
Mobile Code Security by Java
Bytecode Instrumentation

Ajay Chander, Stanford University
John C. Mitchell, Stanford University
Insik Shin, University of Pennsylvania

Slides and presentation by Ming Zhou

Binary-rewriting-based SFI

¤  Transform a program to meet safety properties.

¤  Several aspects
¤  The form of input: compiled code (binary code on native

machine, ELF)

¤  The goal of transformation

¤  Fine-grained: micromanaging behavior of program in hosted
environment (CFI)

¤  Coarse-grained: preventing program from abusing system
resources (REINS)

¤  Timing for transforming

¤  Compile time

¤  Loading time

¤  Runtime

Java and bytecode

¤  What is bytecode?
¤  The target code to be run on Java Virtual Machine (JVM)

¤  Compiled from Java code

¤  In recent years, new compilers emerged to compile various
source code into bytecode

javac java
package org.x

public class A {

}

0xCAFEBABE
0x3B8210D3
0x776D2A4C
… …

Java Compiler JVM

Java Source Code Java Bytecode

Applying SFI on bytecode

¤  Three aspects revisited
¤  The form of input: bytecode (class)
¤  The goal of transformation

¤  Finer-grained goal is totally handled by JVM, which is a
sandbox itself. The bytecode itself is not able to get access
to memory area not managed by JVM.

¤  Coarse-grained: preventing program from abusing system
resources. This is partially handled by JVM through security
manager though.

¤  Timing for transforming
¤  Loading time or download time

¤  The bytecode contains voluminous and well-formatted
information

¤  we need to cater to portable code

¤  We will talk about these 3 aspects in more detail later

JVM overview: Class File

¤  A class file
¤  is the basic unit of binary code, result of compiling a Java class

from the source file

¤  has a well-defined format

¤  Example

 package pkg;

public class A extends B
implements I
{
 private int i = 19;
 public int increment(){
 return ++i;
 }
}

Field Length Description

Magic Fixed CAFEBABE

Version Fixed

Constants
Pool (CP)

Varied All the constants used

Access Flags Fixed public

This Class Fixed CP index (“pkg/A”)

Super Class Fixed CP index (“pkg/B”)

Interfaces Varied CP indices (“pkg/I”)

Fields Varied Field’s name, type, access

Methods Varied Method’s name, type,
access, code, exceptions

JVM overview: Memory layout

¤  Standard stack-and-heap model
¤  Stack

Each thread has its own stack, which is composed of frames
during runtime, with the topmost frame corresponding to the
current running method.

¤  Frame: consists of operand stack and local variables, the size
of both predetermined by Java compiler and allocated in
runtime by JVM when a method is called. Unlike register
machines such as x86 and MIPS, JVM is a stack machine.

¤  Heap

¤  Data Area: variable throughout runtime, such as instances of
classes.

¤  Method Area: invariants throughout runtime, such as class
information and bytecode in methods

JVM overview: Class loading

¤  Timing
¤  The system/runtime classes are pre-loaded during startup

¤  The class with entrance method (main) is always first loaded out
of all the classes from the application

¤  Later, when a class is first used in bytecode, it’s loaded

¤  Sequence

Find the class file
from class path

Load the class’s
binary into JVM

Verifying the
runtime
soundness of
the class (type
safety & others)

Initialize the
class (static
block, field
initializer)

Can trigger recursive
loading for super class/
interfaces

Can trigger recursive
loading for any classes
used in initializer

Security in JVM: class verification

¤  Purpose of verification
¤  Prevent JVM from running illegal bytecode or winding up an

undefined state, and ensuring type/generic safety during
runtime.

¤  A class coming from standard-compliant compiler should be
always legal. The verification is targeted at:

¤  Class file with wrong format due to compiler/generator bugs

¤  Class file tampered intentionally

¤  Example: verifying the compatibility of operands on the
operand stack at any moment
¤  Build the control flow of method based on basic block (BB)

¤  At the entrance of each BB, calculate the number and type of
operands for each connecting edge

¤  Check if all the edges share the compatible operands

Security in JVM: Security Manager

¤  Portability of classes
The machine-independent nature of Java class guarantees
its great portability.

¤  Frameworks that leverage portability
¤  Applet: browser-hosted rich client platform

¤  Apache River: dynamic service and lookup

¤  Security concerns
¤  Classes coming from network is untrusted

¤  Verification is only concerned with class runnability

¤  We want to prevent environment from being abused by
malicious classes

¤  Thus Java introduced Security Manager

Security Manager

¤  A runtime manager that applies permission check on
various “system calls” invoked by application.

