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Abstract

In this paper, we present an approach to detecting
novel cyber attacks though a form of program diversifi-
cation, similar to the use of n-version programming for
fault tolerant systems. Building on extensive previous
and ongoing work by others on the use of code clones
in a wide variety of areas, our Functionally Equivalent
Variants using Information Synchronization (FEVIS)
system automatically generates program variants to be
run in parallel, seeking to detect attacks through diver-
gence in behavior. Unlike approaches to diversification
that only change program memory layout and behavior,
FEVIS can detect attacks exploiting vulnerabilities in
execution timing, string processing, and other logic
errors.

We are in the early stages of research and devel-
opment for this approach, but have made sufficient
progress to provide a proof of concept and some
lessons learned. In this paper we describe FEVIS
and its application to diversifying an open-source
webserver, with results on several different example
classes of attack which FEVIS will detect.

1. Introduction

Software vulnerabilities and the cyber attacks en-
abled by them are increasingly prevalent, and continue
to increase in both cost and impact. Critical civilian
and military software systems are vulnerable, with new
vulnerabilities being discovered all the time. Vulner-
abilities enabling attacks can remain undetected for
years, as with the Heartbleed bug in OpenSSL [1].
Worse, both known and unknown vulnerabilities may
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enable not just new attacks, but new kinds of attacks.
Apparently-minor vulnerabilities can be chained to-
gether in successful attacks, even on software that is
extensively tested and generally viewed as secure.1

In this paper, we describe our research on the Func-
tionally Equivalent Variants using Information Syn-
chronization (FEVIS) system. Part of the Cyber Fault-
tolerant Attack Recovery (CFAR) program, funded by
the U.S. Government’s Defense Advanced Research
Projects Agency (DARPA), FEVIS builds on previ-
ous and ongoing work on “code clones,” substituting
redundant code fragments as a means to generate
program variants automatically. These variants are in-
tended for use in a multi-variant execution environ-
ment, to be used for attack detection and resistance in
the presence of both known and unknown attacks. We
are in the early stages of research and development
for this approach, but have made sufficient progress to
provide a proof of concept and some lessons learned.
In the rest of this paper, we describe related work and
previous research on which FEVIS builds (Section 2).
We then present FEVIS itself (Section 3), illustrating
the approach through the use of examples drawn from
the diversification of an open-source webserver (Sec-
tion 4). We conclude with a discussion of ongoing and
future research.

2. Related Work

FEVIS applies concepts and techniques from the
study of code redundancy as a means of diversifying
software for use in multi-variant execution. In this
section, we summarize related work in these three
areas.

1. The multi-step attacks on Chromium detailed in “A Tale of Two
Pwnies” provide good examples [2].



2.1. Multi-Variant Execution

Multi-variant execution is an approach to detecting
and forestalling attacks, in which multiple variants of
an application are run in parallel. These variants are
specifically chosen to provide the same results for
an authorized range of inputs, but to diverge under
attack. Multi-variant execution has been an active
research topic for several years, with different research
groups proposing alternative architectures for variant
synchronization and checking, as well as methods
for variant generation including Address Space Lay-
out Randomization (ASLR); Intelligence, Surveillance,
and Reconnaissance (ISR); and buffer padding. For
example, Salamat et al. [3] describe a Multi-Variant
Execution Environment (MVEE), using variants in
which the stack grows in opposite directions. Nguyen-
Tuong et al. devised a multi-variant system using data
transformations derived from N-variant systems [4].

Multi-variant execution is somewhat different from
the use of diversification as a “moving target de-
fense” (MTD), in which the objective is to present
an attacker with a single binary, but one which has
unpredictable differences from previous instances of
the same program they may have investigated. One
critical difference is that multi-variant execution is
secretless, in the sense that an attacker may know about
how variants are generated, may even know which
specific variants are currently running, without that
information enabling an attack. In contrast, an attacker
given time to investigate a single variant, may discover
what has been changed and be able to adjust their
attack accordingly.2

2.2. Program Diversification

One common thread through much previous research
on program diversification for multi-variant execution
is the preservation of program semantics in a very
strong sense. ASLR relocates code and data in the
running program, preserving control flow. The same
is true for techniques such as stack or heap padding,
or ISR. Program transformation approaches that seek
to defeat attacks upon a single binary, such as the
addition of stack canaries, might plausibly be viewed
as providing diversification. In this case, the altered
and unaltered programs constitute a set of two.

