Mobile Code Security by Java
Bytecode Instrumentation

Ajay Chander, Stanford University
John C. Mitchell, Stanford University
Insik Shin, University of Pennsylvania

Slides and presentation by Ming Zhou

Binary-rewriting-based SFI

Transform a program to meet safety properties.

Several aspects

O The form of input: compiled code (binary code on native
machine, ELF)

O The goal of transformation

Fine-grained: micromanaging behavior of program in hosted
environment (CFl)

Coarse-grained: preventing program from abusing system
resources (REINS)

O Timing for transforming
Compile time
Loading time
Runtime

Java and bytecode

What is bytecode?
O The target code to be run on Java Virtual Machine (JVM)
O Compiled from Java code

package org.x

public class A {

L

Java Source Code

- { javac]:}

Java Compiler

0xCAFEBABE
0x3B8210D3
O0x776D2A4C

Java Bytecode

> v |

JVM

O Inrecent years, new compilers emerged to compile various
source code into bytecode

Applying SFl on bytecode

Three aspects revisited
O The form of input: bytecode (class)
O The goal of transformation

Finer-grained goal is totally handled by JVM, which is @
sandbox itself. The bytecode itself is not able to get access
to memory area not managed by JVM.

Coarse-grained: preventing program from abusing system
resources. This is partially handled by JVM through security
manager though.

O Timing for tfransforming
Loading tfime or download time

O The bytecode contains voluminous and well-formatted
information

O we need to cater to portable code

We will talk about these 3 aspects in more detail later

JVM overview: Class File

A class file

O is the basic unit of binary code, result of compiling a Java class
from the source file

O has a well-defined format

Example
package pkg; Magic Fixed CAFEBABE
public class A extends B version Fixed
implements I Constants Varied All the constants used
{ Pool (CP)
private int i = 19; Access Flags Fixed public
public int increment () { s ciass Fixed CPindex (“pkg/A")
return ++i;
) Super Class Fixed CP index (“pkg/B")
} Interfaces Varied CPindices (“pkg/I”)
Fields Varied Field’'s name, type, access
Methods Varied Method’s name, type,

access, code, exceptions

JVM overview: Memory layout

Standard stack-and-heap model

O Stack
Each thread has its own stack, which is composed of frames
during runtime, with the topmost frame corresponding to the
current running method.

Frame: consists of operand stack and local variables, the size
of both predetermined by Java compiler and allocated in
runtime by JVM when a method is called. Unlike register
machines such as x86 and MIPS, JVM is a stack machine.

O Heap

Data Area: variable throughout runtime, such as instances of
classes.

Method Area: invariants throughout runtime, such as class
information and bytecode in methods

JVM overview: Class loading

Timing
O The system/runtime classes are pre-loaded during startup

O The class with entrance method (main) is always first loaded out
of all the classes from the application

O Later, when a class is first used in bytecode, it's loaded

Sequence _ , , ,
Can trigger recursive Can frigger recursive
loading for super class/ loading for any classes
interfaces used in initializer

— > —)
Find the class file Load the class’s Verifying the Initialize the
from class path binary info JVM runtime class (static
soundness of block, field
the class (type initializer)

safety & others)

Security In JVM: class veritication

Purpose of verification

O Prevent JVM from running illegal bytecode or winding up an
undefined state, and ensuring type/generic safety during
runtime.

O A class coming from standard-compliant compiler should be
always legal. The verification is targeted at:

Class file with wrong format due to compiler/generator bugs
Class file tampered intfentionally

Example: verifying the compatibility of operands on the
operand stack at any moment

O Build the control flow of method based on basic block (BB)

O Afthe enfrance of each BB, calculate the number and type of
operands for each connecting edge

O Check if all the edges share the compatible operands

Security In JVM: Security Manager

Portability of classes
The machine-independent nature of Java class guarantees
its great portability.

Frameworks that leverage portability
O Applet: browser-hosted rich client platform
O Apache River. dynamic service and lookup

Security concerns
O Classes coming from network is untrusted
O Verification is only concerned with class runnability

O We want to prevent environment from being abused by
malicious classes

O Thus Java infroduced Security Manager

Security Manager

A runtime manager that applies permission check on
various “system calls” invoked by application.

The manager reads policy settings from a local protected
file, or constructs policy settings during runtime.

Example: System.exit(int)

ackage java.lang;
P ge J grant codeBase
public final class System "www.abc.com/”
{ {
public static void exit (int status) { permission
SecurityManager manager =

RuntimePermission
System.getSecurityManager () ;

ex1tVM;
if (manager != null) { }
manager.checkExit (status);
} . .
exitInternal (status) A policy file that allows

} system exit.

