PERL(1) PERL(1)

NAME
perl — Practical Extraction and Report Language

SYNOPSIS
perl [options] filename args

DESCRIPTION
Perl is an interpreted language optimized for scanning arbitrary text feactng information from those
text files, and printing reports based on that informatittts dso a good language for masystem man-
agement tasks. The language is intended to be practical (easy tdicieatetomplete) rather than beauti-
ful (tiny, degant, minimal). It combines (in the authsrpinion, aryway) some of the best features of C,
sed, awk, and sh, so people aimiliar with those languages shouldvédittle difficulty with it. (Language
historians will also note some vestigescdi, Pascal, andwen BASIC-PLUS.) Expressiosyntax corre-
sponds quite closely to C expression syntdrlike most Unix utilities, perl does not arbitrarily limit the
size of your data—if yowe got the memoryperl can slurp in your whole file as a single strifRecursion
is of unlimited depth. And the hash tables used by asseegtays grov as recessary to pvent degraded
performance. Perl uses sophisticated pattern matching techniques to sagm danounts of dataewy
quickly. Although optimized for scanningxie perl can also deal with binary data, and can enddm files
look like essociatve arays (where dbm isvailable). Setuidper| scripts are safer than C programs through
a dataflov tracing mechanism which prents may stupid security holes. If you ka a poblem that
would ordinarily usesed or awk or sh, but it exceeds their capabilities or must run a littlstér and you
don't want to write the silly thing in C, theperl may be for you.There are also translators to turn your
sed andawk scripts intoperl scripts. OK,enough hype.

Upon startupperl looks for your script in one of the following places:
1. Specified line by line viae switches on the command line.

2. Contained in the file specified by the first filename on the command(Nate that systems support-
ing the #! notation voke interpreters this way.)

3. Passed in implicitly via standard input. This only works if there are no filenagwrents— tqass
arguments to adin script you must explicitly specify a — for the script name.

After locating your scriptperl compiles it to an internal form. If the script is syntactically correct, it is
executed.

Options
Note: on first reading this section may not maiuch sense to you. #'here at the front for easy reference.

A single-character option may be combined with the foithg option, if aly. This is particularly useful
when irvoking a script using the #! construct which only allows omgiarent. Example:

#l/usr/bin/perl —spi.bak # same as —s —p —i.bak

Options include:

—a turns on autosplit mode when used withraor —p. An implicit split command to the @F array is
done as the first thing inside the implicit while loop produced by-thar —p.

perl —ane “print pop(@F), "\n";"
is equiaent to
while (<>) {

@F = split(" ");
print pop(@F), "\n";

Release 3 Patchid 1 1

PERL(1)

-d

PERL(1)

runs the script under the perl debuggsse the section on Debugging.

—Dnumber

sets debugging flagslo watch hav it executes your script, useD14. (This only works if debg-
ging is compiled into youperl.) Anothernice value is —-D1024, which lists your compiled syntax
tree. And-D512 displays compiled regular expressions.

—e commandline

may be used to enter one line of scriptultiple —e commands may be\gin to kuild up a multi-line
script. If—eis given, perl will not look for a script filename in the argument list.

—iextension

specifies that files processed by the <> construct are to be edited indpldoes this by renaming
the input file, opening the output file by the same name, and selecting that output file asute def
for print statements. The extension, if supplied, is added to the name of the old fileeta lekup
copy. If no extension is supplied, no backup is made. Saying “perl —p —i.bak —e "s/foo/har;I's

the same as using the script:

#1/usr/bin/perl —pi.bak
s/foo/bar/;

which is equialent to

#1/usr/bin/perl
while (<>) {
if (JARGV ne $oldargv) {
rename($ARGV$ARGYV . “.bak’);
open(ARGVOUT ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV,;

}
s/foo/bar/;
}
continue {

print; #this prints to original filename
}
select(STDOUT);

except that the-i form doesnt need to compare $ARGV to $oldargv to knwhen the filename has
changed. Itdoes, hwever, use ARG\WOUT for the selected filehandle. Note tH&EDOUT is
restored as the default output filehandle after the loop.

You can use eof to locate the end of each input file, in case you want to append to each file, or reset
line numbering (see example under eof).

—l directory

may be used in conjunction witkP to tell the C preprocessor where to look for include filBg.
default /usr/include and /ust/lib/perl are searched.

causesperl to assume the following loop around your script, which makes it itevatefiename
arguments somewhat ékK'sed —n’ or awk:

while (<>) {
e #your script goes here

}

Note that the lines are not printed byaldf. See-p to have lines printed. Here is an efficienew
to delete all files older than a week:

Release 3 Patchid 1 2

PERL(1)

PERL(1)

find . -mtime +7 —prinfiperl —ne “chop;unlink;”

This is faster than using the xee switch of find because you ddriaveto start a process owesy
filename found.

causesperl to assume the following loop around your script, which makes it itevatefitename
arguments somewhat lileed:

while (<>) {

e #your script goes here

} continue {
print;

}

Note that the lines are printed automaticallp suppress printing use then switch. A—p overides
a—n switch.

causes your script to be run through the C preprocessor before compilatpen .bySince both
comments and cpp direets begn with the # characteyou should woid starting comments with
ary words recognized by the C preprocessor suclifds“else’” or ‘‘define”.)

enables some rudimentary switch parsing for switches on the command line after the scripitname b
before awg filename arguments (or before a)- Any switch found there is renved from @ARGV

and sets the corresponding variable in ped script. Thefollowing script prints‘true” if and only

if the script is inoked with a —xyz switch.

#l/usr/bin/perl —s
if ($xyz) { print "true\n"; }

makesperl use the RTH environment \ariable to search for the script (unless the name of the script
starts with a slash)Typically this is used to emulate #! startup on machines that slgquport #!, in
the following manner:

#l/usr/bin/perl
evd "exec /usr/bin/perl -S $0 $*"
if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which proceeds toégute the

perl script as a shell scripfThe shell gecutes the second line as a normal shell command, and thus
starts up theperl interpreter On some systems $0 doesm@ways contain the full pathname, so the
—Stells perl to search for the script if necessa@fter perl locates the script, it parses the lines and
ignores them because the variable $running_under_some_shetrisrue.

causesperl to dump core after compiling your scripfou can then ta& this core dump and turn it

into an eecutable file by using the undump program (not supplied). This speeds startup at the
expense of some disk space (which you can minimize by strippingxdeatable). (Still,a "hello

world" executable comes out to about 200K on my machiifeypu are going to run yourxecutable

as a set-id program then you should probably compile it using taintperl rather than norm#l perl.
you want to gecute a portion of your script before dumping, use the dump operator instead.

allows perl to do unsafe operations. Currently the ofiysafe’ operation is the unlinking of direc-
tories while running as superuser.

prints the version and patcli& of your perl executable.

prints warnings about identifiers that are mentioned only once, and sadkbiles that are used
before being set. Alsoavns about redefined subroutines, and references to undefined filehandles or
filehandles opened readonly that you are attempting to write on. Also warns you if you use == on

Release 3 Patchid 1 3

PERL(1) PERL(1)

values that dort’look like numbers, and if your subroutines recurse more than 100 deep.
Data Types and Objects

Perl has three data types: scalars, arrays of scalars, and aseogralys of scalarsNormal arrays are
indexed by number and associatie arays by string.

The interpretation of operations andlues in perl sometimes depends on the requirements of thetconte
around the operation orllue. Thereare three major contes: string, numeric and arrayCertain opera-

tions return array values in contexts wanting an aag scalar values otherwisglf this is true of an
operation it will be mentioned in the documentation for that operation.) Operations which return scalars
don't care whether the conteis looking for a string or a numbdaut scalar variables and values are inter
preted as strings or numbers as appropriate to thextom§escalar is interpreted as TRUE in the boolean
sense if it is not the null string or Booleans returned by operators are 1 for true and 0" or ”~ (the null
string) for false.

There are actually tavvarieties of null string: defined and undefinddindefined null strings are returned
when there is no reablue for something, such as when there was an, erat end of file, or when you

refer to an uninitialized variable or element of an arrag undefined null string may become defined the
first time you access itubprior to that you can use the defined() operator to determine whether the value is
defined or not.

References to scalar variablewals begin with ‘$’, @en when referring to a scalar that is part of an array

Thus:
$days #a dmple scalar variable
$days[28] #9th element of array @days
$days{ Feb’} #one value from an associaiaray
$#days #ast index of array @days

but entire arrays or array slices are denoted by ‘@

@days #$days[0], $days[1],.. $days[n])
@days[3,4,5] #ame as @days[3. .5]
@days{’a’;c’} # same as ($days{'a’},$days{'c’})

and entire associag arays are denoted by ‘%’

%days #Hkeyl, vall, ley?, val2 ...)

Any of these eight constructs may sels anvaue, that is, may be assigned to. (It also turns out that an
assignment is itself ande in certain conis— seeexamples under s, tr and chop.) Assignment to a
scalar gauates the righthand side in a scalar ceiterhile assignment to an array or array slicauates

the righthand side in an array context.

You may find the length of array @days byaleiating ‘$#days’, as incsh. (Actually, it's rot the length of

the array it's the subscript of the last element, since there is (ordinarily) a Oth element.) Assigning to
$#days changes the length of the arr8ortening an array by this method does not actually deatrp
values. Lengthenin@n array that was previously shortened vecr® the ‘alues that were in those ele-
ments. Yu can also gain some measure diciehcy by preextending an array that is going to get big.
(You can also extend an array by assigning to an element thathe @nd of the arrayThis differs from
assigning to $#whater in that intervening values are set to null rather thanveeed.) You can truncate

an array down to nothing by assigning the null list () to it. The following are exactlyak=ni

@whataer = ();
$#whateer = $[- 1;

Multi-dimensional arrays are not directly supported, but see the discussion of the $; variable later for a

Release 3 Patchid 1 4

PERL(1) PERL(1)

means of emulating multiple subscripts with an assweeiatray.

Every data type has its own namespa¥eu can, without fear of conflict, use the same name for a scalar
variable, an arrayan asociatve aray, a filehandle, a subroutine name, and/or a lalséhce variable and
array references wbys start with ‘$’, ‘@’, or ‘%’, the ‘reserved’ words arert’ in fact reserved with
respect to &riable names.(They ARE reserved with respect to labels and filehandlesgben, which
don't havean initial special characteHint: you could say open(LOG, logfile”) rather than open(log,’log-
file”). Usinguppercase filehandles also impes readability and protects you from conflict with future
resened words.) CasdS significant— FOOQO’, ‘‘Foo” and “foo’’ are all different names. Names which
start with a letter may also contain digits and underscdvesnes which do not start with a letter are lim-
ited to one charactee.g. “$%" or ‘$$”. (Most of the one character names/ba pedefined significance

to perl. More later.)

Numeric literals are specified inyaaf the usual floating point or integer formats:

12345
12345.67
.23E-10
Oxffff # hex
0377 #octal

String literals are delimited by either single or double quotésy work much like shell quotes: double-
guoted string literals are subject to backslash ani@e substitution; single-quoted strings are natdpt
for \" and \\). The usual backslash rules apply for making characters such as newline, ¥y ean also
embed nelines directly in your strings, i.e. thean end on a different line than yhieegn. Thisis nice,
but if you forget your trailing quote, the error will not be reported ypeil finds another line containing
the quote charactewhich may be much further on in the scripfariable substitution inside strings is lim-
ited to scalar variables, normal array values, and array sltesther words, identifiers beginning with $
or @, followed by an optional bracketed expression as a subscript.) The following godgmserints out

“ The price is $100.

$Price = "$1007; # not interpreted
print "The price is $Pricert’; #interpreted

Note that you can put curly brackets around the identifier to delimit it from following alphanumerics.

Array values are interpolated into double-quoted strings by joining all the elements of the array with the
delimiter specified in the $" variable, space byadéf (Sincen versions of perl prior to 3.0 the @ charac-

ter was not a metacharacter in double-quoted strings, the interpolation of @kamay[EXPR],
@array[LIST], $array{EXPR}, or @array{LIST} only happens if array is referencedubieee in the pro-

gram or is predefined.) The following are egént:

$temp = join($", @ARGV);
system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quoteish substitution) there is a bad amlsiguity:
/$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character class for the regular expression) or
as /${foo[bar]}/ (where [bar] is the subscript to array @fod)7@foo doesrt otherwise exist, then &’
obviously a character class. If @foo exists, perl takes a good guess about [bar], and is aiasstgiit.

If it does guess wrong, or if yae' just plain paranoid, you can force the correct interpretation with curly
brackets as alve.

A line-oriented form of quoting is based on the shell here-is syRabawing a << you specify a string to
terminate the quoted material, and all lines following the current lina do the terminating string are the
vaue of the item. The terminating string may be either an identifier (a word), or some quotedifte

Release 3 Patchid 1 5

PERL(1) PERL(1)

quoted, the type of quotes you use determines the treatment okthpde as in regular quotingAn
unquoted identifier works l&kdouble quotes. There must be no space between the << and the iddtifier
you put a space it will be treated as a null identifidrich is valid, and matches the first blank lineee
Merry Christmas example be&lg The terminating string must appear by itself (unquoted and with ro sur
rounding whitespace) on the terminating line.

print <<EOF; # same as abe
The price is $Price.
EOF
print <<"EOF"; # same as abe
The price is $Price.
EOF
print << x 10; # null identifier is delimiter

Merry Christmas!

print <<'EOC’; # execute commands
echo hi there
echo lo there
EOC

print <<foo, <<bar; # you can stack them
| said foo.
foo
| said bar.
bar

Array literals are denoted by separating wdlial values by commas, and enclosing the list in parentheses.
In a context not requiring an array value, the value of the array literal ialtie of the final element, as in
the C comma operatoFor example,

@foo = (‘cc’, "-E’, $bar);
assigns the entire array value to array foo, but

$foo = (‘cc’, "-E, $bar);

assigns the value of variable bar to variable fAaay lists may be assigned to if and only if each element
of the list is an Ivalue:

($a, $b, $c) = (1, 2, 3);
($map{red’}, $map{ blue’}, $map{ green’}) = (0x00f, 0x0Of0, Oxf0O0);
The final element may be an array or an assueiatiay:

($a, $b, @rest) = split;
local($a, $b, %rest) = @_;

You can actually put an array anywhere in the list, e first array in the list will soak up all thalwes,
and anything after it will get a nulblue. Thismay be useful in a local().

An associatie aray literal contains pairs of values to be interpreted &y aid a value:

Release 3 Patchid 1 6

PERL(1) PERL(1)

same as map assignment abo
%map = (‘red’,0x00f,'blue’,0x0f0,'green’,0xf00);

Array assignment in a scalar context returns the number of elements produced by the expression on the
right side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # st $x to 3, not 2

There are seeral other pseudo-literals that you should wnabout. If a dring is enclosed by backticks
(grave acents), it first undergoes variable substitution just dilkdbuble quoted stringlt is then interpreted

as a command, and the output of that command isatlue wf the pseudo-literal, kkin a $iell. Thecom-
mand is gecuted each time the pseudo-literalvsleated. Thestatus @lue of the command is returned in
$? (see Predefined Names for the interpretation of $flike in csh, no translation is done on the return
data— navlines remain nelines. Unlike in any of the shells, single quotes do not hide variable names in
the command from interpretatioo pass a $ through to the shell you need to hide it with a backslash.

Evaluating a filehandle in angle brackets yields thea hiee from that file (newline included, sostheve

false until EOF at which time an undefined value is returned). Ordinarily you must assign that value to a
variable, lut there is one situation where in which an automatic assignment happens. If (and only if) the
input symbol is the only thing inside the conditional affale loop, the value is automatically assigned to

the variable‘$_". (This may seem lik an odd thing to you, but you'll use the construct in almogne

perl script you write.) Anywaythe following lines are equélent to each other:

while ($_ = <STDIN>) { print; }
while (<STDIN>) { print; }

for (; <STDIN>;) { print; }

print while $_ = <STDIN>;
print while <STDIN>;

The filehandlesSTDIN, STDOUT and STDERR are predefined. (The filehandlsslin, stdout and stderr
will also work except in packages, whereyth@uld be interpreted as local identifiers rather than global.)
Additional filehandles may be created with tpen function.

If a <FILEHANDLE> is used in a context that is looking for an gremyaray consisting of all the input
lines is returned, one line per array elemdtis easy to mak a LARGE data space thisay, so tse with
care.