However, many of the most common exploits, en-
abling the most devastating attacks, exploit holes in

2. Larsen et al. [5] provide a good summary of diversification
methods applied as MTD.

the logical structure (i.e., the semantics) of the pro-
gram itself. Cross-site scripting, use after free, di-
rectory traversal, SQL and OS command injection,
and unauthorized disclosure via URL string processing
vulnerabilities are among the many forms of attack
that may not be blocked or detected by diversification
measures that seek to preserve program control flow
and semantics. Nor will many of them be caught by
more sophisticated approaches such as automated code
obfuscation or restructuring, if the semantics of the
modified program remain the same.

These are the kinds of attacks that we seek to detect
using variants generated by FEVIS.

2.3. Code Clones

Our approach takes as a starting point the well-
known concept of code clones, in which redundant
code sections can be substituted one for another. The
definition of redundancy that we follow is taken from
Carzaniga et al. [6], who define code redundancy as
the product of observational equivalence and execu-
tion distance.3 Observational equivalence is defined in
terms of probing code, code which is input to code
fragment to determine outputs and an oracle. Both
are appended to the code fragments being tested for
equivalence. This definition allows us to define “func-
tional equivalence” in terms of authorized or expected
input, rather than across the entire space of possible
input. Carzaniga et al. evaluate several definitions for
execution distance, settling on data projection, which
is measured in terms of the difference in memory
locations read and written, as well as what is written
to them. Figure 1 provides two examples of redundant
code fragments according to this definition.

Code clones have been employed for a wide variety
of uses, including the automatic generation of test or-
acles, self-healing code, fault tolerance, and automatic
test generation. For example Carzaniga [8] creates test
oracles by finding redundancies in code and cross
checking the execution of a test with the execution of
the same test on a variant of the code with redundant
operations replaced.

Clones may either be discovered or constructed,
both approaches having some currency in the research
literature. The prevalence of redundant code fragments
in large software systems such as the Linux kernel
has been extensively documented, as discussed in [8],

3. This is distinct from the more general use of the term “clone”
as used (for example) in [7], where clones may differ not at all, or
only in layout and choice of identifiers. Clones in this larger sense
have been applied for purposes such as detecting plagiarism and
copyright infringement.
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of the methods, and the “structural” distance of methods within
the package hierarchy. The most interesting aspects of the work
of Higo and Kusumoto is that, perhaps thanks to the simplicity
of their analysis, they were able to analyze a massive amount
of code.

III. CHARACTERIZING SOFTWARE REDUNDANCY

We now formalize our notion of redundancy. We first give
an abstract and general definition that we then specialize to
develop a practical measurement method.

We are interested in the redundancy of code. More specif-
ically we define redundancy as a relation between two code
fragments within a larger system. A code fragment is any
portion of code together with the necessary linkage between
that code and the rest of the system. A fragment can be seen
as the in-line expansion of a function with parameters passed
by reference, where the parameters are the linkage between
the fragment and its context. Figure 1 illustrates the notion
of redundant fragments with two examples. For each pair of
fragments, we specify the linkage between the fragments and
the rest of the system by listing the variables in the fragments
that refer to variables in the rest of the system. All other
variables are local to the fragments.

linkage: int x; int y;

int tmp = x;
x = y;
y = tmp;

x ^= y;
y ^= x;
x ^= y;

linkage: AbstractMultimap map; String key, Object value;

map.put(key, value); List list = new ArrayList();
list.add(value);
map.putAll(key, list);

Fig. 1. Examples of redundant code fragments.