Security Manager (cont.)

Default setting
O For local application, disabled by default
O For network application (Applet), enabled by default

Limitations

O Grant permission based on principal of Applet. The user has to
trust the party who provides the application at the first

O Security issue of high-level semantic is not handled

Granting network permission for an app also enables a
channel for information leakage

Granting AWT permission for an app also enables it to take
control of the entire browser(or, tab) display

Solution: the approach talked in this paper

New Threat Model to JVM

High-level semantic threats

O Denial of Service
By opening large number of windows in AWT,
running out of underlying resources (note AWT window is a thin
wrapper of system-based GUI component)

O Information Leak
Given the privilege of socket communication, sending out
sensitive information to a remote server
(The other example in the paper of forging mail is unlikely since
the policy file supports setting range of ports to be used)

O Spoofing
Displaying a URL that seems safe, but link to another hostile site
under the hood

The solution to threats of these kinds

Add another layer of protection using a combination of
O Safer classes instead of original foundation classes
O Bytecode instrumentation at loading

o) Class verification JVM Type and
state safety
1 Security Manager JVM Hosting
environment
2 Preloading External filter Hosting
insfrumentation environment

* (Bytecode) instrumentation is binary rewriting by another name, which is widely
used in Java community.

Background knowledge for bytecode

Instrumentation: Constant Pool

A sfructured collection of various constants that are used in

the class

Note here the word constant means not only the literal value
found in the class, such as a string or (big) integer, but also the
name, type descriptor, generic signatures of class, interface, fields
and methods. In some sense, CP is like a combination of (read
only) data section and symbol table in ELF file.

Entries of CP

type
byte
CONSTANT_Utf8 1 length UTF-8 encoded String
CONSTANT _Integer 3 value ° » Not used
CONSTANT_Classs 7 CP[l]e > An index fo
CONSTANT String 8 CP[l] T(;F;ee T%%)
CONSTANT Fieldref 9 CP[7] CP[12]

CONSTANT_Methodref 10 CP[7] CP[12]
CONSTANT_NameAndType 12 CP[1] CP[1]e

The string is a

type
descriptor

v

Background knowledge for bytecode

iInstrumentation: Constant Pool (cont.)

Referring to CP entries in class file

O The name, descriptor and signature of class, super class, interfaces, fields and
methods (including the class initializer)

O To referto any class, field and method in bytecode, use the corresponding types
of reference entry in CP

O Example:

This Class 100 @

package pkg;

public class A extends B {
private int 1 = 19;
public int increment () {
return ++i;

99 | CONSTANT UTFS8
100 | CONSTANT ClassRef ¥4 | ¢
101 | CONSTANT MethodRef ®

}

public static void
main (String[] args) {
increment () ;

method: main

}

Class-level modification

Supporting classes

The safer version of the original extensible class. Implements semantic-level
check and constraints and is a subclass of the original.

Example:
java.awt.Window =2 SafeSWindow (extends java.awt.Window)

Notes:
(1) $is alegal symbol to be used in Java identifier, like * "
Conventionally, it's reserved for synthetic/generated name
(2) For all the original class ¢, replace with another named safeS$Window
with default package (ho package)

Strategy

Keep all the class references unchanged, only modify the string which is
referred to by class references.

Constant , Constant S Constant
Method Reference Class Reference UTF8 String
Don’'t change this Replace java/awt/Window

with safe$Window

NOTE: java/awt/Window is the internal notation of java.awt.Window

Background knowledge for bytecode

INnstrumentation: Descriptor

Descriptor is the internal notation of type information

This corresponds to what we call the method signature in Java
language; however, in bytecode, the term signature has different
meaning (used to describe generic declaration).

Notation
O Basic type: aletter in upper case (8+1 in total)
byte (B), boolean (Z), int (l), ..., void (V)

O Class type: L<classname>;, where <classname> is the full class
e N

name where*.” is replaced with /"

O Array type: one additional “[" for each dimension
O Method: (<Type>) Type

Example
vold setPriority(Thread t, int 1)

S
(Ljava/lang/Thread;I)V

Background knowledge for bytecode

Instrumentation: Method invocation

Bytecode sequence
O Instance method
Load reference to current object into operand stack
Load arguments into the operand stack
Invoke the method with given type
O Class method
Load arguments into the operand stack
Invoke the method statically

Invocation type

O Invoke virtual: invoke the method declare in class or parent class
virtually

O Invoke interface: invoke the method declared in interface virtually
O Invoke special: invoke the method concretely
O Invoke static: invoke class method

Background knowledge for bytecode

iInstrumentation: Operand Stack

Stack-based machine
Instead of reqisters, JVM uses a single operand stack as
intermediate storage of operands.