The null filehandle <> is special and can be used to emulate theidvebiased andawk. Input from <>
comes either from standard input, or from each file listed on the commandiines how it works: the
first time <> is gauated, the ARGV array is cheetf, and if it is null, $ARGVI[0] is set to -", which when
opened gies you standard input. The ARGV array is then processed as a list of filenames. The loop

while (<>) {

#code for each line

}

Release 3 Patchid 1 7

PERL(1) PERL(1)

is equiaent to

unshiff(@ARGV =) if $#ARGV < §;
while ($ARGV = shift) {
open(ARGVY $ARGV);
while (RARGV>) {
e #code for each line
}
}

except that it isrt’'as aumbersome to saylt really does shift array ARGV and put the current filename into
variable ARGV It also uses filehandle ARGV internallyfou can modify @ARGV before the first <> as
long as you leae te first filename at the beginning of the arrijne numbers ($.) continue as if the input
was ane big happfile. (Butsee example under eof fonido reset line numbers on each file.)

If you want to set @ARGYV to your own list of files, go right ahead. If yaatvto pass switches into your
script, you can put a loop on the frontditais:

while ($_ = SARGVI0], I-/){
shift;
lastif "= -$/;
/"-D (.*)/ && ($debug = $1);
/"=v/ && $verbose++;
#other switches
}
while (<>) {
#code for each line

}

The <> symbol will return FALSE only once. If you call iteag after this it will assume you are process-
ing another @ARGYV list, and if you ten't set @ARGV will input from STDIN.

If the string inside the angle brak is a reference to a scalar variable (e.g. <$foo>), then that variable con-
tains the name of the filehandle to input from.

If the string inside angle brackets is not a filehandle, it is interpreted as a filename pattern to be globbed,
and either an array of filenames or the next filename in the list is returned, dependingxin Corekevel

of $ interpretation is done first, but you dasdly <$foo> because thatan ndirect filehandle asxplained

in the previous paragraphYou could insert curly brackets to force interpretation as a filename glob:
<${foo}>. Example:

while (<*.c>) {
chmod 0644, $_;
}

is equiaent to

open(foo, "echo *.€Jtr —s “ \t\r\f” "\012\\012\\012\\0127);
while (<foo>) {

chop;

chmod 0644, $_;
}

In fact, it's aurrently implemented thatay. (Which means it will not work on filenames with spaces in
them unless you ka bin/csh on your machine.) Of course, the shortest way to do the &bo

Release 3 Patchid 1 8

PERL(1) PERL(1)

chmod 0644, <*.c>;

Syntax

A perl script consists of a sequence of declarations and commditds.only things that need to be
declared inperl are report formats and subroutin€ee the sections b&dor more information on those
declarations. Aluninitialized objects user-created objects are assumed to start with a nublae Qmtil
they are defined by some explicit operation such as assignnidm.sequence of commands ieaited
just once, unlik in sed andawk scripts, where the sequence of commandséasuted for each input line.
While this means that you must explicitly loogeothe lines of your input file (or files), it also means you
have much more controlaer which files and which lines you look afActually, I'm lying—it is possible

to do an implicit loop with either then or —p switch.)

A declaration can be put ywwhere a command can, but has no effect on ¥eeuéion of the primary
sequence of commands--declarations ak tdiect at compile time Typically all the declarations are put
at the beginning or the end of the script.

Perl is, for the most part, a free-form language. (The orbeption to this is format declarations, fairfy
obvious reasons.) Comments are indicated by the # characteetend to the end of the line. If you
attempt to use /* */ C comments, it will be interpreted either @sidn or pattern matching, depending on
the contat. Sodon't do that.

Compound statements

In perl, a £quence of commands may be treated as one command by enclosing it in cudysbreék
will call this a BLOCK.

The following compound commands may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK .. dse BLOCK
LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (ARRAY) BLOCK

LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKSs, not statements. This means that the
curly brackets areequired—no dangling statements alled. If you want to write conditionals without
curly brackets there arewaeal other ways to do it. The following all do the same thing:

if (lopen(foo)) { die "Cant open $foo: $!"; }
die "Cant open $foo: $!" unless open(foo);
open(foo)Jdie "Cant open $foo: $!"; # foo or bust!
open(foo) ? die "Canbpen $foo: $!" : "hi mom’;

a lit exotic, that last one

Theif statement is straightfoard. SinceBLOCKSs are alays bounded by curly brackets, there isene
ary ambiguity about whichf an else goes with. If you usanless in place ofif, the sense of the test is
reversed.

Thewhile statementecutes the block as long as the expression is true (doesahadte to the null string

or 0). The LABEL is optional, and if present, consists of an identifier followed by a colon. The LABEL
identifies the loop for the loop control statememest, last, and redo (see belw). If there is acontinue
BLOCK, it is aways eecuted just before the conditional is about to Bauated again, similarly to the
third part of afor loop in C. Thus it can be used to increment a loop variaiée,wehen the loop has been
continued via th@ext statement (similar to the C “continustatement).

Release 3 Patchid 1 9

PERL(1) PERL(1)

If the word while is replaced by the evd until, the sense of the test isveesed, but the conditional is still
tested before the first iteration.

In either thef or thewhile statement, you may replacéEXPR)” with a BLOCK, and the conditional is
true if the value of the last command in that block is true.

The for loop works exactly lik the correspondinghile loop:

for ($i = 1; $i < 10; $i++) {

}
is the same as
$i=1,
while ($i < 10) {
}continljé.{
Pi++;
}

The foreach loop iteratesy& a rormal array value and sets thariable VAR to be each element of the

array in turn. The'foreach’ keyword is actually identical to th&or'’ keyword, so you can uséoreach”

for readability or‘for’’ for brevity. If VAR is omitted, $_ is set to eachlue. IfARRAY is an atual array

(as opposed to an expression returning an array value), you can modify each element of the array by modi-
fying VAR inside the loop. Examples:

for (@ary) { s/foo/bar/; }

foreach $elem (@elements) {
$elem *= 2;

}

for ((10,9,8,7,6,5,4,3,2,1, BOOM")) {
print $_, "\n"; sleep(1);
}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:\\n:]*/, SENV{ " TERMCAP}) {
print "ltem: $item\n";

}

The BLOCK by itself (labeled or not) is eggient to a loop that>@cutes once. Thus you can use an
the loop control statements in it toVear restart the blockThe continue block is optional. This construct
is particularly nice for doing case structures.

foo: {
if (/"abc/) { $abc = 1; last foo; }
if (/"def/) { $def = 1; last foo; }
if (/"xyz/) { $xyz = 1; last foo; }
$nothing = 1;

}

There is no dicial switch statement in perl, because there are alreagyabgvays to write the equalent.
In addition to the abe, you could write

Release 3 Patchid 1 10

PERL(1) PERL(1)

foo: {
$abc = 1, last foo if /"abc/;
$def = 1, last foo if /"def/;
$xyz = 1, last foo if I"xyz/;
$nothing = 1;
}
or
foo: {
["abc/ && do { $abc = 1; last foo; }
["def/ && do { $def = 1; last foo; }
I"xyz/ && do { $xyz = 1; last foo; }
$nothing = 1;
}
or
foo: {
["abc/ && ($abc = 1, last foo);
["def/ && ($def = 1, last foo);
I"xyz/ && ($xyz = 1, last foo);
$nothing = 1;
}
or even
if (/"abc/)

{$abc = 1; last foo; }
elsif (/"def/)

{ $def = 1; last foo; }
elsif (/"xyz/)

{$xyz = 1; last foo; }
else

{$nothing = 1;}

As it happens, these are all optimized internally to a switch structure, so perl jumps directly to the desired
statement, and you needmorry about perl xecuting a lot of unnecessary statements when yee ha

string of 50 elsifs, as long as you are testing the same simple scalar variable using ==, eq, or pattern match-
ing as abwe. (If you're curious as to whether the optimizer has done this for a particular case statement,
you can use the —D1024 switch to list the syntax tree befeoeion.)

Simple statements

The only kind of simple statement is arpeession ealuated for its side &fcts. Ewery expression (simple
statement) must be terminated with a semicolon. Note that thig i€ ilut unlike Pascal (andwk).

Any simple statement may optionally be followed by a single modifiest before the terminating semi-
colon. Thepossible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR

The if and unless modifiers hae the expected semanticI.he while and until modifiers also hae the

Release 3 Patchid 1 11

PERL(1)

PERL(1)

expected semantics (conditionalakiated first), mcept when applied to a do-BLOCK command, in which
case the blockxcutes once before the conditionalvslaated. Thids so that you can write loops like:

do {

$ =<STDIN>;

tuntil $_eq "\n";

(See thedo operator belov. Note also that the loop control commands described later will Wark in
this construct, since modifiers doteke loop labels. Sorry.)

Expressions

Since perl expressions work almost exactly &ilC expressions, only the differences will be mentioned here.
Heres what perl has that C doesn't:

%

*k—

0

The exponentiation operator.

The exponentiation assignment operator.
The null list, used to initialize an array to null.
Concatenation of tavgrings.

The concatenation assignment operator.

String equality (== is numeric equality}zor a nnemonic just think of‘€éq” as a $ring. (If you
are used to thawk behaior of using == for either string or numeric equality based on the cur
rent form of the comparands,vb@e! You must be explicit here.)

String inequality (= is numeric inequality).
String less than.

String greater than.

String less than or equal.

String greater than or equal.

Certain operations search or modify the strifig by default. Thisoperator makes that kind of
operation work on some other strindhe right argument is a search pattern, substitution, or
translation. Theeft agument is what is supposed to be searched, substituted, or translated
instead of the default$_". Thereturn value indicates the success of the operation. (If the right
argument is anxgression other than a search pattern, substitution, or translation, it is interpreted
as a search pattern at run time. This is less efficient than an explicit search, since the pattern must
be compiled eery time the expression isva@uated.) Theprecedence of this operator isvier

than unary minus and autoincrement/decrement, but highentbathéng else.

Just like =" except the return value is gaed.

The repetition operatorReturns a string consisting of the left operand repeated the number of
times specified by the right operand.

print =" x 80; # print row of dashes
print "= x80; #illegd, x80 is identifier

print "\t" x ($tab/8), "~ x ($tab%8) tab over

The repetition assignment operator.

Release 3 Patchid 1 12

PERL(1)

PERL(1)

The range operatowhich is really tvo different operators depending on the cgntén an array
context, returns an array of values counting (by ones) from the ddfievto the right alue. This
is useful for writing “for (1..10)'l oops and for doing slice operations on arrays.

In a scalar context,. returns a booleanalue. Theoperator is bistable, lé&ka fip-flop.. Each..
operator maintains its own boolean state. It is false as long as its left operalsd.isOncehe

left operand is true, the range operator stays true until the right operand is true, AFTER which the
range operator becomes falsaiag (It doesnt become false till the next time the range operator

is evaluated. Itcan become false on the sanvele@ation it became true, but it still returns true
once.) Theight operand is notvaluated while the operator is in théalse” state, and the left
operand is notvaluated while the operator is in th&rue” state. Thescalar . operator is pri-

marily intended for doing line number ranges after the fashisedadr awk. The precedence is a

little lower than[1land &&. The value returned is either the null string falsé, or a sequence
number (beginning with 1) for true. The sequence number is reset for each range encountered.
The final sequence number in a range has the string "E0” appended to it, whichaffeesrits
numeric value, but ges you something to search for if you want taleide the endpointYou

can exclude the lgénning point by waiting for the sequence number to be greater thin 1.
either operand of scalaris datic, that operand is implicitly compared to the &iable, the cur

rent line number Examples:

As a scalar operator:
if (101 .. 200) { print; } # print 2nd hundred lines

next line if (1 .. /"$/); #skip header lines
sl°/> 1if ("'$/ .. eof()); #quote body

As an array operator:
for (101 .. 200) { print; } # print $_ 100 times

@foo = @foo[$[- $#foo]; #an expensie -op
@foo = @foo[$#foo-4 .. $#fo0]; #slice last 5 items

Afile test. This unary operator takes onguanent, either a filename or a filehandle, and tests the
associated file to see if something is true about it. If thenaent is omitted, tests $_, except for
-t, which testsSTDIN. It returns 1 for true and =~ foalse, or the undefined value if the file
doesnt exist. Precedences higher than logical and relational operators, but lower than arith-
metic operators. The operator may by ah

-r Fileis readable by effeate ud.
-w Fileis writable by effectie ud.
—-X Fileis executable by effectie ud.
-0 Fileis owned by effectie ud.
-R Fileis readable by real uid.
-W Fileis writable by real uid.
-X File is executable by real uid.
-0 Fileis owned by real uid.

-e Fileexists.

-z Filehas zero size.

-S Filehas non-zero size.

—f File is a plain file.

-d Fileis a directory.

- File is a symbolic link.

-p Fileis a named pipe (FIFO).
-S Fileis a socket.

-b Fileis a block special file.

Release 3 Patchid 1 13

PERL(1) PERL(1)

-C Fileis a character special file.
-u Filehas setuid bit set.

-g Filehas setgid bit set.

-k File has sticly bit set.

-t Filehandles opened to a tty.
-T Fileis a text file.

-B Fileis a binary file (opposite of —T).

The interpretation of the file permission operators1;, —w, -W, —x and —X is based solely on

the mode of the file and the uids and gids of the uBeere may be other reasons you taotu-

ally read, write or xecute the file. Also note that, for the superuser-R, -w and -W abays

return 1, and —x and —X return 1 ifyasxecute bit is set in the mode. Scripts run by the supe-
ruser may thus need to do a stat() in order to determine the actual mode of the file, or temporarily
set the uid to something else.

Example:
while (<>) {
chop;
next unless —f $# ignore specials
}

Note that —s/a/b/ does not do agaed substitution. Saying —exp($foo) still works apected,
however— only single letters following a minus are interpreted as file tests.

The -T and -B switches work as falls. Thefirst block or so of the file is examined for odd
characters such as strange control codes or metacharacters. If fpoddarharacters (>10%)
are found, its a —B fie, otherwise ig a —T fie. Also,ary file containing null in the first block is
considered a binary filelf =T or —B is used on a filehandle, the current stdifids is xamined
rather than the first block. Both =T and —-B returnJERon a null file, or a file at EOF when test-
ing a filehandle.

If any of the file tests (or either stat operator) aregithe special filehandle consisting of a solitary under
line, then the stat structure of the previous file test (or stat operator) is usad,asaystem call(This
doesnt work with —t, and you need to remember that Istat and -I willdealues in the stat structure for
the symbolic link, not the real file.) Example:

print "Can do.\n" if -r $dTJ-w _ [T1-x _;

stat($filename);

print "Readable\n" if -r _;
print "Writable\n" if -w _;
print "Executable\n™ if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;

print "Text\n" if -T _;

print "Binary\n" if -B _;

Here is what C has thaer| doesn't:

unary & Address-of operator.

Release 3 Patchid 1 14

PERL(1) PERL(1)

unary * Dereference-address operator.
(TYPE) Type casting operator.

Like C, perl does a certain amount afgression ealuation at compile time, whewer it determines that
all of the arguments to an operator are static and ha 5de efects. Inparticular string concatenation
happens at compile time between literals that tddm'variable substitution. Backslash interpretation also
happens at compile timelou can say

"Now is the time for all” . \n".
“good men to come to.”

and this all reduces to one string internally.

The autoincrement operator has a littkdr& built-in magic to it. If you increment a variable that is
numeric, or that hasver been used in a numeric coxiteyou get a normal increment. If,\wever, the \ari-

able has only been used in string contexts since it was set, anddias ¢hat is not null and matches the
pattern /"[a-zA-Z]*[0-9]*$/, the increment is done as a string, preserving each character within its range,
with carry:

print ++($foo =7997); # prints ‘100’
print ++($foo = "a0’); # prints ‘al’
print ++($foo = "Az"); # prints ‘Ba’
print ++($foo = 'zz"); # prints ‘aaa’

The autodecrement is not magical.

Along with the literals andariables mentioned earlighe operations in the following section can ses

terms in an xpression. Somef these operations taka UST as an gument. Sucla list can consist of

ary combination of scalar arguments or array values; the array values will be included in the list as if each
individual element were interpolated at that point in the list, forming a longer single-dimensional array
vaue. Element®f the LIST should be separated by commas. If an operation is listed both with and with-
out parentheses around its arguments, it means you can either use it as a unary operator or as a function
call. To use it as a function call, the next token on the same line must be a left parer{iftesis.may be
intervening white space.) Such a function then has highest precedence, as you would expect from a func-
tion. If ary token other than a left parenthesis follows, then it is a unary opewvdtbra precedence
depending only on whether it is a LIST operator or ndST operators ha lowest precedence. All other

unary operators lva a pecedence greater than relational operatatddss than arithmetic operatorSee

the section on Precedence.

