A Translation-Based Animation of Dependently-Typed Specifications From LF to hohh(and back again)

Mary Southern and Gopalan Nadathur

Department of Computer Science and Engineering University of Minnesota

This work was funded by NSF grant CCF-0917140.

Some Motivation

We are interested in formalizing systems that are described in a rule-based and syntax directed fashion

Two approaches with complementary benefits exist for formalizing such systems:

- An approach based on using dependently-typed λ -calculi Primary Virtue: Dependent types are a convenient and widely used means for encoding specifications
- An approach that uses logical predicates over λ -calculus terms Primary Virtue: Such a logic has an efficient implementation and specifications in it can also be expressively reasoned about Our Goal: To harness the benefits of both approaches

Specifically, we want to

- \blacktriangleright let the first approach be used for developing specifications
- \triangleright use a translation to the second form to realize animation

Map of Talk

[Motivation](#page-0-0)

[Specifications](#page-6-0)

[A Translation](#page-17-0)

[An Inverse](#page-0-1)

[Looking Forward](#page-0-1)

Edinburgh Logical Framework (LF)

Syntax of Expressions

Kind $K := Type | \Pi x: A.K$ Type $A := a M \dots M \mid \Pi_{X}: A \cdot A$ Object $M := c |x| X | \lambda x$: A.M | M M

We are interested in deriving judgments of the form:

 $\Gamma \vdash_{\Sigma} M : A$

This is done with respect to:

- Signature $\Sigma := \cdot | \Sigma, c : A | \Sigma, a : K$
- \blacktriangleright Context $\Gamma := \cdot | \Gamma, x : A$
- ► Meta-Variable Context Δ

Example Specification

nat $N := 0$ | S N list $L := \lceil \rceil + (N : L) \rceil$ L_1 **@** $L_2 = L_3$ L_1 @ L_2 = L_3 $(X :: L_1) \otimes L_2 = (X :: L_3)$

nat : type. list : type. z : nat. nil : list. s : nat \rightarrow nat. cons : nat \rightarrow list \rightarrow list.

app : list \rightarrow list \rightarrow list \rightarrow type. app_N : ΠL : list.app nil L L. $app_{-}C$: $\Pi X: nat.\Pi L_1:list.\Pi L_2:list.\Pi L_3:list.$ $\Pi A:$ app L_1 L_2 L_3 .app (cons X L_1) L_2 (cons X L_3)

A Predicate Logic

- \triangleright We work with a fragment of the logic of Higher-Order Hereditary Harrop Formulas (hohh)
- **Fig.** This logic underlies the logic programming language λ Prolog

Atomic formulas, A, are constructed using predicate symbols that take simply typed λ -terms as arguments.

Formulas

 $D = A | G \supset D | \forall x . D$ $G := \top | A | D \supset G | \forall x . G$

A collection of D-formulas, or Program P , encodes a specification and a G formula corresponds to a query

Logic Programming - Predicate Logic

We want to derive sequents of the form: $\Xi: \mathcal{P} \longrightarrow G$ where

- \triangleright \equiv is the signature containing the term constants
- \triangleright P is a program (set of D-formulas)
- \triangleright G is the goal formula we wish to solve

Two main differences from Logic Programming in Prolog:

 \triangleright Program can be extended dynamically

$$
\Xi; \Gamma, D \longrightarrow G
$$

$$
\overline{\Xi}; \Gamma \longrightarrow D \supset G
$$

 \triangleright Signature can be extended dynamically

$$
\frac{\Xi, c; \Gamma \longrightarrow G[c/x]}{\Xi; \Gamma \longrightarrow \forall x. G}
$$

Map of Talk

[Motivation](#page-0-0) [Specifications](#page-6-0)

[A Translation](#page-17-0)

[An Inverse](#page-0-1)

[Looking Forward](#page-0-1)

Overview of Translation

The translation is based on a two step process

- 1. First we map both LF types and objects into simply typed λ -terms.
	- \triangleright we use *hohh* terms of type *If-type* for LF types
	- \triangleright we use hohh terms of type If-obj for LF objects

Notice that the LF typing information is lost in this translation and only the functional structure of expressions is retained

- 2. We then encode LF typing relations in predicates over the hohh terms denoting LF objects and LF types In particular,
	- In the predicate hastype : If-obj \rightarrow If-type \rightarrow o is used for this.