Operations on operand stack

O load: load a variable into stack from local variable table (the
collection of temporary variables used in a frame) or constant

pool.

O store: pop an operand from stack and save it to local variable
table at certain location.

O arithmetic (add, mul, and): pop a fixed number of operands
and do the math, then push the result back to stack

O invokexxx: pop a number of operands, where the number is
decided by the descriptor of method, call the method and
push the result back to stack.

Method-level modification

Supporting classes

The safer version of original class. Implements semantic-level
check and constraints. It is NOT a subclass of the original, but it
dispatches the call to the original eventually.

Example:
java.lang.Thread = Safe$SThread

Why use method-level modificatione

O The original class is not extensible (decorated with final)
O The method concerning us is not virtual

O The safer method needs to have a different argument list

Strategy

O Add new CP entry for the safer class and safer method’s descriptor

O In CP entry of method reference, modify the references to class
and descriptor.

O May need to change bytecode leading up to invocation (but try to
not change the max depth of operand stack)

Method-level modification: Constant Pool

BEFORE
100

Constant
Method Reference

101

AFTER
100

Constant
Class Reference

103

_ Constant

102

Constant
NameAndType

UTF8 String

104 java/lang/Thread

Constant

Constant
Method Reference

101

UTF8 String

105 setPriority

Constant

Constant
Class Reference

UTF8 String

)V

203

N Constant

modified

added

102

Constant
NameAndType

UTF8 String

104 Safe$Thread

~ Constant

UTF8 String

205 setPriority

Constant

UTF8 String

(Ljava/lang/Thread;l)V

Method-level modification: Bytecode

Bytecode
(BEFORE)
aload 1
iload 2

invokevirtual #100

(AFTER)

aload 1
iload 2

invokestatic #100

NOTE:

Comments

Push reference to t
as an implicit arg
Push local variable
i (1%t declared arg)

Push reference to t
(1%t declared arq)

Push local variable
i (27 declared arg)

Java code

Thread t = new Thread():;

t.setPriority (i) ;

(Hypothetical)

Thread t = new Thread();

SafeSThread.
setPriority(t, 1),

invokevirtual pops operands from stack equal to argument number + 1;
invokestatic pops operands from stack equal to argument number.
This modification doesn’t change the maximum depth of operand stack.

When to iInstrumente

Class loading

O Java class ClassLoader uses method
defineClass (String name, byte[] bytecode, int offset,
int length)
to load a class info JVM.

O ClassLoader also allows user to override its core method
findClass (String name)

O Therefore we can create a new ClassLoader with following logic
added into findClass:

public class FilteredClassLoader extends ClassLoader {

protected Class findClass (String name) {

byte[] bytecode = Ioad byte code from remote server:
bytecode = instrument (bytecode) ;
defineClass (name, bytecode, 0, bytecode.length);

}

Not used in this paper
O Additional java code to be installed in browser

O Since working as a customized part of class loading procedure in
JVM, may lack flexibility

When o instrumente (cont.)

Network proxy

O Browser sends out HTTP request with MIME type = “application/x-
java-applet”

O We can always set up a proxy server at the front of protected
network

O Thus the proxy server can detect Applet fransmission and
interfere accordingly

2 1

GET /classes/A.class HTTP/] l l N

GET /classes/A.class HTTP/1.1 ‘
Host: www.xyz.com

Host: www.xyz.com ‘ —

==

P

VI

]

LU

77

HTTP/1.1 200 OK
Content-Type: application/x-
java-applet

HTTP/1.1 200 OK
Content-Type: application/x-
java-applet

3 | CAFEBABEO45E2CCYAT...705... CAFEBABEOS5E2CC9AT7...A89... | §

Safe Classes

A comparison

V1 Proxy
Server
3 Browser
4 JVM

Transmission

Pre-rendering

Class loading

Easy to
implement
Quick

prototyping

Adoptable by
users

Easier to
configure

(disable)

Adoptable by
users
Hard to bypass

Cannot be
adopted by
users

Redundant
development of
multiple
browsers

Complex
implementation
Need modify
standard
platform (JVM)

Network

Host

3
Browser

JVM

Thank You

QUESTIONS®

