end

– Repeat disassembly by avoiding gaps
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ICF analysis
• Code pointer constants (CK) 

– consists of code addresses that are computed at compile-
time.

• Computed code addresses (CC) 
– include code addresses that are computed at runtime.

• Exception handling addresses (EH) 
– include code addresses that are used to handle exceptions.

• Exported symbol addresses (ES) 
– include export function addresses.

• Return addresses (RA) 
– include the code addresses next of a call.
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Code pointer constants (CK) 

• In general, there is no way to distinguish a 
code pointer from other types of constants in 
code

• Every constant having properties
– Be within the rage of code addresses

• For shared libraries consider it as offset
• Because there is no knowledge about base address at 

compile time

– Is consistent with instruction boundaries
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Computed code addresses (CC) 

• Any arithmetic computation on pointers are 
possible in binary

• But they observed pointer arithmetic occurs just 
in jump tables
– Switch case

• Properties of jump tables
– Intra-function
– Simple form: *(CE1+ Ind)+CE2
– Within fixed sized window of instructions

• 50 instructions
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Computed code addresses (CC) 

• Determine function boundaries
– Exported functions

• Identify indirect jump and move backward to 
find the expression
– CE1 and CE2 are constants

• Enumerate possible values of Ind
– for every possible value if the result falls within 

the current region
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Other code addresses

• Exception handling addresses (EH) 
– From ELF headers

• Exported symbol addresses (ES) 
– From ELF headers

• Return addresses (RA)
– The address of instruction after the call

• Computable after disassembly
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CFI classes

• reloc-CFI
– Types of ICF

• Indirect Call
• Indirect Jump
• Return Address

• strict-CFI
– Same as reloc-CFI
– But uses static analysis instead of relocation info
– Extensions for EH and Context switch

• bin-CFI
– Has a new type of ICF: Program Linkage Table
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bin-CFI
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CFI Instrumentation

• After instrumenting the binary, new object file 
is generated

• The new object file is injected into ELF file
• Prepare new segment for execution
• Update Entry point
• Mark original code segments as un-executable
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CFI Instrumentation
• New code is in different segment 

– Function pointers are invalid
• Keep a table for address translation

<original address, new address>
• For each valid ICF target 
• addr_trans: a trampoline code performing translation 

by a hash table
• If target is within current module

– lookup the hash
– If no entry found, an error is sent

• If not, use a global translation table loaded by ld.so
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CFI Instrumentation

• Signals
– Intercept signal and sigaction system calls
– Store the handlers address
– Update system calls arguments to point to a 

wrapper function
– The wrapper performes redirection to 

instrumented code
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Evaluation 

• Disassembely
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Evaluation 

• CFI effectiveness:
– Average Indirect target Reduction (AIR)
– For n ICF transfers, and S initial targets for them
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Evaluation 
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Evaluation 

• Gadget elimination
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Evaluation 

• Performance overhead
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Evaluation 

• Space overhead:
– 139% increase in file size
– 2.2% for resident memory use
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Thank You
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