/PATTERN/
See mM/RTTERN/.

?RATTERN?
This is just lile the /pattern/ search, except that it matches only once between callsrésethe
operator This is a useful optimization when you only want to see the first occurrence of some-
thing in each file of a set of files, for instance. Only ?? patterns local to the current package are
reset.

accept(NEWSOCKET,GENERICSOCKET)
Does the same thing that the accept system call d®etirns true if it succeeded, false other
wise. Seexample in section on Interprocess Communication.

atan2(X,Y)
Returns the arctangent of X/Y in the rangete-

bind(SOCKET,NAME)
Does the same thing that the bind system call does. Returns true if it succeklsgeothierwise.
NAME should be a paekl address of the proper type for the svckSeeexample in section on
Interprocess Communication.

Release 3 Patchid 1 15

PERL(1) PERL(1)

chdir(EXPR)

chdir EXPR
Changes the working directory to EXPR, if possidfeEXPR is omitted, changes to home direc-
tory. Returns 1 upon success, 0 otherwise. See example dieder

chmod(LIST)

chmod LIST
Changes the permissions of a list of files. The first element of the list must be the numerical
mode. Returnthe number of files successfully changed.

$cnt = chmod 0755, “foo”, “bar’;
chmod 0755, @ecutables;

chop(LIST)
chop(VARIABLE)
chop VARIABLE

chop Chops of the last character of a string and returns the character choftjsedsed primarily to
remove the newline from the end of an input record, but is much more efficient than s/\n// because
it neither scans nor copies the string. If VARIABLE is omitted, chops $_. Example:

while (<>) {
chop; #avad \n on last field
@array = split(/:/);

}

You can actually chop anything thatn alue, including an assignment:

chop($cwd = "pwd’);
chop($answer = <STDIN>);
If you chop a list, each element is chopped. Only the value of the last chop is returned.
chown(LIST)

chown LIST
Changes thewaner (and group) of a list of files. The firstawements of the list must be the
NUMERICAL uid and gid, in that ordeReturns the number of files successfully changed.

$cnt = chown $uid, $gid, “foo”, "bar’;
chown $uid, $gid, @filenames;

Release 3 Patchid 1 16

PERL(1) PERL(1)

Here's an éample of looking up non-numeric uids:

print "User: ";
$user = <STDIN>;
chop($user);
print "Files: "
$pattern = <STDIN>;
chop($pattern);
open(pass, “/etc/passwdl)die "Cant open passwd: $1\n";
while (<pass>) {
($login,$pass,$uid,$gid) = split(/:/);
$Suid{$login} = $uid,;
$gid{$login} = $gid;

}
@ary = <$pattern>; # get filenames
if ($uid{Suser} eq) {
die "$user not in passwd file";
}
else {
chown $uid{$user}, $gid{$user}, @ary;
}

chroot(FILENAME)

chroot FILENAME
Does the same as the system call of that name. If yot kiom what it does, don'worry about
it. If FILENAME is omitted, does chrootto $.

close(FILEHANDLE)

close FILEHANDLE
Closes the file or pipe associated with the file handtel don’t haveto close FILEHANDLE if
you are immediately going to do another open on it, since open will close it fo(§eeopen.)
However, an explicit close on an input file resets the line counter ($.), while the implicit close
done byopen does not.Also, closing a pipe will wait for the processeeuting on the pipe to
complete, in case you want to look at the output of the pipe aftésw Closing ppe eplicitly
also puts the status value of the command into $?. Example:

open(OUTPUT [sort >foo’); # pipe to sort

.. #print stuf to output
close OUTPUT # wait for sort to finish
open(INPUT foo’); #get sorts results

FILEHANDLE may be an expression whose valugegithe real filehandle name.
closedir(DIRHANDLE)

closedir DIRHANDLE
Closes a directory opened by opendir().

connect(SOCKET,NAME)
Does the same thing that the connect system call does. Returns true if it succdseledhér
wise. NAME should be a package address of the proper type for thetsdd&e=xample in sec-
tion on Interprocess Communication.

cos(EXPR)

Release 3 Patchid 1 17

PERL(1) PERL(1)

cos EXPR
Returns the cosine of EXPR (expressed in radians). If EXPR is omitted takes cosine of $_.

crypt(PLAINTEXT,SALT)
Encrypts a string>actly like the crypt() function in the C libraryUseful for checking the pass-
word file for lousy passards. Onlythe guys wearing white hats should do this.

dbmclose(ASSOC_ARRAY)

dbmclose ASSOC_ARRAY
Breaks the binding between a dbm file and an asseziatiay. The values remaining in the
associatie aray are meaningless unless you happendotwo knev what was in the cache for
the dbm file. This function is only useful if youvgardbm.

dbmopen(ASSOC,DBNAME,MODE)
This binds a dbm or ndbm file to an assoeetitray. ASSOC is the name of the assowiati
array (Unlike normal open, the first argument is R@ filehandle, gen though it looks lile
one). DBMME is the name of the database (without the .dir or .pégnsion). Ifthe database
does not ®ist, it is created with protection specified by MODE (as modified by the umHsk).
your system only supports the older dbm functions, you may ol dm@ dbmopen in your pro-
gram. Ifyour system has neither dom nor ndbm, calling dbmopen produces a fatal error.

Values assigned to the associataray prior to the dbmopen are losk certain number of al-
ues from the dbm file are cached in memdy default this number is 64, but you can increase it
by preallocating that number of garbage entries in the assecity before the dbmoper¥ou
can flush the cache if necessary with the reset command.

If you dont havewrite access to the dbm file, you can only read asseeiatiay variables, not
set them. If you want to test whether you can write, either use file tests or try setting a dummy
array entry inside arvel, which will trap the error.

Note that functions such asys() and alues() may return huge array values when used ga lar
dbm files. You may prefer to use the each() function to iterater targe dbm files. Example:

print out history file offsets
dbmopen(HIST/usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {

print $key, ' =", unpack(L,$val), "\n";

}
dbmclose(HIST);

defined(EXPR)

defined EXPR
Returns a boolean value saying whether the Ivalue EXPR has aba&alov not. Marny opera-
tions return the undefined value undgceptional conditions, such as end of file, uninitialized
variable, system error and such. This function allows you to distinguish between an undefined
null string and a defined null string with operations that might return a real null string, in particu-
lar referencing elements of an arrayou may also check to see if arrays or subroutines.e
Use on predefined variables is not guaranteed to produceviatesults. Examples:

print if defined $switch{'D’};
print "$val\n" while defined($val = pop(@ary));
die "Cant readlink $sym: $!"
unless defined($value = readlink $sym);
evd ' @foo = ()’ if defined(@foo);
die "No XYZ package defined" unless defined %_XYZ;
sub foo { defined &bar ? &bar(@_) : die "No bar"; }

Release 3 Patchid 1 18

PERL(1) PERL(1)

See also undef.

delete $ASSOC{KEY}
Deletes the specified value from the specified asseeiatiay. Returns the deleted value, or the
undefined value if nothing was delete®eleting from $ENV{} modifies the arironment.
Deleting from an array bound to a dbm file deletes the entry from the dbm file.

The following deletes all the values of an assoggadiray:

foreach $ky (keys %ARRAY) {
delete SARRAY{S$ley};

}

(But it would be faster to use theset command. Sayingndef %ARRA is faster yet.)
die(LIST)

die LIST
Prints the value of LIST t&TDERR and exits with the current value of $&rrno). If$! is 0,
exits with the value of ($? >> 8) (‘command’ statu§)$? >> 8) is 0, exits with 255Equivalent
examples:

die "Cant cd to pool: $!\n" unless chdir “/usr/spool/news’;

chdir “/usr/spool/newdTldie "Cant cd to gool: $\n"

If the value of EXPR does not end in amiae, the current script line number and input line
number (if ag) are also printed, and a newline is supplied. Hint: sometimes appending *
stopped’'to your message will cause it to neaketter sense when the string “at foo line 128’
appended. Suppogeu are running script “canasta”.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respecitly

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See als@xit.

do BLOCK
Returns the value of the last command in the sequence of commands indicated by BLOCK.
When modified by a loop modifieexecutes the BLOCK once before testing the loop condition.
(On other statements the loop modifiers test the conditional first.)

do SUBROUTINE (LIST)

Executes a SUBROUTINE declared by declaration, and returns the value of the laptres-
sion evaluated in SUB®UTINE. If there is no subroutine by that name, producesa érror
(You may use thédefined’ operator to determine if a subroutingsts.) If you pass arrays as
part of LIST you may wish to pass the length of the array in front of each é8eg the section
on subroutines later on. pUBROUTINE may be a scalaraviable, in which case theanable
contains the name of the subroutine xecaete. Theparentheses are required imid confusion
with the “do EXPR’ form.

As an alternate form, you may call a subroutine by prefixing the name with an ampersand:
&foo(@amys). If you arent passing ay arguments, you dot’haveto use parentheses. If you
omit the parentheses, no @ __ array is passed to the subrolitie& form is also used to specify

Release 3 Patchid 1 19

PERL(1) PERL(1)

subroutines to the defined and undef operators.

do EXPR
Uses the value of EXPR as a filename axstues the contents of the file aper| script. Its
primary use is to include subroutines frorpeal subroutine library.

do “stat.pl’;
is just like
evd “cat stat.pl’;

except that its more efficient, more conciseg&ps track of the current filename for error mes-
sages, and searches all thdibraries if the file isrt' in the current directory (see also the @INC
array in Predefined Namedl}'s the same, heever, in that it does reparse the fileegy time you

call it, so if you are going to use the file inside a loop you might prefer to use —P and #include, at
the expense of a little more startup tin{@he main problem with #include is that cpp doesn’
grok # comments—a workaround is to usé#'’ for standalone comments.) Note that the f@llo

ing are N equivalent:

do $foo;# eval afile
do $foo(); # call a subroutine

dump LABEL
This causes an immediate core dursimarily this is so that you can use the undump program
to turn your core dump into amxeeutable binary after having initialized all your variables at the
beginning of the program. When thewdinary is executed it will begin by recuting a "goto
LABEL" (with all the restrictions that goto defs). Thinkof it as a goto with an inteeming
core dump and reincarnation. If LABEL is omitted, restarts the program from th&\&pN-
ING: ary files opened at the time of the dump will N®e goen aly more when the program is
reincarnated, with possible resulting confusion on the part of perl. See also —u.

Example:

#!/usr/bin/perl
do 'getopt.pl’;
do 'stat.pl’;
%days = (
'Sun’,1,
'Mon’,2,
"Tue’,3,
'Wed' 4,
"Thu',5,
"Fri’,6,
'Sat’,7);

dump QUICKSTAR if $ARGVI[0] eq '-d’;

QUICKSTART:
do Getopt('f’);

each(ASSOC_ARRAY)

Release 3 Patchid 1 20

PERL(1)

PERL(1)

each ASSOC_ARRAY

Returns a 2 element array consisting of teg knd value for the next value of an assougti

array so hat you can iteratever it. Entriesare returned in an apparently random ard&hen

the array is entirely read, a null array is returned (which when assigned produces a FALSE (0)
value). Thenext call to each() after that will start iteratingaéig Theiterator can be reset only

by reading all the elements from the arr&pu must not modify the array while iteratingenit.

There is a single iterator for each assoe@#ray, shared by all each(),dys() and values() func-

tion calls in the program. The following prints out youriesnment like the printer program,

only in a different order:

while (($key,$value) = each %ENV) {
print "$key=$value\n";
}

See also &ys() and values().

eof(FILEHANDLE)

eof()
eof Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is not
open. FILEHANDLEmay be anxpression whose valuevgs the real filehandle name. An eof
without an agument returns the eof status for the last file read. Empty parentheses () may be
used to indicate the pseudo file formed of the files listed on the command line, i.e. eof() is reason-
able to use inside a while (<>) loop to detect the end of only the lasUBke eof(ARGV) or eof
without the parentheses to test EACH file in a while (<>) loop. Examples:
insert dashes just before last line of last file
while (<>) {
if (eof()) {
print"-—-—--—-—-—-—-——-——- An";
} .
print;
}
reset line numbering on each input file
while (<>) {
print "$.\t$_";
if (eof) {# Not eof().
close(ARGV);
}
}
evd(EXPR)
evd EXPR

EXPR is parsed andecuted as if it were a littlgperl program. Itis executed in the context of
the currentperl program, so that gnvariable settings, subroutine or format definitions remain
afterwards. Thevalue returned is thealue of the last expressiomauated, just as with subrou-
tines. Ifthere is a syntax error or runtime erramull string is returned bywvel, and $@ is set to
the error message. If there was no @ is rull. If EXPR is omitted, waluates $_. The final
semicolon, if ag, may be omitted from the expression.

Note that, sinceval traps otherwise-fatal errors, it is useful for determining whether a particular
feature (such as dbmopen or symlink) is implemented.

Release 3 Patchid 1 21

PERL(1) PERL(1)

exec(LIST)

exe LIST
If there is more than one argument in L|®Tif LIST is an array with more than one value, calls
execvp() with the arguments in LISTIf there is only one scalar argument, the argument is
checled for shell metacharacter.there are ap the entire argument is passed to “/bin/sh’ —c’
for parsing. If there are none, the argument is split into words and passed direzggvia(e
which is more dicient. Note:exec (and system) do not flush your outpuiffer, so you may
need to set[$to avoid lost output. Examples:

exec ‘fbin/echo’, “Your arguments are: ", @ARGV;
exec "sort $outfileduniq";

If you dont really want to gecute the first argument, but want to lie to the program youxare e
cuting about its own name, you can specify the program you actualiy tev run by assigning
that to a variable and putting the name of thdable in front of the LIST without a comma.
(This alvays forces interpretation of the LIST as a multi-valued ligtnef there is only a single
scalar in the list.) Example:

$shell = '/bin/csh’;
exe: $shell '-sh’; # pretend its a bgin shell

ext(EXPR)

exit EXPR
Evaluates EXPR and exits immediately with thatre. Example:

$ans = <STDIN>;
exit 0 if $ans =" [[Xx]/;

See alsdlie. If EXPR is omitted, exits with O status.
exp(EXPR)

exp EXPR
Returnse to the power of EXPR. If EXPR is omittedyvgs exp($).

fentl(FILEHANDLE,FUNCTION,SCALAR)
Implements the fcntl(2) functionYou'll probably hae o say

do "fentl.h"; # probably /usr/local/lib/perl/fcntl.h

first to get the correct function definitions. If fcntl.h doéswist or doesri’havethe correct defi-
nitions you'll have 1o roll your owvn, based on your C header files such as <sys/fcntl.h>. (There is
a perl script called maddib that comes with the perl kit which may help you in thistjument
processing andalue return works just lkioctl belav. Note that fcntl will produce a fatal error

if used on a machine that dogsmplement fcntl(2).

fileno(FILEHANDLE)
Returns the file descriptor for a filehandle. Useful for constructing bitmaps for sel€€d()E-
HANDLE is an expression, the value is taken as the name of the filehandle.

flock(FILEHANDLE,OPERATION)
Calls flock(2) on FILEHANDLE. See manual page for flock(2) for definition of OPHRAN.
Will produce a fatal error if used on a machine that doasplement flock(2).Here's a mailbox
appender for BSD systems.

Release 3 Patchid 1 22

PERL(1) PERL(1)

$LOCK_SH = 1;
$LOCK_EX = 2;
$LOCK_NB = 4;
$LOCK_UN = 8;

sub lock {
flock(MBOX,$LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,$LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/$USER")
[([die "Cant open mailbox: $!";

do lock();
print MBOX $msg,"\n\n";
do unlock();

fork Does a fork() call.Returns the child pid to the parent process and O to the child prddetss.
unflushed bffers remain unflushed in both processes, which means you may need ftset $
avdd duplicate output.

getc(FILEHANDLE)
getc FILEHANDLE

getc Returns the next character from the input file attached to FILEHANDLE, or a null string at EOF
If FILEHANDLE is omitted, reads from STDIN.

getlogin Returns the current login from /etc/utmp, if.alf null, use getpwuid.
($login = getlogin)TI(($login) = getpwuid($<));

getpeername(SOCKET)
Returns the packed sockaddr address of other end of the SOCKET connection.