A Translation 1/2

The encoding of LF terms, $\langle \cdot \rangle$ is given by the rules below.

$$
\langle c \rangle := c \quad \langle x \rangle := x \quad \langle X \rangle := X
$$

$$
\langle M \mid N \rangle := \langle M \rangle \langle N \rangle \quad \langle \lambda x : A.M \rangle := \lambda x. \langle M \rangle
$$

The mapping, $\phi(\cdot)$ flattens the types of LF terms:

$$
\phi(\text{Type}) := \text{If-type} \qquad \phi(\Pi x : A.B) := \phi(A) \to \phi(B)
$$

$$
\phi(A) := \text{If-obj} \qquad \text{when } A \text{ is a base type}
$$

Example Encoding

nat : If-type. list : If-type. z : lf-obj. nil : lf-obj. s : lf-obj \rightarrow lf-obj. cons : lf-obj \rightarrow lf-obj \rightarrow lf-obj.

$$
\begin{array}{lcl} \mathsf{app} & : & \mathsf{lf}\text{-}\mathsf{obj} \rightarrow \mathsf{lf}\text{-}\mathsf{obj} \rightarrow \mathsf{lf}\text{-}\mathsf{type}. \\ \mathsf{app}\text{-}N & : & \mathsf{lf}\text{-}\mathsf{obj} \rightarrow \mathsf{lf}\text{-}\mathsf{obj}. \\ \mathsf{app}\text{-}C & : & \mathsf{lf}\text{-}\mathsf{obj} \rightarrow \mathsf{lf}\text{-}\mathsf{obj} \rightarrow \mathsf{lf}\text{-}\mathsf{obj} \rightarrow \mathsf{lf}\text{-}\mathsf{obj} \rightarrow \mathsf{lf}\text{-}\mathsf{obj}. \end{array}
$$

A Translation 2/2

Then, LF types are translated as follows:

 ${A}$ ^W $:= \lambda M$. hastype $M \langle A \rangle$ if A is a base type

 ${\{\Pi x:A.B\}} := \lambda M. \forall x. ({\{\A\} x) \supset ({\{\B\}} (M x))$

For example, consider the translation of ΠL : *list.app nil L L*:

 ${$ { \Pi L:}list.app nil L L ${ \}$ $\lambda M. \ \forall L. \ (\{\{\text{list}\}\ \ L) \supset (\{\text{app}\ \text{nil}\ \ L\ \ L\}\ (M\ \ L))$ λ M. \forall L. (hastype L list) \supset (hastype (M L) (app nil L L))

Thus, the LF signature item app N : ΠL:list.app nil L L yields the λ -Prolog formula

 $\forall L$. (hastype L list ⊃ hastype (app_N L) (app nil L L))

Improving the Translation

Consider the constant *app_C*.

app $C : \Pi X$: nat. ΠL_1 : list. ΠL_2 : list. ΠL_3 : list. ΠA : app $L_1 L_2 L_3$. app (cons X L_1) L_2 (cons X L_3)

Whenever we are matching an instance of this type, we must ensure that the terms being substituted for the Π-bound variables are of the correct type.

 \triangleright Certain terms will appear in such a way that we know this to be the case.

Consider a well-formed type: $app (cons x 11) 12 (cons x 13)$.

- \triangleright Clearly then, whatever the term /1 (resp. /2, /3), it must be of type list
- \triangleright Similarly x must be of type *nat*
- But is there a term of type app $1/2/3$?

Characterizing Redundancies

This type checking becomes the hastype formula of the Π-bound variable.

By categorizing which of these checks is unnecessary, we are able to reduce the number of goals which must be satisfied during proof search.

 \triangleright The essential idea is that we do not need to perform such a check when there is an occurrence whose structure is not lost or altered by other substitutions.

We define a criterion, called Strictness, which captures this idea.

Strictness

- 1. There is an occurrence, in the head of the type, which does not disappear after performing substitutions for the other Π-quantified variables.
- 2. This occurrence may only be applied to distinct λ -bound variables.

Strictness

There are two main judgments associated with strictness:

 $\Gamma; x \sqsubset_t A$ and $\Delta; \delta; x \sqsubset_{\alpha} M$

^I Γ collects Π-bound variables \triangleright Δ contains the Π -bound variables \triangleright δ collects λ -bound

variables Translation now proceeds in two modes:

- In the positive context we remove the *hastype* clause for strictly occurring variables.
- In the negative context we proceed as before.

Example Specification - Translated

nat : If-type. $list :$ If-type. z : If-obj. nil : If-obj. s : lf-obj \rightarrow lf-obj. cons : lf-obj \rightarrow lf-obj \rightarrow lf-obj.

$$
app : If \text{-}obj \rightarrow If \text{-}obj \rightarrow If \text{-}obj \rightarrow If \text{-}type.
$$

 $app_N : If \text{-}obj \rightarrow If \text{-}obj.$
 $app_C : If \text{-}obj \rightarrow If \text{-}obj.$

∀L.hastype (app N L) (app nil L L). $\forall X.\forall L_1.\forall L_2.\forall L_3.\forall A.$ hastype A (app L_1 L_2 L_3) \supset hastype (app $C \times L_1 L_2 L_3 A$) (app (cons $X L_1$) L_2 (cons $X L_3$)).

Map of Talk

[Motivation](#page-0-0) [Specifications](#page-6-0) [A Translation](#page-17-0) [An Inverse](#page-0-1)

[Looking Forward](#page-0-1)

Dealing with Queries

After writing an LF specification, one may want to present and solve queries of the form $M : A$.

 \triangleright We allow logic variables to appear in the type A.