The first example (first row) shows a code fragment that
swaps two integer variables using a temporary variable (left
side) and another fragment that swaps the same variables
without the temporary by using the bitwise xor operator (right
side). The second example refers to a multi-value map in
which one can add an individual mapping for a given key
(put) or multiple mappings for the same key (putAll). In both
cases, the fragment on the left is different from, but equivalent
to, the fragment on the right. This is our intuitive definition
of redundancy: two fragments are redundant when they are
functionally equivalent and at the same time their executions
are different. We now formalize these two constituent notions.

A. An Abstract Notion of Redundancy

We want to express the notion that one should be able to
replace a fragment A with a redundant fragment B, within a
larger system, without changing the functionality of the system.
This means that the execution of B would produce the same
results as A and would not cause any noticeable difference in
the future behavior of the system. In other words, we want B

to have the same result and equivalent side-effects (or state
changes) as A.

Other studies on semantically equivalent code adopt a purely
functional notion of equivalence, and therefore assume no
visible state changes [11]. Yet others consider state changes to
be part of the input/output transformation of code fragments,
but then accept only identical state changes [20]. Instead, we
would still consider two fragments to be equivalent even if
they produce different state changes, as long as the observable
effects of those changes are identical. This notion is close to the
testing equivalence proposed by De Nicola and Hennessy [27]
and the weak bi-similarity by Hennessy and Milner [17]. We
now formulate an initial definition of equivalence between code
fragments similar to testing equivalence.

1) Basic Definitions: We model a system as a state machine,
and we denote with S the set of states, and with A the set of
all possible actions of the system. The execution of a code
fragment C starting from an initial state S0 amounts to a
sequence of actions a1,a2, . . . ,ak 2A that induces a sequence
of state transitions S0

a1�! S1
a2�! · · · ak�! Sk. In this model we

only consider code fragments with sequential and terminating
and therefore finite (but unbounded) executions, and without
loss of generality we consider the input as being part of the
initial state.

We then use O to denote the set of all possible outputs, that
is, the set of all externally observable effects of an execution.
We use Out(S,a)2O to denote the output corresponding to the
execution of action a starting from state S, and, generalizing,
we denote with Out(S0,C) 2 O⇤ the output of the sequence
of actions a1,a2, . . . ,ak corresponding to the execution of C
from state S0.

2) Observational Equivalence: We say that two code
fragments CA and CB are observationally equivalent from
an initial state S0 if and only if, for every code fragment
CP (probing code), the output Out(S0,CA;CP) is the same as
Out(S0,CB;CP), where CA;CP and CB;CP are code fragments
obtained by concatenating CA and CB with the probing code
CP, respectively.

This definition requires that the two code fragments and
the follow-up probing code produce exactly the same output,
which does not take into account the intended semantics of the
system whereby different output sequences may be equally valid
and therefore should be considered equivalent. For example,
consider a container that implements an unordered set of
numbers that in state S0 represents the set {10}. Consider
now a fragment CA that adds element 20 to the set, and a
supposedly equivalent fragment CB that also adds 20 to the
set but with a different internal state transformation: CA leaves
the set in a state such that an iteration would first go through
10 and then 20, while CB causes the same iteration to first go
through 20 and then 10. CA and CB would not be considered
observationally equivalent according to the definition above,
since a probing code that iterates through the elements of the
set would expose a difference.

To account for the semantics of the system, we consider
a more general definition that requires the output of the two

Figure 1. Redundant code fragments, from [6]

Figure 2. FEVIS Architecture Overview

[9]. Automatically finding these redundant fragments
is an ongoing topic of research. The EQMiner tool
of Jiang and Su uses random input and output testing
on arbitrarily sized code snippets to find functionally
equivalent yet syntactically different code clones [9].
The semantic clone detection tool MeCC [10] com-
pares abstract memory states in order to find candidate
code clones.

Goffi et al. [11] use genetic algorithms to generate
functionally equivalent clones. This approach sidesteps
the difficulties of finding equivalent code fragments in
the existing code base, but at the cost of potentially
limiting the space of redundancies explored.

3. FEVIS

The approach supported by FEVIS is to take an
Application to Defend (ATD), identify a set of ATD
segments for possible replacement by functionally
equivalent variant segments, resulting in a set of ATD
variants.