¤  The manager reads policy settings from a local protected
file, or constructs policy settings during runtime.

¤  Example: System.exit(int)
 package java.lang;

public final class System
{
 public static void exit(int status){
 SecurityManager manager =
 System.getSecurityManager();
 if(manager != null){
 manager.checkExit(status);
 }
 exitInternal(status);
 }
}

grant codeBase
”www.abc.com/”
{
 permission
 RuntimePermission
 exitVM;
}

A policy file that allows
system exit.

Security Manager (cont.)

¤  Default setting
¤  For local application, disabled by default

¤  For network application (Applet), enabled by default

¤  Limitations
¤  Grant permission based on principal of Applet. The user has to

trust the party who provides the application at the first

¤  Security issue of high-level semantic is not handled

¤  Granting network permission for an app also enables a
channel for information leakage

¤  Granting AWT permission for an app also enables it to take
control of the entire browser(or, tab) display

¤  Solution: the approach talked in this paper

New Threat Model to JVM

¤  High-level semantic threats

¤  Denial of Service

By opening large number of windows in AWT,
running out of underlying resources (note AWT window is a thin
wrapper of system-based GUI component)

¤  Information Leak
Given the privilege of socket communication, sending out
sensitive information to a remote server
(The other example in the paper of forging mail is unlikely since
the policy file supports setting range of ports to be used)

¤  Spoofing
Displaying a URL that seems safe, but link to another hostile site
under the hood

The solution to threats of these kinds

¤  Add another layer of protection using a combination of
¤  Safer classes instead of original foundation classes

¤  Bytecode instrumentation at loading

 * (Bytecode) instrumentation is binary rewriting by another name, which is widely
 used in Java community.

Layer Mechanism Supported by Concerned
with

0 Class verification JVM Type and
state safety

1 Security Manager JVM Hosting
environment

2 Preloading
instrumentation

External filter Hosting
environment

Background knowledge for bytecode
instrumentation: Constant Pool

¤  A structured collection of various constants that are used in
the class
Note here the word constant means not only the literal value
found in the class, such as a string or (big) integer, but also the
name, type descriptor, generic signatures of class, interface, fields
and methods. In some sense, CP is like a combination of (read
only) data section and symbol table in ELF file.

¤  Entries of CP

 Entry Type 0 1 2 3 4 5 6 7 8
CONSTANT_Utf8 1 length UTF-8 encoded String

CONSTANT_Integer 3 value

CONSTANT_Class 7 CP[1]

CONSTANT_String 8 CP[1]

CONSTANT_Fieldref 9 CP[7] CP[12]

CONSTANT_Methodref 10 CP[7] CP[12]

CONSTANT_NameAndType 12 CP[1] CP[1]

An index to
CP entry of
type 1 (UTF8)

Not used

byte

The string is a
type
descriptor

type

Background knowledge for bytecode
instrumentation: Constant Pool (cont.)

¤  Referring to CP entries in class file
¤  The name, descriptor and signature of class, super class, interfaces, fields and

methods (including the class initializer)

¤  To refer to any class, field and method in bytecode, use the corresponding types
of reference entry in CP

¤  Example:

... ...

... ...

... ...

... ...

package pkg;

public class A extends B {
 private int i = 19;
 public int increment(){
 return ++i;
 }

 public static void
 main(String[] args){
 increment();
 }
}

Class-level modification

¤  Supporting classes
The safer version of the original extensible class. Implements semantic-level
check and constraints and is a subclass of the original.

Example:
 java.awt.Window à Safe$Window (extends java.awt.Window)

Notes:
 (1) $ is a legal symbol to be used in Java identifier, like “_”;

 Conventionally, it’s reserved for synthetic/generated name
 (2) For all the original class C, replace with another named Safe$Window

 with default package (no package)

¤  Strategy
Keep all the class references unchanged, only modify the string which is
referred to by class references.

Replace java/awt/Window
with Safe$Window

NOTE: java/awt/Window is the internal notation of java.awt.Window

Don’t change this

Background knowledge for bytecode
instrumentation: Descriptor

¤  Descriptor is the internal notation of type information
This corresponds to what we call the method signature in Java
language; however, in bytecode, the term signature has different
meaning (used to describe generic declaration).

