

Securing Untrusted Code via Compiler-Agnostic
Binary Rewriting

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, Zhiqiang Lin
Department of Computer Science, The University of Texas at Dallas

Presented by David Gloe

Outline

● Introduction

● Background

● Design

● Implementation

● Evaluation

● Discussion

● Related Work

● Conclusion

Introduction

● Software is often distributed as a binary
● Binaries cannot always be trusted
● Two existing approaches to protection:

– Virtual Machines (VMs)

– Binary Rewriting
● SFI (PittSFIeld, Native Client)
● CFI (MoCFI)

Virtual Machines

● Pros
– No need for disassembly

– Calculate jump targets during runtime

– Filter API calls with a security policy

– Damage contained within VM

● Cons
– Significant Overhead

– Difficult to formally verify

Binary Rewriting

● Pros
– No security hardware, software, or VMs needed

– Better performance than virtual machines

– Safety can be machine-verified

● Cons
– Require cooperation from code producers

● PittSFIeld: gcc-produced assembly
● Native Client: Use of special compiler

– Little motivation for producers

Proposed Solution

● REINS: CISC rewriting and in-lining system
– Binary Rewriting

– Requires no input from code producers

– Redirects API calls through a trusted library

– Jumps are protected by guard code

– Verifier certifies rewritten binaries are safe

Background

● Assumes Windows, x86, and only binary
● Does not protect code from itself
● Binary must be run at user level
● Defender can modify code before execution
● Statically determining unsafe jump targets is an

undecidable problem

System Overview

1) Binary sent through disassembler, generating
a control-flow policy

2) Binary rewriting using control-flow policy

3) Rewritten binary verified with trusted verifier

4) Safe binary linked with the policy enforcement
library

5) Binary can now be run safely

Design: Rewriting

● Rewriting uses SFI based on PittSFIeld chunks
● Partition into low memory and high memory
● Call instructions placed at the end of chunks
● Jumps referencing Import Address Table are

unguarded
● Jump target table used for indirect jumps

Jump Target Table

● Disassembler finds superset of jump targets
● Each old target is replaced with a tagged

pointer to its new location
– Pointers are identified by the illegal hlt opcode

(0xF4)

● False positives merely increase binary size
● False negatives are caught by the verifier

Jump Target Table Example

● Assume [r] contains 0xF41234

1) Compare [r] against 0xF4; it matches

2) Move actual address [r+1]=0x1234 into r

3) Sandbox r by ANDing with the bitmask

4) Jump to actual address 0x1234

Code Transformations

call/jmp r cmp byte ptr [r], 0xF4
cmovz r, [r+1]
and r, (d - c)
call/jmp r

ret and [esp], (d - c)
ret

mov rm, [IAT:n] mov rm, offset tramp_n

jmp [IAT:n] tramp_n:
 and [esp], (d – c)
 jmp [IAT:n]

Design: Memory Safety

● Low memory non-code sections marked as
non-executable (NX) by rewriter

● API calls which can unset NX are wrapped
● Untrusted self-modifying code is rejected

Design: Verifier

● Verifier is the only trusted component
– Executable sections are in low memory

– Exported symbols target low memory chunks

– No disassembled instruction crosses a chunk

– Static branches reference chunks

– Computed jumps are masked

– Jumps using the IAT access an IAT entry

– No trap instructions

Implementation

● Prototype for 32 bit Windows XP/Vista/7/8
● Rewriter
● Verifier
● API Hooking Utility

– Replaces some IAT entries with trusted funcs

● Intermediary Library
– Replaces standard kernel32 library

Evaluation

● Median results for COTS applications
– 100% executable file size increase

– 41% code size increase

– 15% process size increase

– 4.1 seconds binary rewriting time

– 49 milliseconds verification time

– 2.4% runtime increase (some decreased)

● Maximum 15% runtime increase

Policy Enforcement Library

● Libraries are automatically created through
policy specifications

● Example: disallow sending emails
– function conn =

ws2_32::connect(SOCKET, struct
sockaddr_in , int) −> int;∗

– event e1 = conn(_, { sin_port=25},
_) −> 0;

Case Studies

● Email Client Eureka
– Prohibits creating executables and executing

explorer

● DOSBox Emulator
– Prohibited access to portions of the file system

● Normal behavior unaffected, policies enforced
● Various Malware

– All rejected during rewriting or runtime

Discussion

● Does not enforce Control Flow Integrity (CFI)
– System call policies help

● Assumes jump targets are not dense
– Each jump target must be one byte more than

the word size apart from the next target

– This is fairly rare

● Relies on classification of code and data
– Inaccurate classification results in corruption

Classification of Code and Data

● “Differentiating code from data in x86 binaries”
by Wartell et. al.

● General disassembly is impossible
– Reduces to halting problem for x86

● Instruction reference array maps opcodes to
instruction lengths

● Utility function estimates likelihood of transition
from code to data, or data to code

Related Work

● Source-level SFI
– Rely on cooperation from code producers

● Binary-level SFI
– Dynamic approaches have performance issues

– Static approaches still require code producer
input

● System-level
– Cannot block attacks between modules

Conclusion

● REINS monitors and restricts API calls of
untrusted x86 binaries

● Requires no source or debugging information
● Behavior-preserving for many COTS binaries
● Enforcement entirely on user level
● Median runtime overhead of only 2.4%
● Process size increase of only 15%

Questions?

Securing Untrusted Code via Compiler-Agnostic
Binary Rewriting

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, Zhiqiang Lin
Department of Computer Science, The University of Texas at Dallas

Presented by David Gloe