An internet sockaddr

$sockaddr ='S n a4 x8’;

$hersockaddr = getpeername(S);

(Sfamily, $port, Sheraddr) = unpack($sockaddr,$hersockaddr);

getpgrp(PID)

getpgrp PID
Returns the current process group for the specified PID, O for the current pMikgsoduce a
fatal error if used on a machine that doésmplement getpgrp(2). If EXPR is omitted, returns
process group of current process.

getppid Returns the process id of the parent process.

Release 3 Patchid 1 23

PERL(1) PERL(1)

getpriority(WHICH,WHO)
Returns the current priority for a process, a process group, or.a(8ser getpriority(2).)Will
produce a fatal error if used on a machine that doaaplement getpriority(2).

getpwnam(NAME)
getgrnam(NAME)
gethostbyname(NAME)
getnetbyname(NAME)
getprotobyname(NAME)
getpwuid(UID)

getgrgid(GID)
getservbyname(NAME,R&RTO)
gethostbyaddr(ADDR,ADDRTYPE)
getnetbyaddr(ADDR,ADDRTYPE)
getprotobynumber(NUMBER)
getservbyport(PORPROTO)
getpwent()

getgrent()

gethostent()

getnetent()

getprotoent()

getservent()

setpwent()

setgrent()
sethostent(SAYOPEN)
setnetent(SAYOPEN)
setprotoent(SAYOPEN)
setservent(SAYOPEN)
endpwent()

endgrent()

endhostent()

endnetent()

endprotoent()

endservent()
These routines perform the same functions as their counterparts in the system Tibeargturn
values from the various get routines are as follows:

($name,$passwd,$uid,$gid,

$quota,$comment,$gcos, $dir,$shell) = getpw
($name,$passwd,$gid, $members) = getgr
($name, $aliases,$addrtype,$length,@addrs) = gethost.
($name,$aliases,$addrtype,$net) = getnet.
($name, $aliases,$proto) = getproto.

Release 3 Patchid 1 24

PERL(1) PERL(1)

($name,$aliases,$port,$proto) = getserv

The $members value returned by getgis a pace separated list of the login names of the mem-
bers of the group.

The @addrs value returned by the gethodunctions is a list of the waaddresses returned by
the corresponding system library call. In the Internet domain, each address is four bytes long and
you can unpack it by saying something like:

($a,$b,$c,$d) = unpack('C4’,$addr[0]);

getsockname(SOCKET)
Returns the packed sockaddr address of this end of the SOCKET connection.

An internet sockaddr

$sockaddr ='S n a4 x8’;

$mysockaddr = getsockname(S);

(Sfamily, $port, Smyaddr) = unpack($sockaddr,$mysockaddr);

getsockopt(SOCKET,LEVEL,OPTNAME)
Returns the socket option requested, or undefined if there is an error.

gmtime(EXPR)

gmtime EXPR
Corverts a time as returned by the time function to a 9-element array with the time analyzed for
the Greenwich timezonelypically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,Syday,Sisdst) = gmtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0..11 and $wday has the range DEXPR is omitted, does gmtime(time).

goto LABEL
Finds the statement labeled with LABEL and resunxesution there. Currently you may only
go to statements in the main body of the program that are not nested inside a do {} construct.
This statement is not implementeety eficiently, and is here only to makthe sed-to-per| trans-
lator easier | may change its semantics atyamme, consistent with support for translatesd
scripts. Usaet at your own risk. Better yet, ddnise it at all.

grep(EXPR,LIST)
Evaluates EXPR for each element of LIST (locally setting $_ to each element) and returns the
array value consisting of those elements for which the expresaiuated to true.

@foo = grep(!/"#/, @bar); # weed out comments

hex(EXPR)

hex EXPR
Returns the decimal value of EXPR interpreted as arstneg. (To interpret strings that might
start with 0 or Ox see oct().) If EXPR is omitted, uses $_.

ioctl(FILEHANDLE,FUNCTION,SCALAR)
Implements the ioctl(2) functionYou'll probably hae © say

do "ioctl.h"; # probably /usr/local/lib/perl/ioctl.h

Release 3 Patchid 1 25

PERL(1) PERL(1)

first to get the correct function definitions. If ioctl.h doéswist or doesrt’havethe correct defi-
nitions you’ll have 1o roll your own, based on your C header files such as <sys/ioctl.h>. (There is
a perl script called makelib that comes with the perl kit which may help you in tBSALAR

will be read and/or written depending on the FUNCTIOB-pointer to the string value of
SCALAR will be passed as the third argument of the actual ioctl AiSCALAR has no string

value but does hee a rumeric value, that value will be passed rather than a pointer to the string
value. To guarantee this to be true, add a 0 to the scalar before using it.) The pack() and
unpack() functions are useful for manipulating tladues of structures used by ioctl(). The fol-
lowing example sets the erase character to DEL.

do 'ioctl.h’;
$sgttyb_t = "ccces”; # 4 chars and a short
if (ioct(STDIN,$TIOCGETP,$sgttyb)) {
@ary = unpack($sgttyb_t,$sgttyb);
$ary[2] = 127;
$sgttyb = pack($sgttyb_t,@ary);
ioctl(STDIN,$TIOCSETP,$sgttyb)
(Tdie "Cant ioctl: $!";
}

The return value of ioctl (and fcntl) is as follows:

if OS returns: perl returns:
-1 undefined/alue
0 gring "0 but true"
anything else that number

Thus perl returns true on success aige on failure, yet you can still easily determine the actual
value returned by the operating system:

($retval = ioctl(...))($retval = -1);
printf "System returned %d\n", $retval;

index(STR,SUBSTR)
Returns the position of the first occurrence of SUBSTR in STR, based at 0, ovavlyatéve
set the $[variable to. If the substring is not found, returns one less than the base, ordinarily -1.

int(EXPR)
int EXPR
Returns the integer portion of EXPR. If EXPR is omitted, uses $.
join(EXPR,LIST)
join(EXPR,ARRAY)

Joins the separate strings of LIST or ARRXto a single string with fields separated by the
value of EXPR, and returns the string. Example:

$_=join("’", $login,$passwd,$uid,$gid,$gcos,$home, $shell);

Seesplit.

keys(ASSOC_ARRAY)

keys ASSOC_ARRAY
Returns a normal array consisting of all theykof the named associe#i aray. The leys ae
returned in an apparently random ord®t it is the same order as either the values() or each()

function produces (gen that the associate aray has not been modifiedHere is yet another
way to print your environment:

Release 3 Patchid 1 26

PERL(1) PERL(1)

@keys = keys %ENV,
@values = values %ENYV;
while ($#leys >=0) {
print pop(leys), =", pop(values), "\n";
}

or how about sorted by &y

foreach $ky (sort(keys UENV)) {
print Skey, "=", SENV{$key}, "\n";
}

kill(LIST)

kill LIST
Sends a signal to a list of processes. The first element of the list must be the signal to send.
Returns the number of processes successfully signaled.

$cnt = kill 1, $childl, $child2;
kill 9, @goners;

If the signal is ngdive, kills process groups instead of processes. (On Systearsgdive
process number will also kill process groups, but tkait portable.) You may use a signal name

in quotes.
last LABEL
last Thelast command is lik the break statement in C (as used in loops); it immediatedysethe

loop in question. If the LABEL is omitted, the command refers to the innermost enclosing loop.
The continue block, if ary, is mot executed:

line: while (<STDIN>) {
last line if '$/; #exit when done with header

length(EXPR)

length EXPR
Returns the length in characters of the value of EXPR. If EXPR is omitted, returns length of $_.

link(OLDFILE,NEWFILE)
Creates a mefilename linked to the old filename. Returns 1 for success, 0 otherwise.

listen(SOCKET,QUEUESIZE)
Does the same thing that the listen system call does. Returns true if it succeeded, false otherwise.
See example in section on Interprocess Communication.

local(LIST)
Declares the listed variables to be local to the enclosing block, subrouther &do”. All the
listed elements must begla Ivalues. Thisoperator works by séng the current values of those
variables in LIST on a hidden stack and restoring them upon exiting the block, subroutiake or e
This means that called subroutines can also reference the ¢oizdile, but not the global one.
The LIST may be assigned to if desired, whichvedioyou to initialize your localariables. (If
no initializer is gven, all scalars are initialized to the null string and all arrays and assgeciati
arrays to the null arrgdy Commonlythis is used to name the parameters to a subroufiram-
ples:

Release 3 Patchid 1 27

PERL(1) PERL(1)

sub RANGEVAL {
local($min, $max, $thunk) = @_;
local($result) = ;
local($i);

Presumably $thunk makes reference to $i

for ($i = $min; $i < $max; $i++) {
$result .= ga $thunk;
}

$result;

}

if ($sw eq "-v') {
init local array with global array
local(@ARGV) = @ARGYV,
unshift('echo”, @ARGV);
system @ARGYV,

}
@ARGYV restored

temporarily add to digits associaiaray

if ($basel2) {
(NOTE: not claiming this is efficient!)
local(%digits) = (%digit¥,’,10,'e’,11);
do parse_num();

}

Note that local() is a run-time command, and so getsuted @ery time through a loop, using
up more stack storage each time untd &@f released at once when the loop is exited.

localtime(EXPR)

localtime EXPR
Corverts a time as returned by the time function to a 9-element array with the time analyzed for
the local timezoneTypically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,Syday,$isdst) = localtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0..11 and $wday has the range @. EXPR is omitted, does local-
time(time).

log(EXPR)

log EXPR
Returns logarithm (bas® of EXPR. If EXPR is omitted, returns log of $_.

Istat(FILEHANDLE)
Istat FILEHANDLE

Istat(EXPR)
Does the same thing as the stat() function, but stats a symbolic link instead of the file the sym-
bolic link points to. If symbolic links are unimplemented on your system, a normal stat is done.

Release 3 Patchid 1 28

PERL(1) PERL(1)

m/PAT TERN/io

/PATTERN/io
Searches a string for a pattern match, and returns true (1) or faldérfd)string is specified via
the =" or I" operatorthe $_ string is searched. (The string specified with =~ need not be an
Ivalue—it may be the result of an expressioraleation, but remember the =" binds rather
tightly.) Seealso the section on regular expressions.

If / is the delimiter then the initial ‘m’ is optionalWith the ‘m’ you can use &rpair of charac-

ters as delimiters. This is particularly useful for matching Unix path names that contdin /.
the final delimiter is follaved by the optional letter ‘i, the matching is done in a case-insensiti
manner PATTERN may contain references to scalar variables, which will be interpolated (and
the pattern recompiledyery time the pattern search igakiated. Ifyou want such a pattern to

be compiled only once, add dn’* after the trailing delimiter This asoids expensve mun-time
recompilations, and is useful when the value you are interpolatimg ehange wer the life of

the script.

If used in a contd that requires an array value, a pattern match returns an array consisting of the
sube&pressions matched by the parentheses in the pattern, i.e. ($1, $p, #3loes NO actu-

ally set $1, $2, etc. in this case, nor does it set $+, $', $& or $'. If the match fails, a null array is
returned.

Examples:

open(tty “/devi/tty’);
<tty> =" /"y /i && do foo(); # do foo if desired

if (/Version: *([0-9.]*)/) { $version = $1; }
next if m#"/usr/spool/uucp#;

poor mans gep
$ag = <hift;
while (<>) {
print if /$amg/o; #compile only once

}
if (BF1, $F2, $ELC) = ($f00 =" (\S+)\s+(S+H\s*(*))))

This last example splits $foo into the firstotwords and the remainder of the line, and assigns
those three fields to $F1, $F2 and $Etc. The conditional is trug iWaatables were assigned,
i.e. if the pattern matched.

mkdir(FILENAME,MODE)
Creates the directory specified by FILEME, with permissions specified by MODE (as modi-
fied by umask). If it succeeds it returns 1, otherwise it returns 0 and sets $! (errno).

next LABEL

next Thenext command is lik the continue statement in C; it starts the next iteration of the loop:

line: while (<STDIN>) {
next line if ['#/; #discard comments

}

Note that if there were eontinue block on the abee, it would get &ecuted &en on dscarded
lines. Ifthe LABEL is omitted, the command refers to the innermost enclosing loop.

Release 3 Patchid 1 29

PERL(1) PERL(1)

oct(EXPR)

oct EXPR
Returns the decimalalue of EXPR interpreted as an octal string. (If EXPR happens to dtart of
with 0x, interprets it as a Restring instead.) The following will handle decimal, octal and ire
the standard notation:

$val = oct($val) if $val =" /°0/;

If EXPR is omitted, uses $_.
open(FILEHANDLE,EXPR)
open(FILEHANDLE)

open FILEHANDLE
Opens the file whose filename isei by EXPR, and associates it with FILEHANDLE. If FILE-
HANDLE is an expression, its value is used as the name of the real filehamdédw IfEXPR
is omitted, the scalar variable of the same name as the FILEHANDLE contains the fildhame.
the filename begins with<’’ or nothing, the file is opened for inpukf the filename begins with
“>" the file is opened for output. If the filename begins witl»”, the file is opened for
appending. (Wu can put a "+ in front of the ">" or <" to indicate that you want both read and
write access to the file.) If the filenameghes with ‘[T, the filename is interpreted as a com-
mand to which output is to be piped, and if the filename ends withi athe filename is inter
preted as command which pipes input to (éou may not hze a ©@mmand that pipes both in
and out.) Opening =" oper@DIN and opening ">-" operSTDOUT. Open returns non-zero
upon success, the undefined value otherwise. If the opelveéd a pipe, the return value hap-
pens to be the pid of the subprocess. Examples:

$article = 100;
open articldT]die "Cant find article $article: $1\n";
while (<article>) {. ..

open(LOG, ">>/usr/spool/mes/twitlog”); # (log is reserved)
open(article, "caesar <$artid®); # decrypt article
open(extract, sort >/tmp/TmpS); #$3 is our process#
process argument list of files along withyancludes

foreach $file (@ARGV) {
do process($file, "th00");# no pun intended

}

sub process {
local($filename, $input) = @_;
$input++; #this is a string increment
unless (open($input, $filename)) {
print STDERR "Cart'open $filename: $!\n";
return;
}
while (<$input>) { # note the use of indirection
if ("#include "(.*)"/) {
do process($1, $input);
next;

Release 3 Patchid 1 30

PERL(1)

PERL(1)

#whatever

}

You may also, in the Bourne shell tradition, specify an EXPR beginning &’ in which
case the rest of the string is interpreted as the name of a filehandle (or file dedcniptoeric)
which is to be duped and openddere is a script that ges, redirects, and restor8§DOUT and
STDIN:

#!/usr/bin/perl
open(SAVEOUT">&STDOUT");
open(SAVEERR, ">&STDERR");

open(STDOUT">foo.out") [(Tdie "Cant redirect stdout";
open(STDERR, ">&STDOUT")T1die "Cant dup stdout";

select(STDERR); 8= 1; # malke unbuffered
select(STDOUT); §=1; # malke unbuffered
print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too
close(STDOUT);

close(STDERR);

open(STDOUT">&SAVEOUT");
open(STDERR, ">&SAVEERR");

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you open a pipe on the command*, i.e. either ‘(" or *'=[7, then there is an implicit fork
done, and the returraiue of open is the pid of the child within the parent process, and 0 within
the child process. (Use defined($pid) to determine if the open was succe$hilfilehandle
behaes normally for the parent, but i/o to that filehandle is piped from/t&ii@OUT/STDIN of

the child process. In the child process the filehandl¢ apened— i/ohappens from/to the ne
STDOUT or STDIN. Typically this is used lig the normal piped open when you want xereise
more control ger just hav the pipe command getxeeuted, such as when you are running
setuid, and dom'want to hae scan shell commands for metacharactérke following pairs

are equialent:

open(FOO, Ir "[a-z]” "[A-Z]™);
open(FOO, ") (Mexet tr', [a-z]’, '[A-Z];

open(FOO, "cat —n $fil&);
open(FOO, "&) (Mexe “cat’, "—n’, $file;

Explicitly closing aiy piped filehandle causes the parent processdib far the child to finish,
and returns the status value in $?.

opendir(DIRHANDLE, EXPR)

Opens a directory named EXPR for processing by readdir(), telldir(), seekdir(), rewinddir() and
closedir(). Returnsrue if successful. DIRHANDLEs ha their ovn namespace separate from
FILEHANDLEsS.

Release 3 Patchid 1 31

PERL(1) PERL(1)

ord(EXPR)

ord EXPR
Returns the ascii value of the first character of EXPR. If EXPR is omitted, uses $_.

pack(TEMPLATE,LIST)
Takes an aray or list of \alues and packs it into a binary structure, returning the string containing
the structure. The TEMPLFE is a sequence of characters thae dgie order and type oflues,
as follows:

An ascii string, will be space padded.
An ascii string, will be null padded.
A native dhar value.