¤  Notation
¤  Basic type: a letter in upper case (8+1 in total)

byte (B), boolean (Z), int (I), …, void (V)
¤  Class type: L<classname>;, where <classname> is the full class

name where“.” is replaced with “/”
¤  Array type: one additional “[” for each dimension
¤  Method: (<Type>)Type

¤  Example
 void setPriority(Thread t, int i)
 à
 (Ljava/lang/Thread;I)V

Background knowledge for bytecode
instrumentation: Method invocation

¤  Bytecode sequence
¤  Instance method

1.  Load reference to current object into operand stack
2.  Load arguments into the operand stack
3.  Invoke the method with given type

¤  Class method
1.  Load arguments into the operand stack
2.  Invoke the method statically

¤  Invocation type
¤  Invoke virtual: invoke the method declare in class or parent class

virtually
¤  Invoke interface: invoke the method declared in interface virtually
¤  Invoke special: invoke the method concretely
¤  Invoke static: invoke class method

Background knowledge for bytecode
instrumentation: Operand Stack

¤  Stack-based machine
Instead of registers, JVM uses a single operand stack as
intermediate storage of operands.

¤  Operations on operand stack
¤  load: load a variable into stack from local variable table (the

collection of temporary variables used in a frame) or constant
pool.

¤  store: pop an operand from stack and save it to local variable
table at certain location.

¤  arithmetic (add, mul, and): pop a fixed number of operands
and do the math, then push the result back to stack

¤  invokexxx: pop a number of operands, where the number is
decided by the descriptor of method, call the method and
push the result back to stack.

Method-level modification

¤  Supporting classes
The safer version of original class. Implements semantic-level
check and constraints. It is NOT a subclass of the original, but it
dispatches the call to the original eventually.
Example:

 java.lang.Thread à Safe$Thread

¤  Why use method-level modification?
¤  The original class is not extensible (decorated with final)
¤  The method concerning us is not virtual
¤  The safer method needs to have a different argument list

¤  Strategy
¤  Add new CP entry for the safer class and safer method’s descriptor
¤  In CP entry of method reference, modify the references to class

and descriptor.
¤  May need to change bytecode leading up to invocation (but try to

not change the max depth of operand stack)

Method-level modification: Constant Pool

100 101

102

103

104

105

java/lang/Thread

setPriority

(I)V

100 101

102

203

104

205

Safe$Thread

setPriority

(Ljava/lang/Thread;I)V

BEFORE

AFTER

modified

added

Method-level modification: Bytecode

aload_1

iload_2

invokevirtual #100

Thread t = new Thread();

... ...

t.setPriority(i);

aload_1

iload_2

invokestatic #100

Thread t = new Thread();

... ...

Safe$Thread.
setPriority(t, i);

Push reference to t
as an implicit arg
Push local variable
i (1st declared arg)

Push reference to t
(1st declared arg)
Push local variable
i (2nd declared arg)

Bytecode Comments Java code

(BEFORE)

(AFTER) (Hypothetical)

NOTE:
 invokevirtual pops operands from stack equal to argument number + 1;
 invokestatic pops operands from stack equal to argument number.
 This modification doesn’t change the maximum depth of operand stack.

When to instrument?

¤  Class loading
¤  Java class ClassLoader uses method

defineClass(String name, byte[] bytecode, int offset,
int length)
to load a class into JVM.

¤  ClassLoader also allows user to override its core method
findClass(String name)

¤  Therefore we can create a new ClassLoader with following logic
added into findClass:

public class FilteredClassLoader extends ClassLoader {

 protected Class findClass(String name){
 byte[] bytecode = load byte code from remote server:
 bytecode = instrument(bytecode);
 defineClass(name, bytecode, 0, bytecode.length);
 }

}

¤  Not used in this paper
¤  Additional java code to be installed in browser
¤  Since working as a customized part of class loading procedure in

JVM, may lack flexibility

When to instrument? (cont.)

¤  Network proxy
¤  Browser sends out HTTP request with MIME type = “application/x-

java-applet”

¤  We can always set up a proxy server at the front of protected
network

¤  Thus the proxy server can detect Applet transmission and
interfere accordingly

Safe Classes

1	
2	

3	
 4	
 5	

A comparison

Type Location Timing Pros Cons
1 Proxy

Server
Transmission •  Easy to

implement
•  Quick

prototyping

•  Cannot be
adopted by
users

3 Browser Pre-rendering •  Adoptable by
users

•  Easier to
configure
(disable)

•  Redundant
development of
multiple
browsers

4 JVM Class loading •  Adoptable by
users

•  Hard to bypass

•  Complex
implementation

•  Need modify
standard
platform (JVM)

✔

Network Host Browser JVM

1

3
4

Thank You

QUESTIONS?