A high-level view of the FEVIS system architecture
is shown in Figure 2. For a given ATD, the process
supported by this architecture is as follows:
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Figure 3. ATD variants shown running in parallel

1) Partition the ATD into chunks (potential variant
segments)

2) Identify potential clones for those chunks:
a) Code chunks previously encountered and

stored in a “Diversity Cache”
b) Redundancy within the ATD itself
c) Chunks from related implementations in

other applications with similar functionality
d) Synthesized variants

3) Find or synthesize adaptors for chunks identified
in Step 2

4) Generate ATD variants by swapping in clones
for one or more variant segments

5) Generate arguments supporting ATD variant
functional equivalence and divergence

The current implementation encompasses automated
“chunking” of the ATD and the manual identifica-
tion of potential variant segments within the Diversity
Cache, along with the appropriate adaptors, and then
automatic generation of a set of ATD variants. Tools
for automated detection of potential code clones are
under construction, as is the automated generation of
arguments regarding the properties of a given set of
ATD variants.

Figure 3 shows several variants for the same ATD.
The shaded regions represent variant segments. The
small vertical arrows represent system calls that may
be made within those segments, and are included to
show that rigorous synchronization of the variants at
system calls will generate numerous false positives.

We use the term adaptor to refer to code that may
be wrapped around a given code fragment, in order to
make it equivalent to an ATD segment. For example
an adapter may be needed to swap the arguments
for code fragments with equivalent arguments in dif-
ferent orders. Figure 4 shows how an adaptor may
be combined with a code chunk from the Diversity
Cache, in order to generate a variant segment that is
functionally equivalent to some ATD segment. While
in the general case finding adaptors is equivalent to
program generation, in limited form it appears to show
promise, especially for segments defined at function
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Figure 4. Diagram of a clone: an adaptor wrapper
around a code chunk
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Figure 5. Percent of the functions within each
file that comprises the thttpd webserver for which
clones were found for in a manual search.

boundaries.

4. Progress to Date

At this early stage of the project (within the first
year), we have implemented the basic functions for
FEVIS. For motivation and experimentation, we have
investigated the open-source webserver thttpd, search-
ing for code clones and evaluating the efficacy of ATD
variants for diversification.

In a manual search for variant segments for thttpd,
we found that 51% (Figure 5) of the code base
had potential clones in other open source webservers
(Apache, Hiawatha, Cherokee, and lighttpd were exam-
ined). Among the results this analysis turned up were
potential clones for the functions defang, strdecode,
match one, tdate parse, atoll, and fdwatch, with
the number of alternative choices ranging from 1 to 5.

In some source files within thttpd, as many as 80%
of the functions had clones elsewhere, or even within
the same file. In addition, we explored the use of
alternative library implementations (for example, the
many available versions of the C standard library) as
a further source of diversity.

In tests conducted within the overarching DARPA
program, sets of ATD variants automatically generated
by FEVIS were shown to diverge under multiple kinds

of memory-based attacks, using test sets provided by a
third party. Sets of two to three variants were created
using the manually found clones. Attacks such as heap
and stack based buffer overflow and out of bounds
read were tested, which are each in the top ten CWE
vulnerabilities list. We have additionally demonstrated
the generation of FEVIS ATD variants that will diverge
under attacks exploiting program semantics. For this
experiment, as the ATD we used an older version
of the lighttpd webserver with a documented security
flaw (CVE-2005-0543). The vulnerability involves the
processing of submitted URLs: due to the improper
handling of escaped null characters (%00) an attacker
can obtain the source code for a CGI script, rather
than just the results of a query submitted to that script.
As these scripts frequently contain hard-coded URLs,
directory paths, and even login credentials, this is a
significant vulnerability.

Potential clones for this vulnerable variant segment
were found in four alternate webservers: thttpd, Hi-
awatha, Apache, and Cherokee. The potential clones
from thttpd and Hiawatha had the same vulnerability;
those from Cherokee and Apache did not, though
they fixed it in different ways; Cherokee mapping null
characters to spaces, and Apache returning an error.