An unsigned char value.

A signed short value.

An unsigned short value.

A signed integer value.

An unsigned integer value.

A signed long value.

An unsigned long value.

A short in “network’ order.

A long in “network” order.

A pointer to a string.

A null byte.

XoTZoSrKr——~"0nuNo o >

Each letter may optionally be followed by a number whickegya epeat count.With all types
except "a" and "A" the pack function will gobble up that maalues from the LIST The "a"
and "A" types gobble just one value, but pack it as a string that long, padding with nulls or spaces
as necessary(When unpacking, "A" strips trailing spaces and nulig, 'ta" does not.)Exam-

ples:

$foo = pack("cccc",65,66,67,68);
foo eq "ABCD"

$foo = pack("c4",65,66,67,68);
same thing

$foo = pack("ccxxcc",65,66,67,68);
foo eq "AB\O\OCD"

$foo = pack("s2",1,2);
"\1\0\2\0" on little-endian
"\0\1\0\2" on big-endian

$foo = pack("ad","abcd","x","y","z");
"abcd"

$foo = pack("aaaa”,"abcd","x","y","z");
"axyz"

$foo = pack("al4","abcdefg");
"abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime());
a real struct tm (on my system anyway)

The same template may generally also be used in the unpack function.

Release 3 Patchid 1 32

PERL(1) PERL(1)

pop(ARRAY)

pop ARRAY
Pops and returns the last value of the adtagrtening the array by 1. Has the same effect as

$tmp = SARRAY[$#ARRA— —;

If there are no elements in the armagturns the undefined value.
print(FILEHANDLE LIST)
print(LIST)
print FILEHANDLE LIST
print LIST

print Prints a string or a comma-separated list of strings. Returns non-zero if succedsaHAN-
DLE may be a scalar variable name, in which case the variable contains the name of the filehan-
dle, thus introducing onevel of indirection. IfFILEHANDLE is omitted, prints by default to
standard output (or to the last selected output channel—see select()). If LIST is also omitted,
prints $_ toSTDOUT. To et the default output channel to something other 8id@OUT use
the select operation.

printf(FILEHANDLE LIST)
printf(LIST)
printf FILEHANDLE LIST

printf LIST
Equiaent to a “print FILEHANDLE sprintf(LIST)".

push(ARRA,LIST)
Treats ARRA (@ is optional) as a stack, and pushes the values of LIST onto the end of ARRA
The length of ARRX increases by the length of LISHas the same effect as

for $value (LIST) {
SARRAY[++$#ARRAY] = $value;

}

but is more efficient.
g/STRING/

gq/STRING/
These are not really functiongjtlsimply syntactic sugar to let youad putting too mawn back-
slashes into quoted strings. The q operator is a generalized single quote, and the qq operator a
generalized double quotéAny delimiter can be used in place of /, includingmiee. If the
delimiter is an opening braekor parenthesis, the final delimiter will be the corresponding clos-
ing bracket or parenthesi$Embedded occurrences of the closing bracket need to be backslashed
as usual.) Examples:

$foo = g!l said, "You said, “She said it.""!;
$bar = q('This is it.”);
$_.=qq
*** The previous line contains the naughty word "$&".\n
if /(ibmCappldawk)/; #:-)

Release 3 Patchid 1 3

PERL(1) PERL(1)

rand(EXPR)
rand EXPR

rand Returns a random fractional humber between 0 andahe wf EXPR. (EXPR should be posi-
tive)) If EXPR is omitted, returns a value between 0 and 1. See also srand().

read(FILEHANDLE,SCALAR,LENGTH)
Attempts to read LENGTH bytes of data intariable SCALAR from the specified FILEHAN-
DLE. Returnghe number of bytes actually read. SCALAR will bewanoor shrunk to the length
actually read.

readdir(DIRHANDLE)
Returns the next directory entry for a directory opened by opendir(). If used in an arrag, conte
returns all the rest of the entries in the directdfythere are ho more entries, returns an unde-
fined value in a scalar context or a null list in an array context.

readlink(EXPR)

readlink EXPR
Returns the value of a symbolic link, if symbolic links are implementédot, gives a fatal
error. If there is some system erroeturns the undefined value and sets $! (errno). If EXPR is
omitted, uses $_.

recv(SOCKET,SCALAR,LEN,FLAGS)
Receves a message on a soek Attemptsto receve LENGTH bytes of data intoaviable
SCALAR from the specified SOCKET filehandIBeturns the address of the sendethe unde-
fined value if there an eror. SCALAR will be grown or shrunk to the length actually read.
Takes the same flags as the system call of the same name.

redo LABEL

redo Theredo command restarts the loop block withowtleating the conditional agn. Thecon-
tinue block, if ary, is mot executed. Ifthe LABEL is omitted, the command refers to the inner
most enclosing loop. This command is normally used by programs émtavlie to themsebs
about what was just input:

a Impleminded Pascal comment stripper
(warning: assumes no { or } in strings)
line: while (<STDIN>) {

while (J({.*}.*){*} 1 D {}

s{.* 00d
if (sE.*00 ¢
$front=$_;
while (<STDIN>) {
if (/}/){ # end of comment?
sCTBfront{
redo line;
}
}
} .
print;

rename(OLDNAME,NEWNAME)
Changes the name of a filReturns 1 for success, 0 otherwid¥ill not work across filesystem
boundaries.

Release 3 Patchid 1 A4

PERL(1) PERL(1)

reset(EXPR)
reset EXPR

reset Generally used in eontinue block at the end of a loop to clear variables and reset ?? searches so
that the work again. Theexpression is interpreted as a list of single characters (hyphengdllo
for ranges). All ariables and arrays beginning with one of those letters are reset to their pristine
state. Ifthe expression is omitted, one-match searches (?pattern?) are reset to aatchaly
resets variables or searches in the current packagey#teturns 1. Examples:

reset "X'; # reset all X variables
reset ‘a-z"; # reset lower case variables
reset; #Hust reset ?? searches

Note: resettingA—Z" is not recommended since you'll wipe out your ARGV and ENV arrays.

The use of reset on dbm assoemitirrays does not change the dbm file. (It doesydver, flush
ary entries cached by perl, which may be useful if you are sharing the dbm file. Taien ag
maybe not.)

return LIST
Returns from a subroutine with the value specifi@idote that a subroutine can automatically
return the value of the last expressioal@ated. Thas the preferred method-use of an xplicit
return is a bit slower.)

reverse(LIST)

reverse LIST
Returns an array value consisting of the elements of LIST in the opposite order.

rewinddir(DIRHANDLE)

rewinddir DIRHANDLE
Sets the current position to thegbrning of the directory for the readdir() routine on DIRHAN-
DLE.

rindex(STR,SUBSTR)
Works just like index except that it returns the position of the LAST occurrence of SUBSTR in
STR.

rmdir(FILENAME)

rmdir FILENAME
Deletes the directory specified by FILEME if it is empty. If it succeeds it returns 1, otherwise
it returns 0 and sets $! (errno). If FILENAME is omitted, uses $_.

s/PAT TERN/REPLACEMENT/gieo
Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it returns false (0).gThs optional,
and if present, indicates that all occurrences of the pattern are to be replaeetd.’ is also
optional, and if present, indicates that matching is to be done in a case-inseraither The
“e” is likewise optional, and if present, indicates that the replacement string is vallmted as
an expression rather than just as a double-quoted st&kimgdelimiter may replace the slashes; if
single quotes are used, no interpretation is done on the replacement string (the e medifier o
rides this, hwever). If no string is specified via the =~ or | operatibe $_ string is searched
and modified. (The string specified with =~ must be a scalar variable, an array element, or an
assignment to one of those, i.e. aalle.) Ifthe pattern contains a $ that lookselix \ariable
rather than an end-of-string test, treigble will be interpolated into the pattern at run-tinife.
you only want the pattern compiled once the first time #r@ble is interpolated, add dn’* at
the end. See also the section on regutpressions. Examples:

s/\ bgreen\ b/mawevg; #don't change wintergreen

Release 3 Patchid 1 35

PERL(1) PERL(1)

$path =" §lusr/birll/usr/local/bir}
s/Login: $foo/Login: $bar/; # run-time pattern
($foo = $bar) =" s/bar/foo/;

$ ="abcl23xyz’;

sNd+/$&*2/e; #yields ‘abc246xyz’
s/\d+/sprintf("%5d",$&)/e; #ields ‘abc 246xyz’

s\wW/$& x 2/ey; #yields ‘aabbcc 224466xxyyzz’
sI(CT)*([1*)/%2 $1/; #reverse 1st tw fields

(Note the use of $ instead bfin the last gample. Sesection on regular expressions.)

seek(FILEHANDLE,POSITION,WHENCE)
Randomly positions the file pointer for FILEHANDLE, justdihe fseek() call of stdioFILE-
HANDLE may be an expression whose valueegitie name of the filehandle. Returns 1 upon
success, 0 otherwise.

seekdir(DIRHANDLE,POS)
Sets the current position for the readdir() routine on DIRHANDIHOS must be aalue
returned by seekdir(). Has the sam&eats about possible directory compaction as the corre-
sponding system library routine.

select(FILEHANDLE)

select Returns the currently selected filehand&ets the current default filehandle for output, if FILE-
HANDLE is supplied. This has twefects: first, awrite or a print without a filehandle will
default to this FILEHANDLE. Second, references #riables related to output will refer to this
output channelFor example, if you hae © st the top of form format for more than one output
channel, you might do the following:

select(REPORT1);
$" = "reportl_top’;
select(REPORT?2);
$" = "report2_top’;

FILEHANDLE may be an expression whose valugegithe name of the actual filehandle. Thus:

$oldfh = select(STDERR);[$= 1; slect($oldfh);

select(RBITS,WBITS,EBITS, TIMEOUT)
This calls the select system call with the bitmasks specified, which can be constructed using
fileno() and vec(), along these lines:

$rin = $win = $ein = 7;
vec($rin,fileno(STDIN),1) = 1;
vec($win,fileno(STDOUT),1) = 1;
$ein = $rin0$win;

If you want to select on mgirilehandles you might wish to write a subroutine:
sub fhbits {

local(@fhlist) = split(*,$_[0]);
local($bits);

Release 3 Patchid 1 36

PERL(1) PERL(1)

for (@fhlist) {
vec($bits,fileno($_),1) = 1;

}
$bits;

}
$rin = &thbits('STDIN TTY SOCK’);

The usual idiom is:

($nfound, $timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready:
$nfound = select($rout=%rin, $wout=$win, $eout=$ein, undef);

Any of the bitmasks can also be undef. The timeout, if specified, is in seconds, which may be
fractional.

setpgrp(PID,PGRP)
Sets the current process group for the specified PID, 0 for the current préadégstoduce a
fatal error if used on a machine that doesmplement setpgrp(2).

send(SOCKET,MSG,FLAGS, TO)

send(SOCKET,MSG,FLAGS)
Sends a message on a sEickTakes the same flags as the system call of the same mame.
unconnected sockets you must specify a destination to $endR€&turnghe number of charac-
ters sent, or the undefined value if there is an error.

setpriority(WHICH,WHO,PRIORITY)
Sets the current priority for a process, a process group, or.a(8ser setpriority(2).)Will pro-
duce a fatal error if used on a machine that doésiplement setpriority(2).

setsockopt(SOCKET,LEVEL,OPTNAME,OPTVAL)
Sets the socket option requested. Returns undefined if there is anGRIOYAL may be speci-
fied as undef if you dohivant to pass an argument.

shift(ARRAY)
shift ARRAY

shift Shifts the first value of the arrayf@ind returns it, shortening the array by 1 and movirgye
thing davn. If there are no elements in the arn@yurns the undefinedalue. IfARRAY is omit-
ted, shifts the @ARGV array in the main program, and the @_ array in subroutines. See also
unshift(), push() and pop(). Shift() and unshift() do the same thing to the left end of an array that
push() and pop() do to the right end.

shutdown(SOCKET,HOW)
Shuts down a socket connection in the manner indicated b, MBich has the same interpreta-
tion as in the system call of the same name.

sin(EXPR)

sin EXPR
Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of $_.

sleep(EXPR)
sleep EXPR

Release 3 Patchid 1 37

PERL(1) PERL(1)

sleep Causes the script to sleep for EXPR seconds, ovdoifeno EXPR. Maybe interrupted by send-
ing the process a SIGALARM. Returns the number of seconds actually slept.

socket(SOCKET,DOMAIN, TYPE,PBTOCOL)
Opens a soak of the specified kind and attaches it to filehandle SOCKEIMAIN, TYPE
and PROTOCOL are specified the same as for the system call of the same Mameay need
to run makelib on sys/socket.h to get the propdmes handy in a perl library file. Return true if
successful. Sethhe example in the section on Interprocess Communication.

socketpair(SOCKET1,SOCKET2,DOMAIN,TYPE,PROCOL)
Creates an unnamed pair of sockets in the specified domain, of the specifie®GAIN,
TYPE and PRTOCOL are specified the same as for the system call of the same name. If unim-
plemented, yields a fatal erroReturn true if successful.

sort(SUBROUTINE LIST)
sort(LIST)
sort SUBROUTINE LIST

sort LIST
Sorts the LIST and returns the sorted arralypi®. Nongistent values of arrays are stripped out.
If SUBROUTINE is omitted, sorts in standard string comparison ortfeBUBROUTINE is
specified, gies the name of a subroutine that returns argetéess than, equal to, or greater than
0, depending on kothe elements of the array are to be ordered. In the interesficEef the
normal calling code for subroutines is bypassed, with the following effects: the subroutine may
not be a recurge aibroutine, and the twdements to be compared are passed into the subroutine
not via @_ but as $a and $b (searaple belw). They are passed by reference so danodify
$a and $b SUBROUTINE may be a scalar variable name, in which case the value provides the
name of the subroutine to use. Examples:

sub byage {
$age{$a} - $age{$b}; # presuming integers
}

@sortedclass = sort byage @class;

sub reerse {altb?1:agtb?-1:0;}
@harry = ("dog’, cat’,’x”,”Cain’,” Abel");
@george = ("'gone”," chased’, yz","Punished”,” Axed");
print sort @harry;
prints AbelCaincatdogx
print sort reerse @harry;
prints xdogcatCainAbel
print sort @george, ‘to”, @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

split(/PAT TERN/,EXPR,LIMIT)
split(/PAT TERN/,EXPR)
split(/PAT TERN/)

split Splits a string into an array of strings, and returns it. (If not in an arrayxtorggirns the num-
ber of fields found and splits into the @_ aryay EXPR is omitted, splits the $_ string. WP-
TERN is also omitted, splits on whitespacéat{ff]+/). Anything matching RTTERN is taken to
be a delimiter separating the field®ote that the delimiter may be longer than one charadfer
LIMIT is specified, splits into no more than that mdields (though it may split into feer). If
LIMIT is unspecified, trailing null fields are stripped (which potential users of pop() would do
well to remember).A pattern matching the null string (not to be confused with a null pattern,

Release 3 Patchid 1 38

PERL(1) PERL(1)

which is one member of the set of patterns matching a null string) will split the value of EXPR
into separate characters at each point it matches thathwagxample:

print join(":", split(/ */, “hi there”));

produces the output ‘h:i:t:h:e:r:e’.

The NUM parameter can be used to partially split a line
($login, $passwd, $remainder) = split(, $, 3);

(When assigning to a list, if NUM is omitted, perl supplies a NUM orgetahan the number oaviables
in the list, to &oid unnecessary avk. For the list abse NUM would hare keen 4 by defult. Intime criti-
cal applications it behaes you not to split into more fields than you really need.)

If the FATTERN contains parentheses, additional array elements are created from each matching substring
in the delimiter.

split(/([.-])/,"1-10,20");
produces the array value
(11’-,!101’1’120)

The pattern /RTTERN/ may be replaced with an expression to specify patterns that vary at rufifone.
do runtime compilation only once, use @#able/o.) Asa ecial case, specifying a space (" ") will split on
white space just as split with no arguments does, but leading white space dbgsoN@e a null first
field. Thus,split(" ") can be used to emulassvk’s default behaior, whereas split(/ /) will gie you as
mary null initial fields as there are leading spaces.

