8271 discussion of: “Transparent
ROP Exploit Mitigation Using
Indirect Branch Tracing”

Stephen McCamant (Original paper: Vasilis Pappas, Michalis
Polychronakis, and Angelos D. Keromytis)

University of Minnesota (Original paper: Columbia University)

Outline

Background

Tradeoffs in binary-level protection

©) CFl (Monday): strong policy, easy to
state and reason about
® But, challenging to make fast and practical
) Today: easier to deploy, fast
mechanism

® Challenge is to maximize defensive
coverage

Microsoft BlueHat contest

) Contest for new ideas in
memory-safety defenses

) Supply Windows prototype with license
to Microsoft

£) No more than 5% overhead, no
“application compatibility regressions”
©) Due date was April 1st 2012

BlueHat results

Ist This paper’s project, won $200k
2nd ROPGuard [34], $50Kk, used in next
version of EMET
3rd $10k + MSDN subscription, also
anti-ROP
) (No prize: CFl project led by Lenx Tao
Wei — ASIACCS and Oakland papers)

Review: ROP

©) Create attacks by reusing small pieces
of existing code

) Connected by returns or other indirect
jumps

©) Evolved from return-to-libc, Shacham
coined name and demonstrated Turing
completeness

ROP in the arms race

©) WX (eqg. DEP) and ASLR widespread
but incomplete

) Most attacks use ROP to circumvent
WX

) Defensive next step: do something
about ROP

Outline

LBR-based approach

Last Branch Recording

) Feature in recent Intel CPUs to record

last few branches
® To and from addresses, in privileged
registers

©) Small fixed size (16) circular “stack”
) Key feature added in Nehalem: filter by
type

Sensitive operations

£) Too expensive to check for attack
constantly

) Intuition: attacks involve effect outside
subverted process

£ So, attack must add or change a
system call

) Some particularly useful for attacks

System calls and library calls

) System calls: exported from privileged
code
® More OS-specific, especially for Windows
©) Library / API calls: higher-level interface
for use of applications

® Includes C standard functions like printf,

other specific to Windows

) Problem: at system calls, often LBR
filled by library code

In-process hooking

©) Add extra code to run at start of library
function

) Offensive and defensive technique

) Typical approach: overwrite first few
code bytes

©) Problem: in-process security checks
can be bypassed

Checkpointing approach

) Use hook to check for ROP on library
entry point

) If no ROP detected, store “checkpoint”
record

) On system call, verify appropriate
checkpoint, then clear

Detection: returns not to call sites

£) Calls and returns don't always match
correctly
® Eg. longjmp, user-space threads, etc.
©) But, the target of a return is an
instruction directly after a call
) Approach: check if each return address
is preceded by a call

©) Any return without call — detect attack

Kinds of gadgets

) Most convenient gadgets are short and
end in return

) Gadgets ending in non-return jumps
(JOP) demonstrated in theory

® But not common in current attacks

©) Long gadgets harder to program with

©) This paper’s definition: up to 20
instructions, need not be contiguous

Detection: chaining of gadgets

) Hypothesis: ROP has longer chains of
shorter code segments than benign
code

) Detect attack if at least 8 consecutive
LBR entries are all gadget-sized

) Maximum observed in benign code: 5
before sensitive calls, 9 anywhere

Outline

Administrative break

Upcoming topics

2/17 Smartphone security

2/24 Web application security
3/3 (Anti-)censorship

3/10 Tor

) After spring break: rough ideas, will
finalize after finding more papers

Project meetings

) Purpose: discuss project topics
©) Email me to set up
©) This Friday is the last day

Outline

kBouncer implementation

Windows 7 implementation

) Gadget analysis performed in advance
online
) Hooking layer for Windows API calls

) Kernel module for LBR checks

® System call checking prevented by
PatchGuard

Pin-based simulator

©) Simulate LBR in software using
dynamic translation

® Implemented with Pin, a commonly-used
framework

) Collect statistics on benign software,
used in design

©) Not fast enough to use as a practical
defense

Performance measurements

©) Microbenchmarks: slowest is reading
process code, worst-case 47 us
©) API-heavy workload: Wine API test

Suite

® Average overhead 1% (5 us/call),
worst-case 4%
® Argue: would be unnoticeable for normal

apps

Off-the-shelf attacks

) Adapted previously-published ROP
attacks
® From blogs, Metasploit, etc.
® To work: rolled back IE version, fixed one
out-of-date offset

) Without kBouncer, all attacks succeed
©) With kBouncer, all attacks blocked

Outline

Limitations and counterattacks

API selection

) Paper gives 52 currently protected
functions

) Empirically, a blacklist this long is
usually found later to be missing entries

©) Protect all API calls? Paper arques
would be excessive

LBR size

©) LBR size is fixed in hardware
® Might get bigger in subsequent chips
) However, even in LBR size were

unlimited, might still want to limit
checks for performance
® Problem: attackers don't care about
performance; if limit is k, adversary uses
k+1

Is ROP still possible?

©) Thorough analysis: “part of future work”

) 6.4% of gadgets are call-preceded, (3%
of shorter 5-byte ones)

£) One automated system fails when
limited to 20% of gadgets

m But human attackers can be more
creative

Gadget size

) To stop chaining detection, find a few
large gadgets

) Increasing detection length beyond 20
might bring false positives

©) Think about reusing larger chunks of
code, not just gadgets

m Eg, subvert code that calls a sensitive
function

Attacks against host IDSes

©) Cf. “Automating Mimicry Attacks Using
Static Binary Analysis”, USENIX'05

) Attacker has taken over binary, but
must conceal attack system calls

©) Key challenge: how to regain control
after system call with legitimate-looking
call stack

©) Short answer: overwrite indirect jump
pointers

