Securing Untrusted Code via Compiler-Agnostic
Binary Rewriting

Richard Wartell, Vishwath Mohan, Kevin W.
Department of Computer Science, The Universi

Presented by David Gloe




Outline

Introduction
Background
Design
Implementation
Evaluation
Discussion
Related Work
Conclusion




Introduction

» Software Is often distributed as a binary
* Binaries cannot always be trusted

* Two existing approaches to protection:

- Virtual Machines (VMS)

- Binary Rewriting
« SFI (PittSFleld, Native Client)
 CFI (MoCFI)



Virtual Machines

e Pros

- No need for disassembly

— Calculate jump targets during runtime
- Filter API calls with a security policy
- Damage contained within VM

e Cons

- Significant Overhead
— Difficult to formally verify



Binary Rewriting

e Pros

- No security hardware, software, or VMs needed
- Better performance than virtual machines
- Safety can be machine-verified

e Cons

- Require cooperation from code producers

 PittSFleld: gcc-produced assembly
* Native Client: Use of special compiler

— Little motivation for producers



Proposed Solution

 REINS: CISC rewriting and In-lining system
- Binary Rewriting
- Requires no input from code producers
- Redirects API calls through a trusted library
- Jumps are protected by guard code
- Verifier certifies rewritten binaries are safe



Background

Assumes Windows, x86, and only binary
Does not protect code from itself

Binary must be run at user leve

Defender can modify code before execution

Statically determining unsafe jump targets Is an
undecidable problem



System Overview

1) Binary sent through disassembler, generating
a control-flow policy

2) Binary rewriting using control-flow policy
3) Rewritten binary verified with trusted verifier

4) Safe binary linked with the policy enforcement
library

5) Binary can now be run safely



Design: Rewriting

 Partition into low memory and hig

* Rewriting uses SFI| based on PittSFleld chunks

N memory

» Call instructions placed at the end of chunks

» Jumps referencing Import Address Table are

unguarded

» Jump target table used for indirect jumps



Jump Target Table

* Disassembler finds superset of jump targets

 Each old target is replaced with a tagged
pointer to its new |ocation

- Pointers are identified by the illegal hlt opcode
(OxF4)

se positives merely increase binary size
se negatives are caught by the verifier



Jump Target Table Example

* Assume [r] contains 0xF41234

1) Compare [r] against OxF4; it matches

2) Move actual address [r+1]=0x1234 into r
3) Sandbox r by ANDing with the bitmask
4) Jump to actual address 0x1234




Code Transformations

call/jmp r cmp byte ptr [r], OxF4
cmovz r, [r+1]
and r, (d - c¢)
call/jmp r

ret and [esp], (d - c)

ret

mov rm, [IAT:n]

mov rm, offset tramp_n

jmp [IAT:n]

tramp_n:
and [esp], (d - ¢)
jmp [IAT:n]




Design: Memory Safety

* Low memory non-code sections marked as
non-executable (NX) by rewriter

* API calls which can unset NX are wrapped
* Untrusted self-modifying code Is rejected



Design: Verifier

* Verifier is the only trusted component

- Executable sections are in low memory

- Exported symbols target low memory chunks
- No disassembled instruction crosses a chunk
— Static branches reference chunks

- Computed jumps are masked

- Jumps using the IAT access an IAT entry

- No trap instructions



Implementation

* Prototype for 32 bit Windows XP/Vista/7/8
* Rewriter

* Verifier
* APl Hooking Utility

- Replaces some IAT entries with trusted funcs
* Intermediary Library

- Replaces standard kernel32 library



Evaluation

* Median results for COTS applications

- 100% executable file size increase

- 41% code size increase

- 15% process size increase

- 4.1 seconds binary rewriting time

- 49 milliseconds verification time

- 2.4% runtime increase (some decreased)

e Maximum 15% runtime Increase



Policy Enforcement Library

 Libraries are automatically created through
policy specifications

 Example: disallow sending emails

- function conn =
ws2 32::connect (SOCKET, struct
sockaddr in *, int) -> 1int;

- event el = conn(_, { sin port=25},
_) —>0;



Case Studies

Email Client Eureka

- Prohibits creating executables and executing
explorer

DOSBox Emulator

- Prohibited access to portions of the file system
Normal behavior unaffected, policies enforced
Various Malware

- All rejected during rewriting or runtime



Discussion

* Does not enforce Control Flow Integrity (CFl)
- System call policies help
* Assumes jump targets are not dense

- Each jump target must be one byte more than
the word size apart from the next target

- This Is fairly rare
 Relies on classification of code and data

- Inaccurate classification results in corruption



Classification of Code and Data

» “Differentiating code from data in X86 binaries”
by Wartell et. al.

» General disassembly is impossible

- Reduces to halting problem for x86

* |nstruction reference array maps opcodes to
Instruction lengths

 Utility function estimates likelihood of transition
from code to data, or data to code



Related Work

e Source-level SFI
- Rely on cooperation from code producers
* Binary-level SFI

- Dynamic approaches have performance issues

— Static approaches still require code producer
iInput

o System-level

— Cannot block attacks between modules



Conclusion

REINS monitors and restricts API calls of
untrusted x86 binaries

Requires no source or debugging information
Behavior-preserving for many COTS binaries
Enforcement entirely on user level

Median runtime overhead of only 2.4%
Process size increase of only 15%



Questions?

Securing Untrusted Code via
Binary Rewriting

Richard Wartell, Vishwath Mohan, Kevin W. H
Department of Computer Science, The Universi

Presented by David Gloe