Example:

open(passwd, “/etc/passwd’);
while (<passwd>) {
($login, $passwd, $uid, $gid, $gcos, Shome, $shell) = pli}(

}

(Note that $shell abe will still have a rewline on it. See chop().) See algnn.

sprintf(FORMAT,LIST)
Returns a string formatted by the usual printiventions. The* character is not supported.

sqrt(EXPR)

sqrt EXPR
Return the square root of EXPR. If EXPR is omitted, returns square root of $_.

srand(EXPR)

srand EXPR
Sets the random number seed forrédral operator If EXPR is omitted, does srand(time).

stat(FILEHANDLE)
stat FILEHANDLE

stat(EXPR)
Returns a 13-element array giving the statistics for a file, either the file opened via FILEHAN-
DLE, or named by EXPRTypically used as follows:

Release 3 Patchid 1 39

PERL(1)

PERL(1)

($dev,$ino,$mode,$nlink,$uid,$gid, Srd@size,
$atime,$mtime,$ctime,$blksize,$blocks)
= gat($filename);

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the last stat or filetest are returned. Example:

if (-x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";
}

study(SCALAR)
study SCALAR

study

Takes extra time to study SCALAR ($_ if unspecified) in anticipation of doing ynpattern
matches on the string before it isxnhenodified. This may or may notwsaime, depending on
the nature and number of patterns you are searching on, and on thetdistia character fre-
quencies in the string to be searched—you probabhyt to compare runtimes with and without
it to see which runsakter Those loops which scan for mashort constant strings (including the
constant parts of more complpatterns) will benefit mostYou may hare anly one study acie

at a time—if you study a different scalar the first igristudied’. (The way study works is this: a
linked list of @ery character in the string to be searched is made, so we farcexample, where
all the 'k’ characters are-rom each search string, the rarest character is selected, based on some
static frequeng tables constructed from some C programs and Engligh @nly those places
that contain this “raresttharacter are examined.)

For example, here is a loop which inserts irg®oducing entries before prine containing a
certain pattern:

while (<>) {
study;
print ".IX foo\n" if Abfoo\b/;
print ".IX bar\n" if Abbar\b/;
print ".IX blurfin" if Abblurfl\b/;

print;
}

In searching for Abfoo\b/, only those locations in $_ that contaimilf be looked at, because’ ‘f
is rarer than ‘0’. In general, this is a big win except in pathological cddes.only question is
whether it saes you more time than it took to build the linked list in the first place.

Note that if you hee © look for strings that you doinknow till runtime, you can build an entire

loop as a string andva that to &oid recompiling all your patterns all the tim&ogether with

setting $/ to input entire files as one record, this can be very fast, often faster than specialized pro-
grams lile fgrep. Thefollowing scans a list of files (@files) for a list obmds (@words), and

prints out the names of those files that contain a match:

Release 3 Patchid 1 40

PERL(1)

PERL(1)

$search = "while (<>) { study;”;
foreach $word (@words) {
$search .= "++\$seen{\BARGV} if Ab$word\b/;\n";
}
$search .= "}";
@ARGV = @files;

$/ =177 # s.omething that doeshoccur
evd $search; #his screams
$/ ="\n"; # put back to normal input delim
foreach $file (sort&ys(%seen)) {

print $file, "\n";
}

substr(EXPR,OFFSET,LEN)

Extracts a substring out of EXPR and returns it. First character itsat 0f or whateer you've

set $[to. If OFFSET is mgtive, sarts that far from the end of the stringou can use the sub-

str() function as an blue, in which case EXPR must be aalle. If you assign something
shorter than LEN, the string will shrink, and if you assign something longer than LEN, the string
will grow to accomodate it.To keep the string the same length you may need to pad or chop your
value using sprintf().

syscall(LIST)
syscall LIST

Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, produces a fatal &herarguments are inter

preted as follows: if a gén agument is numeric, the gument is passed as an int. If not, the
pointer to the stringalue is passedYou ae responsible to makre a string is prextended

long enough to reced any esult that might be written into a string. If your integeguanents

are not literals and ka reve been interpreted in a numeric context, you may need to add O to
them to force them to look Ekrnumbers.

do 'syscall.h’; #may need to run makelib
syscall(&SYS_write, fileno(STDOUT), "hi there\n", 9);

system(LIST)
system LIST

Does exactly the same thing &sxéc LIST” except that a fork is done first, and the parent
process waits for the child process to compl&tete that argument processing varies depending
on the number of guments. Theeturn value is the exit status of the program as returned by the
wait() call. To get the actual exit value divide by 256. See alsu.

symlink(OLDFILE,NEWFILE)

Creates a ne filename symbolically linked to the old filename. Returns 1 for success, 0 other
wise. Onsystems that dohsupport symbolic links, produces a fatal error at run tifhe.check
for that, use el

$symlink_exists = (el “symlink("","");", $@ eq ");

tell(FILEHANDLE)
tell FILEHANDLE

Release 3 Patchid 1 41

PERL(1) PERL(1)

tell Returns the current file position for FILEHANDLE. FILEHANDLE may be atpression
whose value gis the name of the actual filehandle. If FILEHANDLE is omitted, assumes the
file last read.

telldir(DIRHANDLE)

telldir DIRHANDLE
Returns the current position of the readdir() routines on DIRHANDY&ue may be gien to
seekdir() to access a particular location in a directbigs the same waats about possible direc-
tory compaction as the corresponding system library routine.

time Returns the number of non-leap seconds since January 1, 1970, UTC. Suitable for feeding to
gmtime() and localtime().

times Returns a four-element arrayiig the user and system times, in seconds, for this process and
the children of this process.

($user,$system,$cuser,$csystem) = times;

tr/SEARCHLIST/REPLACEMENTLIST/

y/SEARCHLIST/REPLACEMENTLIST/
Translates all occurrences of the characters found in the search list with the corresponding char
acter in the replacement listt returns the number of characters replaced. If no string is specified
via the =" or I" operatothe $_ string is translated. (The string specified with =~ must be a scalar
variable, an array element, or an assignment to one of those, i.alaa)vior sed devotees,y
is provided as a synonym for. Examples:

$ARGV[1] =" y/IA-Z/a-z/; # canonicalize to lower case
$cnt = tr/*/*/; # count the starsin $_
($HOST = $host) =" tr/la-z/A-Z/;

yNoO1-@[—_{-\177/ [, # change non-alphas to space

umask(EXPR)

umask EXPR
Sets the umask for the process and returns the old one. If EXPR is omitted, merely returns cur
rent umask.

undef(EXPR)
undef EXPR

undef Undefines the value of EXPR, which must be alue. Useonly on a scalar value, an entire
array or a sibroutine name (using &)Undef will probably not do what you expect on most pre-
defined variables or dbm arraglues.) AWays returns the undefineclwe. You can omit the
EXPR, in which case nothing is undefined, but you still get an undefined value that you could, for
instance, return from a subroutine. Examples:

undef $foo;

undef $bar{’blurfl’};

undef @ary;

undef %assoc;

undef &mysub;

return (wantarray ? () : undef) if $they_blew _it;

Release 3 Patchid 1 42

PERL(1) PERL(1)

unlink(LIST)

unlink LIST
Deletes a list of files. Returns the number of files successfully deleted.

,,,,,,

unlink @goners;
unlink <*.bak>;

Note: unlink will not delete directories unless you are superuser ancltllag is supplied to
perl. Even if these conditions are met, banved that unlinking a directory can inflict damage on
your filesystem. Use rmdir instead.

unpack(TEMPLATE,EXPR)
Unpack does the verse of pack: it takes a string representing a structure and expands it out into
an array alue, returning the arrayalue. TheTEMPLATE has the same format as in the pack
function. Heres a sibroutine that does substring:

sub substr {
local($what,$where,$howmuch) = @_;
unpack("x$where ashowmuch", $what);

}

and then there’s

sub ord { unpack("c",$_[0]); }

unshift(ARRAY,LIST)
Does the opposite of shift. Or the opposite of gush, depending on he you look at it.
Prepends list to the front of the arragd returns the number of elements in the agay.

unshift(ARGV, "—e”) unless $ARGVI[0] =" I"-/;

utime(LIST)

utime LIST
Changes the access and modification times on each file of a list of files. Theofiggrnhents of
the list must be the NUMERICAL access and modification times, in that dRg¢urns the num-
ber of files successfully changed. The inode modification time of each file is set to the current
time. Exampleof a “touch” command:

#!/usr/bin/perl
$now = time;
utime $nov, Show, @ARGV;

values(ASSOC_ARRAY)

values ASSOC_ARRAY
Returns a normal array consisting of all the values of the named assoaiaty. The values are
returned in an apparently random ordart it is the same order as either they¥) or each()
function would produce on the same arr&e also kys() and each().

vec(EXPR,OFFSET,BITS)
Treats a string as a vector of unsigned integers, and returngltieof the bitfield specified.
May also be assigned to. BITS must be a power offtam 1 to 32.

Vectors created with vec() can also be manipulated with the logical operatorand ~, which

Release 3 Patchid 1 43

PERL(1) PERL(1)

will assume a bit vector operation is desired when both operands are sTingsnterpretation
is not enabled unless there is at least one vec() in your program, to protect older programs.

wait Waits for a child process to terminate and returns the pid of the deceased phideessatus is
returned in $?.

wantarray
Returns true if the comte of the currently ®ecuting subroutine is looking for an arraglue.
Returns false if the context is looking for a scalar.

return wantarray ? () : undef;

warn(LIST)

warn LIST
Produces a message on STDERR just like”, but doesnt exit.

write(FILEHANDLE)
write(EXPR)

write() Writes a formatted record (possibly multi-line) to the specified file, using the format associated
with that file. By default the format for a file is the one having the same name is the filehandle,
but the format for the current output channel (select) may be set explicitly by assigning the
name of the format to the $~ variable.

Top of form processing is handled automatically: if there is insufficient room on the current page
for the formatted record, the page is advanced, a special top-of-page format is used to format the
new page headeind then the record is written. By deidt the top-of-page format i&dp”, but

it may be set to the format of your choice by assigning the name to the $” variable.

If FILEHANDLE is unspecified, output goes to the currentadéif output channel, which starts
out asSTDOUT but may be changed by trselect operator If the FILEHANDLE is an EXPR,
then the expression isauated and the resulting string is used to look up the name of the FILE-
HANDLE at run time. For more on formats, see the section on formats later on.

Note that write is N@ the opposite of read.
Precedence

Perl operators heae te following associativity and precedence:

nonassoc prinprintf exec system sort reerse
chmod chown kill unlink utime die return

left ,

right =+= —=*=efc.

right ?:

nonassoc .

left ™

left &&

left 0"

left &

nonassoc =+ eqne

nonassoc & <=>=ltgtle e

nonassoc chdiexit eval reset sleep rand umask

nonassoc —Fw —X etc.

left <<>>

left +-.

left * [% X

left =r

Release 3 Patchid 1 44

PERL(1) PERL(1)

right 1" and unary minus
right *x

nonassoc ++ -

left ‘C

As mentioned earlieif any list operator (print, etc.) or grunary operator (chdietc.) isfollowed by a left
parenthesis as the next token on the same line, the operator and arguments within parenthesegsare tak
be of highest precedence, juselit rormal function call. Examples:

chdir $fooT]die;#(chdir $foo)TIdie

chdir($foo)Tldie; #(chdir $foo)(Tdie
chdir ($foo)die; #(chdir $foo)(Tdie
chdir +($foo)T1die; #(chdir $foo)(Tdie

but, because * is higher precedence than
chdir $foo * 20; # chdir ($foo * 20)

chdir($foo) * 20;# (chdir $foo) * 20
chdir ($foo) * 20# (chdir $foo) * 20

chdir +($foo) * 20; # chdir ($foo * 20)
rand 10 * 20; #rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; # rand (10 * 20)

In the absence of parentheses, the precedence of list operators such as print, sort or chmodeiy either v
high or very lav depending on whether you look at the left side of operator or the right side Fedrit.
example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort avelgated before the sort, but the commas on the left\ataated
after In other words, list operators tend to gobble up all tigerments that follw them, and then act kka
simple term with rgard to the precedingxpression. Not¢hat you hae © be @reful with parens:

These waluate exit before doing the print:

print($foo, &it); # Obviously not what you want.

print $foo, ⁢ # Nor is this.

These do the print beforeatuating exit:

(print $foo), ⁢ # This is what you want.

print($foo), it; # Or this.

print ($foo), ⁢ # Or even this.
Also note that

print ($foo & 255) + 1, "\n";

probably doest’do what you expect at first glance.

Release 3 Patchid 1 45

PERL(1) PERL(1)

Subroutines

A subroutine may be declared as follows:

sub NAME BLOCK

Any arguments passed to the routine come in as array @_, that is ($_[0], $.)J1[Thearray @_is a
local array but its values are references to the actual scalar param&tergeturn value of the subroutine
is the value of the last expressiomlaated, and can be either an array value or a scallae.v Alternately

a return statement may be used to specify the returale and exit the subroutindo aeate local ari-
ables see thkcal operator.

A subroutine is called using thd® operator or the & operator.

Example:

sub MAX {
local($max) = pop(@_);
foreach $foo (@_) {

$max = $fooif $max< $foo;

}
$max;

}

$bestday = &MAX($mon,$tue,$wed,$thu, $fri);
Example:

get a line, combining continuation lines
that start with whitespace
sub get_line {
$thisline = $lookahead,
line: while ($lookahead = <STDIN>) {
if ($lookahead=" /[\t]/){
$thisline .= $lookahead,;

}
else {
last linge;
}
}
$thisline;

}

$lookahead = <STDIN>;# get first line
while ($_ = do get_line()) {

}

Release 3 Patchid 1 46

PERL(1) PERL(1)

Use array assignment to a local list to name your formal arguments:

sub maybeset {

local($key, $value) = @_;

$foo{$key} = $value unless $foo{$ky};
}

This also has the effect of turning call-by-reference into callddyey since the assignment copies take v
ues.

Subroutines may be called recuely. If a subroutine is called using the & form, the argument list is
optional. Ifomitted, no @_ array is set up for the subroutine; the @ __ array at the time of the call is visible
to subroutine instead.

do foo(1,2,3); # pass three arguments

&foo(1,2,3); #the same

do foo(); # pass a null list

&foo(); # the same

&foo; # pass no arguments--more efficient

Passing By Reference

Sometimes you dohivant to pass the value of an array to a subroutimeabher the name of it, so that the
subroutine can modify the global gopf it rather than wrking with a local cop In perl you can refer to
all the objects of a particular name by prefixing the name with a star: ¥itheen @aluated, it produces a
scalar value that represents all the objects of that naiteen assigned to within a local() operation, it
causes the name mentioned to refer to wieatevalue was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
$elem *= 2;
}

}
do doubleary(*foo);

do doubleary(*bar);

Assignment to *name is currently recommended only inside a locddb{).can actually assign to *name
anywhere, but the previous referent of *name may be strandegfoiidis may or may not bother you.

Note that scalars are already passed by reference, so you can modify scalar arguments without using this
mechanism by refering explicitly to the $_[nnn] in questidou can modify all the elements of an array

by passing all the elements as scalars, but yee bause the * mechanism to push, pop or change the size

of an array The * mechanism will probably be more efficient ity @ase.

Since a *name alue contains unprintable binary data, if it is used as an argument in a print, or as a %s
argument in a printf or sprintf, it then has the value *name’, just so it prints out pretty.

Regular Expressions

The patterns used in pattern matching agelee expressions such as those supplied in the Versiagegpe
routines. (Infact, the routines are deed from Henry Spences’freely redistributable reimplementation of
the V8 routines.)In addition, \w matches an alphanumeric character (includifiyy and \W a nonalphanu-
meric. Word boundaries may be matched by \b, and non-boundaries b \Bhitespace character is
matched by \s, non-whitespace by ¥sSnumeric character is matched by \d, non-numeric by¥@u may
use \w\s and \d within character classes. Also, \n,\r\t and \NNN hae their normal interpretations.

Release 3 Patchid 1 47

PERL(1) PERL(1)

Within character classes \b represents backspace rather than a word boAitdemgtves may be sepa-
rated byl The bracketing construdt...) may also be used, in which case \<digit> matches thettigit’
substring, where digit can range from 1 to(Qutside of the pattern,wa#ys use $ instead of \ in front of
the digit. The scope of $<digit> (and $, $& and $Jeads to the end of the enclosing BLOCK wale
string, or to the next pattern match with sxfressions. Thé<digit> notation sometimes works outside
the current pattern,ub should not be relied upon.) $+ returns whatehe last bracket match matched.
$& returns the entire matched string. ($0 normally returns the same thing, budepand on it.)$
returns gerything before the matched string. $" returmergthing after the matched string. Examples:

sIT(CT) (T 1) /82 %L # swap first tvo words
if (/ Time: (.):(.):¢)N

$hours = $1;

$minutes = $2;

$seconds = $3;
}

By default, the ~ character matches only thgilr@ing of the string, the $ character matches only at the end
(or before the newline at the end) apetl does certain optimizations with the assumption that the string
contains only one lineYou may, howeve, wish to treat a string as a multi-lineffer, such that the ~ will
match after annewline within the string, and $ will match beforeyamewline. Atthe cost of a little more
overhead, you can do this by setting the variable $* t@&étting it back to 0 maids perl revert to its old
behavior.

