
A Translation-Based Animation of Dependently-Typed Specifications

From LF to hohh(and back again)

Mary Southern and Gopalan Nadathur

Department of Computer Science and Engineering
University of Minnesota

This work was funded by NSF grant CCF-0917140.

1 / 24

Some Motivation

We are interested in formalizing systems that are described in a
rule-based and syntax directed fashion

Two approaches with complementary benefits exist for formalizing
such systems:

I An approach based on using dependently-typed λ-calculi

Primary Virtue: Dependent types are a convenient and widely
used means for encoding specifications

I An approach that uses logical predicates over λ-calculus terms

Primary Virtue: Such a logic has an efficient implementation
and specifications in it can also be expressively reasoned about

Our Goal: To harness the benefits of both approaches

Specifically, we want to

I let the first approach be used for developing specifications

I use a translation to the second form to realize animation
2 / 24

Map of Talk

Motivation

Specifications

A Translation

An Inverse

Looking Forward

3 / 24

Edinburgh Logical Framework (LF)

Syntax of Expressions

Kind K := Type | Πx :A.K
Type A := a M . . .M | Πx :A.A
Object M := c | x | X | λx :A.M | M M

We are interested in deriving judgments of the form:

Γ `Σ M : A

This is done with respect to:

I Signature Σ := · | Σ, c : A | Σ, a : K

I Context Γ := · | Γ, x : A

I Meta-Variable Context ∆

4 / 24

Example Specification

nat N := 0 | S N

list L := [] | (N :: L)

L1 @ L2 = L3

L1 @ L2 = L3

(X :: L1) @ L2 = (X :: L3)

nat : type. list : type.
z : nat. nil : list.
s : nat → nat. cons : nat → list → list.

app : list → list → list → type.
app N : ΠL:list.app nil L L.
app C : ΠX:nat.ΠL1:list.ΠL2:list.ΠL3:list.

ΠA:app L1 L2 L3.app (cons X L1) L2 (cons X L3)

5 / 24

A Predicate Logic

I We work with a fragment of the logic of Higher-Order
Hereditary Harrop Formulas (hohh)

I This logic underlies the logic programming language λ Prolog

Atomic formulas, A, are constructed using predicate symbols that
take simply typed λ-terms as arguments.

Formulas

D := A | G ⊃ D | ∀x .D G := > | A | D ⊃ G | ∀x .G

I A collection of D-formulas, or Program P, encodes a
specification and a G formula corresponds to a query

6 / 24

Logic Programming - Predicate Logic

We want to derive sequents of the form: Ξ;P −→ G
where

I Ξ is the signature containing the term constants

I P is a program (set of D-formulas)

I G is the goal formula we wish to solve

Two main differences from Logic Programming in Prolog:

I Program can be extended dynamically

Ξ; Γ,D −→ G

Ξ; Γ −→ D ⊃ G
I Signature can be extended dynamically

Ξ, c ; Γ −→ G [c/x]

Ξ; Γ −→ ∀x .G

7 / 24

Map of Talk

Motivation

Specifications

A Translation

An Inverse

Looking Forward

8 / 24

Overview of Translation

The translation is based on a two step process

1. First we map both LF types and objects into simply typed
λ-terms.

I we use hohh terms of type lf-type for LF types
I we use hohh terms of type lf-obj for LF objects

Notice that the LF typing information is lost in this translation
and only the functional structure of expressions is retained

2. We then encode LF typing relations in predicates over the
hohh terms denoting LF objects and LF types
In particular,

I the predicate hastype : lf-obj→ lf-type→ o is used for this.

9 / 24

A Translation 1/2

The encoding of LF terms, 〈·〉 is given by the rules below.

〈c〉 := c 〈x〉 := x 〈X 〉 := X

〈M N〉 := 〈M〉 〈N〉 〈λx :A.M〉 := λx .〈M〉
The mapping, φ(·) flattens the types of LF terms:

φ(Type) := lf-type φ(Πx :A.B) := φ(A)→ φ(B)

φ(A) := lf-obj when A is a base type

Example Encoding

nat : lf-type. list : lf-type.
z : lf-obj. nil : lf-obj.
s : lf-obj→ lf-obj. cons : lf-obj→ lf-obj→ lf-obj.

app : lf-obj→ lf-obj→ lf-obj→ lf-type.
app N : lf-obj→ lf-obj.
app C : lf-obj→ lf-obj→ lf-obj→ lf-obj→ lf-obj→ lf-obj.

10 / 24

A Translation 2/2

Then, LF types are translated as follows:

{{A}} := λM. hastype M 〈A〉 if A is a base type

{{Πx :A.B}} := λM. ∀x . ({{A}} x) ⊃ ({{B}} (M x))

For example, consider the translation of ΠL:list.app nil L L:

{{ΠL:list.app nil L L}}
λM. ∀L. ({{list}} L) ⊃ ({{app nil L L}} (M L))
λM. ∀L. (hastype L list) ⊃ (hastype (M L) (app nil L L))

Thus, the LF signature item app N : ΠL:list.app nil L L yields the
λ-Prolog formula

∀L. (hastype L list ⊃ hastype (app N L) (app nil L L))

11 / 24

Improving the Translation

Consider the constant app C .

app C : ΠX :nat.ΠL1:list.ΠL2:list.ΠL3:list.ΠA:app L1 L2 L3.

app (cons X L1) L2 (cons X L3)

Whenever we are matching an instance of this type, we must
ensure that the terms being substituted for the Π-bound variables
are of the correct type.

I Certain terms will appear in such a way that we know this to
be the case.

Consider a well-formed type: app (cons x l1) l2 (cons x l3).