LF Query Proof : $\prod x \cdot nat \cdot app$ nil (cons z (cons x nil)) $(L x)$ Translated Query

 $\forall x.$ hastype Proof (app nil (cons z (cons x nil)) $(L x)$)

Solution
$$
L = \lambda y
$$
 cons z (cons y nil)
Proof = λy .app-N (cons z (cons y nil))

We would like to now return our solution to LE. There are two concerns we should keep in mind:

- \triangleright Under our chosen signature, there may be well-formed STLC terms which have no corresponding LF term. Eg. arrow empty (app unit unit)
- \triangleright Alternatively, there may be terms with multiple corresponding LF terms.

Eg. $(\lambda x.x)$

An Inverse Encoding

We are not interested in inverting arbitrary terms

- \triangleright All terms will correspond to a well-formed LF term.
- \blacktriangleright LF typing information ensures a unique inverse.

We define the inverse as a relationship between:

- \blacktriangleright the λ -term t \blacktriangleright the LF type A
- \blacktriangleright the LF typing information Θ There are two judgments

$$
\triangleright \text{ the LF term } M
$$

 $\mathit{inv}^\downarrow(t;A;\Theta) = M$ and $\mathit{inv}^\uparrow(t;A;\Theta) = M$

The first expects A as input while the second synthesizes A. Returning to our example:

Solution
$$
L = \lambda y \cdot \text{cons } z \text{ (cons } y \text{ nil)}
$$

\nProof = $\lambda y \cdot \text{app_N} \text{ (cons } z \text{ (cons } y \text{ nil)})$
\nLF Solution $L = \lambda y \cdot \text{nat} \cdot \text{cons } z \text{ (cons } y \text{ nil)}$
\nProof = $\lambda y \cdot \text{nat} \cdot \text{app_N} \text{ (cons } z \text{ (cons } y \text{ nil)})$

Map of Talk

[Motivation](#page-0-0) [Specifications](#page-6-0) [A Translation](#page-17-0) [An Inverse](#page-0-1) [Looking Forward](#page-0-1)

Ongoing Work

- \triangleright Show correctness of this translation.
- \triangleright Developing an implementation of this system.
- \triangleright Use this translation to extend Abella for reasoning about LF specifications.

End

Correctness of the Translation

- \triangleright We need to show that the substitutions found in LE and under the translation are 'equivalent'.
- \triangleright Our approach for this proof is to use simulation.

Theorem

Let Σ be an LF signature and let A be an LF type that possibly contains meta-variables.

- 1. If the query $M : A$ is solved with the ground answer substitution σ , then there is an invertible answer substitution θ for the goal $\{ \!\!\{ A \}\!\!\}$ $\langle M \rangle$ wrt $\{ \!\!\{ \Sigma \}\!\!\}$ such that the inverse θ' of θ generalizes σ (i.e. there exists a σ' such that $\sigma' \circ \theta' = \sigma$).
- 2. If θ is an invertible answer substitution for ${A}$ $\{M\}$, then its inverse is an answer substitution for M : A.

Rules for the Strictness Criterion

$$
\frac{\text{dom}(\Gamma); \because x \sqsubset_o A_i \text{ for some } A_i \text{ in } \overrightarrow{A}}{\Gamma; x \sqsubset_t c \overrightarrow{A}} \text{ APP}_t \xrightarrow{\Gamma, y : A; x \sqsubset_t B} \text{ Ph}_{t}
$$
\n
$$
\frac{\Gamma_1; x \sqsubset_t B}{\Gamma_1; y : B, \Gamma_2; y \sqsubset_t A} \text{ CTX}_t
$$
\n
$$
\frac{y_i \in \delta \text{ for each } y_i \text{ in } \overrightarrow{y} \text{ each variable in } \overrightarrow{y} \text{ is distinct}}{\Delta; \delta; x \sqsubset_o x \overrightarrow{y}}
$$
\n
$$
\frac{y \notin \Delta \text{ and } \Delta; \delta; x \sqsubset_o M_i \text{ for some } M_i \text{ in } \overrightarrow{M}}{\Delta; \delta; x \sqsubset_o y \overrightarrow{M}}
$$
\n
$$
\frac{\Delta; \delta, y; x \sqsubset_o M}{\Delta; \delta; x \sqsubset_o \Delta y: A.M} \text{ ABS}_o
$$

Rules for the Inverse Encoding

$$
\frac{X: A \in \Delta}{inv^{\uparrow}(X; A; \Theta) = X} \text{ inv-var}
$$
\n
$$
\frac{inv^{\downarrow}(M; B; \Theta, x: A) = M'}{inv^{\downarrow}(Xx.M; \Pi x:A.B; \Theta) = \lambda x:A.M'} \text{ inv-abs}
$$
\n
$$
\frac{inv^{\uparrow}(M_1; \Pi x:B.A; \Theta) = M_1'}{inv^{\uparrow}(M_1 M_2; A[M_2'/x]; \Theta) = M_1' M_2'} \text{ inv-app}
$$
\n
$$
\frac{u: A \in \Theta}{inv^{\uparrow}(u; A; \Theta) = u} \text{ inv-const} \frac{inv^{\uparrow}(M; A; \Theta) = M'}{inv^{\downarrow}(M; A; \Theta) = M'} \text{ inv-syn}
$$