To facilitate multi-line substitutions, the . charactevenenatches a newline yen when $* is 0). In partic-
ular, the following leaes a rewline on the $_ string:

$ =<STDIN>;
s/.*(some_string).*/$1/;

If the newline is unwanted, try one of

s/.*(some_string).*\n/$1/;
s/.*(some_string)["\00O]*/$1/;
s/.*(some_string)(dn)*/$1/;
chop; s/.*(some_string).*/$1/;
/(some_string)/ && ($_ = $1);

Any item of a regular expression may be followed with digits in curly letaakf the form {n,m}, where n
gives the minimum number of times to match the item andvesghe maximum. The form {n} is equa-

lent to {n,n} and matchesxactly n times. The form {n,} matches n or more times. (If a curly leack
occurs in ap other context, it is treated as a regular chargctBne* modifier is equialent to {0,}, the +
modifier to {1,} and the ? modifier to {0,1}There is no limit to the size of n or m, but large numbers will
chev up more memory.

You will note that all backslashed metacharacterpdn are alphanumeric, such as \b, \'m Unlike some

other regular xpression languages, there are no backslashed symbols thatakolesmiumeric. Sany-

thing that looks like \, \(, \), \<, \>, \{, or \} is alvays interpreted as a literal charactat a metacharacter

This makes it simple to quote a string that you want to use for a pattern but that you are afraid might con-
tain metacharacters. Simply quote all the non-alphanumeric characters:

$pattern =~ s/(\W)\$1/g;

Release 3 Patchid 1 48

PERL(1) PERL(1)

Formats

Output record formats for use with theite operator may declared as follows:

format NAME =
FORMLIST

If name is omitted, formatSTDOUT"” is defined. FORMLISTconsists of a sequence of lines, each of
which may be of one of three types:

1. Acomment.
2. A‘'picture” line giving the format for one output line.
3. An argument line supplying values to plug into a picture line.

Picture lines are printed exactly asytHeok, except for certain fields that substitute values into the line.
Each picture field starts with either @ orThe @ field (hot to be confused with the array marker @) is the
normal case; "~ fields are used to do rudimentary multi-line text block fillihg. length of the field is sup-
plied by padding out the field with multiple <, >, [@characters to specifyespectiely, left justification,
right justification, or centering. If gnof the values supplied for these fields containsvaline, only the

text up to the newline is printed. The special field @* can be used for printing multidinesv ltshould
appear by itself on a line.

The values are specified on the following line, in the same order as the pictureTiedgalues should be
separated by commas.

Picture fields that begin with ~ rather than @ are treated speclélé/value supplied must be a scalariv
able name which contains a text strifiggrl puts as much text as it can into the field, and then chépseof
front of the string so that the next time the variable is referenced, more of the text can be Nomteally
you would use a sequence of fields in a vertical stack to print out a blook.offtgou like, you can end
the final field with . ., which will appear in the output if the text was too long to appear in its entifety
can change which characters agel¢o break on by changing thasiable $: to a list of the desired charac-
ters.

Since use of ~ fields can produce variable length records if théotdbe formatted is short, you can sup-
press blank lines by putting the tilde (") character anywhere in the(lamally you should put it in the
front if possible, for visibility) Thetilde will be translated to a space upon output. If you put a second
tilde contiguous to the first, the line will be repeated until all the fields on the lineteested. (Ifyou

use a field of the @aviety, the expression you supply had better needne same valuevery time for
eva!)

Examples:

a r eport on the /etc/passwd file

format top =
Passwd File
Name Login Office Uid Gid Home
format STDOUT =
@<<<<LLLLLLLLLLL L L @I @<<KKKLL@>>>> @>>>> @ <<<<KLKLKLKLKLKLLLLLLLKL

$name, $login, $office,$uid,$gid, $home

Release 3 Patchlevel 1 49

PERL (1) PERL (1)

a r eport from a bug report form
format top =
Bug Reports
@<<<LLLLLLLLLLLLLLLLLLLL @O @>>>>>>>>>>>>555>555>>>>
$system, $%, $date

format STDOUT =
Subject: @<<<<LL
$subject
Index: @<<<<KLLLLLLLLLLLLLLLLLLLLLLLL T LLLLLLLLLLLLLLLLLLLL
$index, $description
Priority: @<<<<<<<<<< Date: @<<<<<<LL "<LLLLLLLLLLLLLLLLLLLLLLLLLLKL
Spriority, $date, $description
From: @<<<<<<<<<<<<LLLLLLLLLLLLLLLLL TLLLLLLLLLLLLLLLLLLLLLLLLLLLKL
$from, $description
Assigned t0: @<<<<<LLKLKLKLLKLKLKLKLLLLLLLL ML
$programmer, $description
7 KLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description
7 KLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description
7 KLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description
7 KLLLLLLLLLLLLLLLLLLLLLLLLLLL
$description
7 KLLLLLLLLLLLLLLLLLLLLKLL,
$description

It is possible to intermix prints with writes on the same output chanmey,oo’ll have © handle $- (lines
left on the page) yourself.

If you are printing lots of fields that are usually blank, you should consider using the reset operator between
records. Nobnly is it more dicient, but it can preent the bug of adding another field and forgetting to
zero it.

Interprocess Communication

The IPC &cilities of perl are built on the Bezley socket mechanism. If you donhavesoclets, you can
ignore this section. The calls\ethe same names as the corresponding system aallthebaguments
tend to difer, for two reasons. Firsperl file handles work differently than C file descriptors. Second, perl
already knows the length of its strings, so you tineéd to pass that informatiomiere is a sample client
(untested):

($them,$port) = @ARGV;
$port = 2345 unless $port;
$them ="localhost’ unless $them;

$SIG{'INT’} = *dokill’;
sub dokill { kill 9,$child if $child; }

do 'sys/socket.hfTldie "Cant do s/s/socket.h: $@";

$sockaddr ='S n a4 x8’;
chop($hostname = ‘hostname);

Release 3 Patchid 1 50

PERL(1) PERL(1)

($name, $aliases, $proto) = getprotobyname(’tcp’);
($name, $aliases, $port) = getservbyname($port, 'tcp’)
unless $port =~ /"\d+$/;;
($name, $aliases, $type, $len, $thisaddr) = gethostbyname($hostname);
($name, $aliases, $type, $len, $thataddr) = gethostbyname($them);

$this = pack($sockadd& AF_INET, 0, $hisaddr);
$that = pack($sockadd AF_INET, $port, $thataddr);

socket(S, &PF_INET& SOCK_STREAM, $proto)Tldie "socket: $!";
bind(S, $thisyTldie "bind: $!";

connect(S, $thaf)[1die "connect: $!";

select(S); 1= 1; slect(stdout);

if ($child = fork) {

while (<>) {
print S;
}
sleep 3;
do dokill();
}
else {
while (<S>) {
print;
}
}

And heres a ®rver:

($port) = @ARGYV,
$port = 2345 unless $port;

do 'sys/socket.hfT1die "Cant do s/s/socket.h: $@";

$sockaddr =’S n a4 x8’;

($name, $aliases, $proto) = getprotobyname(tcp’);

($name, $aliases, $port) = getservbyname($port, 'tcp’)
unless $port =~ /"\d+$/;;

$this = pack($sockaddt AF_INET, $port, "\0\0\0\0");

select(NS); §l= 1; slect(stdout);

socket(S, &PF_INET& SOCK_STREAM, $proto)Tldie "socket: $!";

bind(S, $thisyTldie "bind: $!";

listen(S, 5)TIdie "connect: $!";

select(S); 1= 1; slect(stdout);

for (;;) {

print "Listening again\n®;
($addr = accept(NS,S)Idie $!;

Release 3 Patchid 1 51

PERL(1)

PERL(1)

print "accept ok\n";

($af,$port,Sinetaddr) = unpack($pat,$addr);
@inetaddr = unpack('C4’,$inetaddr);
print "$af $port @inetaddr\n";

while (<NS>) {
print;
print NS;

Predefined Names

The following names ha& Pecial meaning tgerl. | could hae wsed alphabetic symbols for some of
these, but | didrt'want to tak the chance that someone would say reaerA-Z" and wipe them all out.
You'll just have o suffer along with these silly symbols. Most of thenvéi@easonable mnemonics, or ana-
logues in one of the shells.

$_

$/

$||||

$\

The default input and pattern-searching space. The following pairs avaleujui

while (<>) {... #only equvaent in while!
while ($_=<>){...

/"Subject:/
$_ =" I'Subject:/

yla-z/A-Z/
$_="yla-z/A-Z/

chop
chop($.)

(Mnemonic: underline is understood in certain operations.)

The current input line number of the last filehandle thas wead.Readonly Remember that
only an explicit close on the filehandle resets the line nunfiace <> neer does an plicit
close, line numbers increase across ARGV files gbe examples under eof). (Mnemonic: ynan
programs use . to mean the current line number.)

The input record separaiaewline by deéult. Wbrks like awk’s RS variable, including treating
blank lines as delimiters if set to the null string. If set to a value longer than one chardgter
the first character is used. (Mnemonic: / is used to delimit line boundaries when quoting poetry.)

The output field separator for the print operatOrdinarily the print operator simply prints out
the comma separated fields you specifyorder to get behavior more élawk, set this \ariable

as you would seawk’s OFS variable to specify what is printed between fields. (Mnemonic: what
is printed when there is a , in your print statement.)

This is like $, except that it applies to array values interpolated into a double-quoted string (or
similar interpreted string). Default is a space. (Mnemonic: obvious, I think.)

The output record separator for the print opera@udinarily the print operator simply prints out
the comma separated fields you speaifigh no trailing newline or record separator assurnied.
order to get behavior more ékawk, set this variable as you would sawk’s ORS variable to
specify what is printed at the end of the prifiinemonic: you set $\ instead of adding \n at the
end of the print. Also, i§ just like /, but it's what you get “back’f rom perl.)

Release 3 Patchid 1 52

PERL(1)

&

&

$0

$$
$?

$&

$+

$*

PERL(1)

The output format for printed number$his variable is a half-hearted attempt to emuatk’s
OFMT variable. Therare times, haever, whenawk and perl have dffering notions of what is
in fact numeric. Also, the initial value is %.20g rather than %.6g, so you need to sgligithe
to getawk’s value. (Mnemonic# is the number sign.)

The current page number of the currently selected output channel. (Mnemonic: % is page num-
ber in nroff.)

The current page length (printable lines) of the currently selected output chBxefeallt is 60.
(Mnemonic: = has horizontal lines.)

The number of lines left on the page of the currently selected output chgMremonic:
lines_on_page - lines_printed.)

The name of the current report format for the currently selected output chghtmEmonic:
brother to $.)

The name of the current top-of-page format for the currently selected output channel.
(Mnemonic: points to top of page.)

If set to nonzero, forces a flush afteery write or print on the currently selected output channel.
Default is 0. Note thaSTDOUT will typically be line uffered if output is to the terminal and
block huffered otherwise. Setting thisasable is useful primarily when you are outputting to a
pipe, such as when you are runningesl script under rsh and want to see the output siap-
pening. (Mnemonicwhen you want your pipes to be piping hot.)

The process number of tperl running this script. (Mnemonic: same as shells.)

The status returned by the last pipe close, backtick ("*) commasydten operator Note that
this is the status word returned by thait§) system call, so the exit value of the subprocess is
actually ($? >> 8).$? & 255 gves which signal, if ag, the process died from, and whether there
was a ore dump. (Mnemonic: similar to sh and ksh.)

The string matched by the last pattern match (not countygnatches hidden within a BLOCK
or eva enclosed by the current BLOCK). (Mnemonic:dil& in some editors.)

The string preceding whater was matched by the last pattern match (not countiggratiches
hidden within a BLOCK orl enclosed by the current BLOCK). (Mnemonic: " often precedes
a quoted string.)

The string following whateer was matched by the last pattern match (not countiggratiches
hidden within a BLOCK ora enclosed by the current BLOCKYMnemonic: ~ often follows a
quoted string.) Example:

$ ="abcdefghi’;
/def};
print "$":$&:$\n"; # prints abc:def:ghi

The last bracket matched by the last search patf#his is useful if you dom’know which of a
set of alternatie patterns matchedror example:

IVersion: (Y)[Revision: (*)/ && ($rev = $+);

(Mnemonic: be posite and forward looking.)

Set to 1 to do multiline matching within a string, O to | that it can assume that strings con-
tain a single line, for the purpose of optimizing pattern matcResern matches on strings con-
taining multiple ne/lines can produce confusing results when $* i©@fault is 0. (Mnemonic:

* matches multiple things.)

Release 3 Patchid 1 53

PERL(1)

$0

$<digit>

el

$]

$!

$@

$<
$>

PERL(1)

Contains the name of the file containing tbe¥l script being recuted. Thevalue should be
copied elsewhere beforeyapattern matching happens, which clobbers $0. (Mnemonic: same as
sh and ksh.)

Contains the subpattern from the corresponding set of parentheses in the last pattern matched, not
counting patterns matched in nested blocks thae Heen exited already(Mnemonic: like
\digit.)

The inde of the first element in an arrasnd of the first character in a substrinfefault is 0,
but you could set it to 1 to makperl behae nore like awk (or Fortran) when subscripting and
when @auating the index() and substr() functions. (Mnemonic: [begins subscripts.)

The string printed out when you sayetrl -v'. It can be used to determine at the beginning of a
script whether the perl interpreteteeuting the script is in the right range @&frsions. Example:

see if getc is eailable
($version,$patchiesl) =
$] =7 /(\d+\.\d+).*\nPatch heel: (\d+)/;
print STDERR "(No filename completionaiable.)\n"
if $version * 1000 + $patchiel < 2016;

(Mnemonic: Is this version of perl in the right bracket?)

The subscript separator for multi-dimensional array emulatlbryou refer to an associag
array element as
$foo{$a,$b,$c}

it really means

$foofjoin($;, $a, $b, $c)}
But dont put

@foo{$a,$b,c} #a dice--note the @
which means

($foo{%a},$foo{$b},$foo{$c})

Default is "\034", the same as SUBSEPaik. Note that if your kys contain binary data there
might not be ay safe value for $;.(Mnemonic: comma (the syntactic subscript separator) is a
semi-semicolon. ¥ah, | knay, it's pretty lame, but $, is already taken for something more impor
tant.)

If used in a numeric context, yields the curresitie of errno, with all the usualweats. Ifused
in a string context, yields the corresponding system error stMag.can assign to $! in order to
set errno if, for instance, you want $! to return the string for error n, or poti v set thexét
value for the die operato(Mnemonic: What just went bang?)

The error message from the lagilecommand. Ifnull, the last eal parsed and>ecuted cor
rectly. (Mnemonic: Where was the syntax error “at”?)

The real uid of this process. (Mnemonics itie uid you came FROM, if you're running setuid.)

The effectre ud of this process. Example:

$< = $># =t real uid to the effestd ud
($<,%>) = ($>,$<); # awap real and effectie ud

Release 3 Patchid 1 54

PERL(1) PERL(1)

(Mnemonic: its the uid you went TO, if you're running setuidote: $< and $> can only be
swapped on machines supporting setreuid().

$(The real gid of this procesdf you are on a machine that supports membership in multiple
groups simultaneouslgives a pace separated list of groups you are in. The first number is the
one returned by getgid(), and the subsequent ones by getgroups(), one of which may be the same
as the first number(Mnemonic: parentheses are used to GROUP thifidge real gid is the
group you LEFTif you're running setgid.)

$) The efective gd of this processlf you are on a machine that supports membership in multiple
groups simultaneouslgives a pace separated list of groups you are in. The first number is the
one returned by getegid(), and the subsequent ones by getgroups(), one of which may be the same
as the first numbenMnemonic: parentheses are used to GROUP things. Téwtied gd is the
group thats RIGHT for you, if you're running setgid.)

Note: $<, $>, $(and $) can only be set on machines that support the corresponding set[re][ug]id()
routine. $(@and $) can only be swapped on machines supporting setregid().