However, while the analogous string-handling func-
tion in thttpd mishandles nulls in the same way as
lighttpd, the thttpd webserver was not exploitable in the
same way, due to the details of subsequent processing.
This, along with the differences in string processing
in the Cherokee and Hiawatha webservers described
above, provides some preliminary evidence for our
claim that it is not necessary for a given vulnerability
to appear in a variant segment, in order to have a set
of ATD variants diverge when an exploit is attempted.

5. Conclusions and Future Work

The question motivating this research is whether
creating a diverse set of variants of a program from
functionally equivalent code clones will enable broader
detection of cyber attacks. We are still within the first
year of this project, and so our results are necessarily
preliminary, but the initial indications are promising.
In this section, we discuss ongoing and future work
on FEVIS.

The primary areas for improvement are in auto-
matically finding or generating clones, improved auto-
mated testing for equivalence among variant segments
(including the generation of adaptors where needed),
and the automated construction of arguments regarding
the functional equivalence and divergence properties of
sets of ATD variants.



In addition, we seek to be able to work from
binaries, as well as from source code. Currently we
use source compiled to LLVM [12] within the Diver-
sity Cache. Working from binaries lifted to LLVM is
more difficult because lifted binaries have had much
of the structure and typing information removed in
the compilation process. One possible workaround for
this problem is to work directly from disassembled
binaries, which somewhat paradoxically have more
structure than the lifted representations, along with the
use of tools to recover some of the structure lost in the
compilation process.

For automated search for potential clones, we are
working two approaches. The first is to adapt the
approach implemented in EQMiner to work on LLVM.
The second is to further exploit the very considerable
redundancy present in standard libraries. Presently, we
can and do swap entire libc versions into ATD variants.
Piecemeal substitution of individual library functions
will provide much greater freedom to generate variants,
but comes with some additional complications, such as
identifying functions that must be swapped together,
because they make common use of shared information
or data structures. Automated testing for functional
equivalence is also required. Previous work on clone
discovery such as EQMiner uses randomly-generated
test strings [9]. More directed testing can be accom-
plished using a cached set of probes generated from
“normal operation” of a code fragment (e.g., gathered
using Daikon [13]), augmented over time with counter-
examples from more detailed subsequent testing.

In collaboration with our partners on this project at
the University of Minnesota, we are also investigating
a hybrid approach in which adaptors are automati-
cally synthesized (within a significantly limited search
space) in order to make a given code chunk equivalent
to some ATD segment. This work is promising, but too
preliminary to present as yet.

Finally, given the extremely large space of ATD
variants that could be generated from substituting for
even a modest number of ATD segments, we must be
able to construct much smaller sets of ATD variants
that are likely to diverge under attack (necessary for at-
tack detection), while continuing to exhibit equivalent
behavior under normal conditions (necessary for user
acceptance, and for avoiding false positives). Also in
collaboration with the University of Minnesota, we are
exploring ways to the construction of such arguments.
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M. Pezzè, “Cross-checking oracles from intrinsic soft-
ware redundancy,” in Proceedings of the 36th Interna-
tional Conference on Software Engineering. ACM,
2014, pp. 931–942.

[9] L. Jiang and Z. Su, “Automatic mining of functionally
equivalent code fragments via random testing,” in Pro-
ceedings of the eighteenth international symposium on
Software testing and analysis. ACM, 2009, pp. 81–92.

[10] H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: memory
comparison-based clone detector,” in Software Engi-
neering (ICSE), 2011 33rd International Conference
on. IEEE, 2011, pp. 301–310.

[11] A. Goffi, A. Gorla, A. Mattavelli, M. Pezzè, and
P. Tonella, “Search-based synthesis of equivalent
method sequences,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 366–376.

[12] C. Lattner and V. Adve, “LLVM: A compilation frame-
work for lifelong program analysis & transformation,”
in Code Generation and Optimization, 2004. CGO
2004. International Symposium on. IEEE, 2004, pp.
75–86.

[13] M. D. Ernst, “Dynamically discovering likely program
invariants,” Ph.D., University of Washington Depart-
ment of Computer Science and Engineering, Seattle,
Washington, Aug. 2000.