I Clearly then, whatever the term l1 (resp. l2, l3), it must be
of type list

I Similarly x must be of type nat

I But is there a term of type app l1 l2 l3?

12 / 24

Characterizing Redundancies

This type checking becomes the hastype formula of the Π-bound
variable.
By categorizing which of these checks is unnecessary, we are able
to reduce the number of goals which must be satisfied during proof
search.

I The essential idea is that we do not need to perform such a
check when there is an occurrence whose structure is not lost
or altered by other substitutions.

We define a criterion, called Strictness, which captures this idea.

Strictness

1. There is an occurrence, in the head of the type, which does
not disappear after performing substitutions for the other
Π-quantified variables.

2. This occurrence may only be applied to distinct λ-bound
variables.

13 / 24

Strictness

There are two main judgments associated with strictness:

Γ; x @t A and ∆; δ; x @o M

I Γ collects Π-bound
variables

I ∆ contains the Π-bound
variables

I δ collects λ-bound
variables

Translation now proceeds in two modes:

I In the positive context we remove the hastype clause for
strictly occurring variables.

I In the negative context we proceed as before.

14 / 24

Example Specification - Translated

nat : lf-type. list : lf-type.
z : lf-obj. nil : lf-obj.
s : lf-obj→ lf-obj. cons : lf-obj→ lf-obj→ lf-obj.

app : lf-obj→ lf-obj→ lf-obj→ lf-type.
app N : lf-obj→ lf-obj.
app C : lf-obj→ lf-obj→ lf-obj→ lf-obj→ lf-obj→ lf-obj.

∀L.hastype (app N L) (app nil L L).
∀X .∀L1.∀L2.∀L3.∀A.hastype A (app L1 L2 L3) ⊃

hastype (app C X L1 L2 L3 A) (app (cons X L1) L2 (cons X L3)).

15 / 24

Map of Talk

Motivation

Specifications

A Translation

An Inverse

Looking Forward

16 / 24

Dealing with Queries

After writing an LF specification, one may want to present and
solve queries of the form M : A.

I We allow logic variables to appear in the type A.

LF Query Proof : Πx :nat.app nil (cons z (cons x nil)) (L x)

Translated Query
∀x .hastype Proof (app nil (cons z (cons x nil)) (L x))

Solution L = λy .cons z (cons y nil)
Proof = λy .app N (cons z (cons y nil))

We would like to now return our solution to LF.
There are two concerns we should keep in mind:

I Under our chosen signature, there may be well-formed STLC
terms which have no corresponding LF term.
Eg. arrow empty (app unit unit)

I Alternatively, there may be terms with multiple corresponding
LF terms.
Eg. (λx .x)

17 / 24

An Inverse Encoding

We are not interested in inverting arbitrary terms

I All terms will correspond to a well-formed LF term.

I LF typing information ensures a unique inverse.

We define the inverse as a relationship between:
I the λ-term t

I the LF typing information Θ

I the LF type A

I the LF term M

There are two judgments

inv↓(t;A; Θ) = M and inv↑(t;A; Θ) = M

The first expects A as input while the second synthesizes A.
Returning to our example:

Solution L = λy .cons z (cons y nil)
Proof = λy .app N (cons z (cons y nil))

LF Solution L = λy :nat.cons z (cons y nil)
Proof = λy :nat.app N (cons z (cons y nil))

18 / 24

Map of Talk

Motivation

Specifications

A Translation

An Inverse

Looking Forward

19 / 24

Ongoing Work

I Show correctness of this translation.

I Developing an implementation of this system.

I Use this translation to extend Abella for reasoning about LF
specifications.

20 / 24

End

21 / 24

Correctness of the Translation

I We need to show that the substitutions found in LF and under
the translation are ’equivalent’.

I Our approach for this proof is to use simulation.

Theorem
Let Σ be an LF signature and let A be an LF type that possibly
contains meta-variables.

1. If the query M : A is solved with the ground answer
substitution σ, then there is an invertible answer substitution
θ for the goal {{A}} 〈M〉 wrt {{Σ}} such that the inverse θ′ of θ
generalizes σ (i.e. there exists a σ′ such that σ′ ◦ θ′ = σ).

2. If θ is an invertible answer substitution for {{A}} 〈M〉, then its
inverse is an answer substitution for M : A.

22 / 24

Rules for the Strictness Criterion

dom(Γ); ·; x @o Ai for some Ai in
−→
A

APPt

Γ; x @t c
−→
A

Γ, y : A; x @t B
PIt

Γ; x @t Πy :A.B

Γ1; x @t B Γ1, y : B, Γ2; y @t A
CTXt

Γ1, y : B, Γ2; x @t A

yi ∈ δ for each yi in −→y each variable in −→y is distinct
INITo

∆; δ; x @o x −→y

y /∈ ∆ and ∆; δ; x @o Mi for some Mi in
−→
M

APPo

∆; δ; x @o y
−→
M

∆; δ, y ; x @o M
ABSo

∆; δ; x @o λy :A.M

23 / 24

Rules for the Inverse Encoding

X : A ∈ ∆
inv-var

inv↑(X ;A; Θ) = X
inv↓(M;B; Θ, x : A) = M ′

inv-abs
inv↓(λx .M; Πx :A.B; Θ) = λx :A.M ′

inv↑(M1; Πx :B.A; Θ) = M ′
1 inv↓(M2;B; Θ) = M ′

2 inv-app
inv↑(M1 M2;A[M ′

2/x]; Θ) = M ′
1 M ′

2

u : A ∈ Θ
inv-const

inv↑(u;A; Θ) = u

inv↑(M;A; Θ) = M ′
inv-syn

inv↓(M;A; Θ) = M ′

24 / 24

	Motivation
	Specifications
	A Translation
	An Inverse
	Looking Forward