$: The current set of characters after which a string may besibrikfill continuation fields (start-
ing with 7) in a format. Default is "\n-", to break on whitespace oyghens. (Mnemonica
“colon” in poetry is a part of a line.)

@ARGV
The array ARGV contains the command line arguments intended for the d¥ope. that
$#ARGV is the generally number of arguments minus one, since $ARGV/0] is thedgustett,
NOT the command name. See $0 for the command name.

@INC The array INC contains the list of places to look ferl scripts to be waluated by the‘do
EXPR” command. ltinitially consists of the arguments toyanl command line switches, fol-
lowed by the defaulperl library, probably “/usr/local/lib/per!”.

SENV{expr}
The associate aray ENV contains your current @mnment. Setting value in ENV changes
the environment for child processes.

$SIG{expr}
The associate aray SIG is used to set signal handlers for various signals. Example:

sub handler { # 1st argument is signal name
local($sig) = @_;
print "Caught a SIG$sig— —shutting down\n";
close(LOG);
exit(0);

}

$SIG{'INT} = "handler’;
$SIG{'QUIT} = "handler’;

$SIG{'INT'} = "DEFAULT; #restore default action
$SIG{"QUIT} = "IGNORE’; #ignore SIGQUIT

The SIG array only contains values for the signals actually set within the perl script.
Packages

Perl provides a mechanism for alternate namespaces to protect packages from stomping on each others vari-
ables. Bydefault, a perl script starts compiling into the package knowhresr”. By use of thepackage
declaration, you can switch namespacEse scope of the package declaration is from the declaration itself

to the end of the enclosing block (the same scope as the local() opefgfmcrlly it would be the first
declaration in a file to be included by the “do FIL&perator You can switch into a package in more than

Release 3 Patchid 1 55

PERL(1) PERL(1)

one place; it merely influences which symbol table is used by the compiler for the rest of thatyblock.
can refer to &riables in other packages by prefixing the name with the package name and a singlé quote.
the package name is null, thmain” package as assume#val’ed strings are compiled in the package in
which the &al was compiled in. (Assignments to $SIG{}, wever, assume the signal handler specified is

in the main package. Qualify the signal handler name if you wishvi® &agnal handler in a package.)

For an exkample, examine perldb.pl in the perl library initially switches to the DB package so that the
delugger doest'interfere with variables in the script you are trying toudebAt various points, haever,

it temporarily switches back to the main packagevauate various expressions in the context of the main
package.

The symbol table for a package happens to be stored in the agsozialjy of that name prepended with
an underscore. The value in each entry of the asseci@tay is what you are referring to when you use
the *name notation. In fact, the followingJueathe same effect (in package mainyway), though the first
is more efficient because it does the symbol table lookups at compile time:

local(*foo) = *bar;
local($_main{’foo’}) = $_main{’bar'};

You can use this to print out all th@wables in a package, for instance. Here is dargvfrom the perl
library:
package dumpvar;

sub main’dumpvar {
($package) = @_;
local(*stab) = gal("*_$package");
while (($key,$val) = each(%stab)) {
{
local(*entry) = $val;
if (defined $entry) {
print "\$$key = '$entry’\n";
}
if (defined @entry) {
print \@$key = (n";
foreach $num ($[.. $#entry) {
print " $num\t™, $entry[$num],"\n";
}
print ")\n";
}
if (Bkey re "_$package" && defined %entry) {
print "\%S$key = (n";
foreach $ky (sort keys(%entry)) {
print " $keyt™ $entry{$key},"\n";
}
print ")\n";
}
}
}
}

Note that, gen though the subroutine is compiled in package duamlve name of the subroutine is quali-
fied so that is rame is inserted into package “main”.

Release 3 Patchid 1 56

PERL(1)

PERL(1)

Style

Each programmer will, of course,Jeahs or her own preferences ingaeds to formatting, but there are
some general guidelines that will neeyour programs easier to read.

1.

Just because you CAN do something a particuar eoesrt mean that you SHOULD do it thatay.
Perl is designed to ge you seeral ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo)Tldie "Cant open $foo: $!";
is better than
die "Cant open $foo: $!" unless open(FOO,$foo);
because the second way hides the main point of the statement in a mauiifiee other hand
print "Starting analysis\n" if $verbose;
is better than
$verbose && print "Starting analysis\n";

since the main point ismivhether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments desanthat you he ©
male use of the defults. Thedefaults are there for lazy systems programmers writing one-shot pro-
grams. Ifyou want your program to be readable, consider supplying the argument.

Along the same lines, just because yan omit parentheses in mamplaces doesh’mean that you
ought to:

return print reerse sort num values array;
return print(reerse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce ondian% k
Vi.

Dont go through silly contortions to exit a loop at the top or the bottom, wieelnprovides the "last"
operator so you can exit in the middle. Just outdent it a little t@ mahore visible:

line:
for (;;) {
statements;
last line if $foo;
next line if I"#/;
statements;

}

Dont be draid to use loop labels-they're there to enhance readability as well as tonattwlti-level
loop breaks. See last example.

For portability, when using features that may not be implementedseny enachine, test the construct
in an &al to se if it fails. If you knav what version or patchkel a particular feature was imple-
mented, you can test $] to see if it will be there.

Release 3 Patchid 1 57

PERL(1) PERL(1)

4. Choose mnemonic indentifiers.
5. Be consistent.
Debugging

If you invoke perl with a—d switch, your script will be run under a debugging monitomwill halt before
the first &ecutable statement and ask you for a command, such as:

h Prints out a help message.

S Single step. Executes until it reaches the beginning of another statement.
c Continue. Ercutes until the next breakpoint is reached.

<CR> Repeat last s or c.

n Single step around subroutine call.

I mintincr List incr+1 lines starting at min. If min is omitted, starts where last listing Ieftibfncr is
omitted, previous value of incr is used.

[min-max List lines in the indicated range.
[line List just the indicated line.
I List incr+1 more lines after last printed line.

| subname List subroutine. If #’a bng subroutine it just lists thedianing. Use'I'" to list more.

L List lines that hae kreakpoints or actions.
t Toggle trace mode on or off.
b line Set a breakpointlf line is omitted, sets a breakpoint on the current line line that is about to

be executed. Breakpointmay only be set on lines that begin amoaitable statement.

b subname Set breakpoint at firsteeutable line of subroutine.

S Lists the names of all subroutines.

dline Delete breakpoint. If line is omitted, deletes the breakpoint on the current line line that is
about to bexecuted.

D Delete all breakpoints.

A Delete all line actions.

V package List all variables in package. Default is main package.

a line command
Set an action for lineA multi-line command may be entered by backslashing the newlines.

<command Set an action to happen beforeery debugger promptA multi-ine command may be
entered by backslashing the newlines.

>command Set an action to happen after the prompt whenwgoust given a @mmand to return toxe-
cuting the script.A multi-line command may be entered by backslashing the newlines.

I number Redo a debugging command. If number is omitted, redoes the previous command.
I -number Redo the command that was thatynt@mmands ago.

H -number Display last n commands. Only commands longer than one character arelfistechber
is omitted, lists them all.

gorD Quit.
command Execute command as a perl statemfentissing semicolon will be supplied.
p expr Same as “print DB’OUT ®pr”. The DB’OUT filehandle is opened to /dkty, regadless of

where STDOUT may be redirected to.
If you want to modify the delgger copy perldhpl from the perl library to your current directory and

Release 3 Patchid 1 58

PERL(1) PERL(1)

modify it as necessaryYou can do some customization by setting up a .perldb file which contains initial-
ization code.For instance, you could meldiases lile these:

$DBalias{’len’} = 's/"len(.*)/p length(\$1)/’;
$DBalias{'stop’} = 's/"stop (afin)/b/’;
$DBalias{’.} =

's/”./p "\$DBsub(\$DBline):\t\$DBIline[\$DBline]"/’;

Setuid Scripts

Perl is designed to makit easy to write secure setuid and setgid scripislike dhells, which are based on
multiple substitution passes on each line of the scpgt, uses a more ceentional ealuation scheme
with fewer hidden‘gotchas’. Additionally, Snce the language has mondlbin functionality, it has to rely
less upon external (and possibly untrustworthy) programs to accomplish its purposes.

In an unpatched 4.2 or 4.3bsd kernel, setuid scripts are intrinsically insecure, batriblfdature can be
disabled. Ifit is, perl can emulate the setuid and setgid mechanism when it notices the otherwise useless
setuid/gid bits on perl scripts. If the kernel featuretidisabled,perl will complain loudly that your setuid

script is insecureYou'll need to either disable the kernel setuid script feature, or put a C wrapper around
the script.

When perl is gecuting a setuid script, it takes special precautions teepteou from &lling into aty obvi-

ous traps. (In someays, a perl script is more secure than the corresponding C proghasngommand

line argument, environment variable, or input is markedaisted”, and may not be used, directly or indi-
rectly, in any command that ivokes a aibshell, or in ap command that modifies files, directories or pro-
cesses. Ay variable that is set within an expression that has previously referenced a tainted value also
becomes tainted Ven if it is ogically impossible for the taintecle to influence theaviable). Br exam-

ple:
$foo = shift; # $oo is tainted
$bar = $foo, bar’; # $bar is also tainted
Pxxx = <>; # Tainted
$path = SENV{"RRTH’}; # Tainted, but see below
$abc = "abc’; # Not tainted
system "echo $foo"; # Insecure
system "echo", $foo; # Secure (doesmuse sh)
system "echo $bar"; # Insecure
system "echo $abc"; # Insecure until RTH set

SENV{'PATH"} = "/bin:/usr/bin’;
SENV{IFS} =" if SENV{IFS"} ne ”";

$path = SENV{'RTH’}; # Not tainted

system "echo $abc"; # |s sacure now!
open(FOO,"$foo"); #HOK
open(FOO,">$foo"); #ANot OK

open(FOO,"echo $fdd); # Not OK, but...
open(FOO,"®) [(Mexec “echa’, $foo; # OK

$zzz = ‘echo $foo’; # Insecure, zzz tainted
unlink $abc,$foo; # Insecure
umask $foo; # Insecure

Release 3 Patchid 1 59

PERL(1) PERL(1)

exec "echo $foo"; # Insecure
exe: "echo", $foo; # Secure (doesmuse sh)
exe "sh", "-c’, $foo; # Considered secure, alas

The taintedness is associated with each scalar value, so some elements of an array can be tainted, and others
not.

If you try to do something insecure, you will get a fatal error saying somethengrigecure dependept

or “Insecure RTH". Note that you can still write an insecure system call>acebut only by gplicity
doing something lik the last example albe. You can also bypass the tainting mechanism by referencing
subpatterns—per| presumes that if you reference a substring using $1, $2, etc, youvkrat you were
doing when you wrote the pattern:

$ARGV[0] =~ I"-P(\Ww+)$/;
$printer = $1; # Not tainted

This is fairly secure since \w+ doesmiatch shell metacharactersse of .+ would hee been insecure,ut
perl doesnt check for that, so you must be careful with your patterns. This is ther@hdchanism for

untainting user supplied filenames if you want to do file operations on them (unless yo8&>rglal to
$<).

It's dso possible to get into trouble with other operations thattdané whether theuse tainted &lues.
Make judicious use of the file tests in dealing witty asersupplied filenames. When possible, do opens
and such after setting $> = $®erl doesnt prevent you from opening tainted filenames for reading, so be
careful what you print out. The tainting mechanism is intended teeqrstupid mistakes, not to rene

the need for thought.

ENVIRONMENT
Perl uses RTH in executing subprocesses, and in finding the script if =S is uS&@ME or LOGDIR are
used if chdir has no argument.

Apart from theseperl uses no environment variables, except to entakm aailable to the script being
executed, and to child processedowever, scripts running setuid would do well taxeeute the follaving
lines before doing anything else, just to keep people honest:

$ENV{ PATH'} = "/bin:/usr/bin”; # or whatever you need
$ENV{'SHELL} = "/bin/sh” if SENV{"SHELL } ne "’;
SENV{IFS} =" if SENV{IFS} ne ”’;

AUTHOR
Larry Wall <wall@jpl-devvax.Jpl.Nasa.Gov>
FILES
tmp/perl-eXXXXXX temporanile for —-e commands.
SEE ALSO
azp avk to perl translator
s2p sedo perl translator
DIAGNOSTICS

Compilation errors will tell you the line number of the ersgith an indication of the next token or &k
type that was to bexamined. (Inthe case of a script passedp@| via —e switches, eackeis counted as
one line.)

Setuid scripts hae alditional constraints that can produce error messages such as “Insecure dggendenc
See the section on setuid scripts.

Release 3 Patchid 1 60

PERL(1) PERL(1)

TRAPS
Accustomedawk users should takgecial note of the following:

* Semicolons are required after all simple statemenpgrih Newline is not a statement delimiter.
* Curly brackets are required on ifs and whiles.

* Variables begin with $ or @ iperl.

* Arrays index from O unless you set $[. lékise string positions in substr() and index().

* You haveto decide whether your array has numeric or string indices.

* Associative aray values do not spring into existence upon mere reference.

* You haveto decide whether you want to use string or numeric comparisons.

* Reading an input line does not split it for yodou get to split it yourself to an arrayAnd thesplit
operator has different arguments.

* The current input line is normally in $_, not $0. It generally does na& ha newline stripped. ($0 is
initially the name of the progranxecuted, then the last matched string.)

* $<digit> does not refer to fields— it refers to substrings matched by the last match pattern.
* The print statement does not add field and record separators unless you set $, and $\.
* You must open your files before you print to them.

* The range operator i5 ", not comma. (The comma operator works as in C.)

* The match operator is “="", not “". (*"’ is the ones complement operatpas in C)

* The exponentiation operator is “**”, not “>. (*“"’is the XOR operatomas in C)

* The concatenation operator i$; not the null string. (Using the null stringowld render “/pat/ /pat/’
unparsable, since the third slash would be interpreted ass#odioperator—the tokener is iadt
slightly context sensite for operators lik /, ?, @ad <. And in fact, . itself can be the beginning of a
number.)

* Next, exit andcontinue work differently.

* The following variables work differently

Awk Perl

ARGC $HARGV
ARGV[0] $0

FILENAME $ARGV

FNR $.- something

FS (whateer you like)
NF $#FId,or some such
NR $.

OFMT $#

OFS $,

ORS $\

RLENGTH length($&)

RS $/

RSTART length($")
SUBSEP $;

* When in doubt, run theawk construct through a2p and see whatvegiyou.

Cerebral C programmers shouldeatbte of the following:

Release 3 Patchid 1 61

PERL(1) PERL(1)

BUGS

* Curly brackets are required on ifs and whiles.

* You should use’elsif”” rather than “else if

* Break andcontinue becomdast andnext, respectiely.

* There’s no svitch statement.

* Variables begin with $ or @ iperl.

* Printf does not implement *.

* Comments begin with #, not /*.

* You can't take the address of anything.

* ARGV must be capitalized.

* The “system’ calls link, unlink, rename, etc. return nonzero for success, not 0.
* Signal handlers deal with signal names, not numbers.

* You can't subscript array values, only arrays (no $x = (1,2,3)[2];).
Seasoneded programmers should takote of the following:

* Backreferences in substitutions use $ rather than \.

* The pattern matching metacharacters (,), @dd not hae backslashes in front.
* The range operator is rather than comma.

Sharp shell programmers shoulddakte of the following:

* The backtick operator does variable interpretation withogdrdeto the presence of single quotes in
the command.

* The backtick operator does no translation of the return value eueslik

* Shells (especially csh) doweeal levels of substitution on each command lirféerl does substitution
only in certain constructs such as double quotes, backticks, angle brackets and search patterns.

* Shells interpret scripts a little bit at a timBerl compiles the whole program beforeeeuting it.
* The arguments arevailable via @ARGVYnot $1, $2, etc.

* The environment is not automatically madeikable as variables.

Perl is at the merg of your machines definitions of various operations such as type casting, atof() and
sprintf().

If your stdio requires an seek or eof between reads and writes on a particular streampead.does

While none of the built-in data typesveaany abitrary size limits (apart from memory size), there are still

a few abitrary limits: a gven identifier may not be longer than 255 characters; sprintf is limited og man
machines to 128 characters per field (unless the format specifier is exactly %s); and no component of your
PATH may be longer than 255 if you use -S.

Perl actually stands for Pathologically Eclectic Rubbish Ljdter dont tell anyone | said that.

Release 3 Patchid 1 62

