
A Translation-Based Animation of Specifications
in a Dependently-Typed Lambda Calculus

Mary Southern and Gopalan Nadathur

Department of Computer Science and Engineering
University of Minnesota

Other Contributors: D. Baelde, Z. Snow

The Context and Objective for this Work

We are interested in formalizing systems that are described in a
rule-based and syntax directed fashion

Two approaches with complementary benefits exist for formalizing
such systems that also manipulate objects with binding structure:

I An approach based on using dependently-typed λ-calculi

Primary Virtue: Dependent types are a convenient and widely
used means for encoding specifications

I An approach that uses logical predicates over λ-calculus terms

Primary Virtues: Such a logic has an efficient implementation
and specifications in it can also be expressively reasoned about

Our Goal: To harness the benefits of both approaches

Specifically, we want to

I let the first approach be used for developing specifications

I use a translation to the second form to realize animation

Overview of the Talk

We will cover the following topics in this talk

I The dependently typed λ-calculus approach

I The predicate logic approach

I A translation from the first to the second

I Conclusion and future work

Specifications

I Syntax driven, rule based specifications

Lists
L := [] | (N :: L)

Append - append L1 L2 L3

append [] L L
append L1 L2 L3

append (N :: L1) L2 (N :: L3)

Edinburgh Logical Framework (LF)

Syntax of Expressions
Kind K := Type | Πx :A. K
Type A := a | Πx :A. B | A M
Object M := c | x | λx :A.M | M N

Notation: Write A→ B for Πx :A.B if x is not free in B

list : Type
nil : list
cons : nat → list → list

append : list → list → list → Type

appNil : ΠL:list. append nil L L
appCons : ΠN:nat. ΠL1:list. ΠL2:list. ΠL3:list.

append L1 L2 L3 → append (cons N L1) L2 (cons N L3)

Signature A signature identifies constants and provides their
types (kinds).

Judgement Γ `Σ M : A

Logic Programming with Twelf

Solve judgments of the form · `Σ M : A.

I Types as formulas

I Terms as derivations

I Proof search becomes a question of inhabitation

Example

append : list → list → list → type
appNil : append nil L L
appCons : append L1 L2 L3 → append (cons X L1) L2 (cons X L3)

Query: · `Σ M : append (cons z nil) nil (cons z nil)

Solution: M = appCons z nil nil nil (appNil nil)

Specifications Using a Predicate Logic

In this setting, we use the following ideas to encode a formal
system

I We identify predicates to represent relevant judgements

I We then use formulas to encode the rules for determining
when these judgements hold

Ideally, we would want the formulas also to capture the way the
rules can be used to construct derivations in the object system

To realize this requirement, we must restrict the permitted
formulas to obtain the desired proof search behavior

A logic with these properties is that of higher-order hereditary
Harrop formulas that underlies the λProlog language

Higher-Order Hereditary Harrop Formulas (hohh)

The atomic formulas in this logic are constructed using predicate
symbols that take simply typed λ-terms as arguments

The formulas that are used are then the following

D := A | G ⊃ D | ∀x .D
G := > | A | D ⊃ G | ∀x .G

A collection of D-formulas encodes a specification and a G formula
corresponds to a query

For example, the list specification can be formalized as follows:

list : type
nil : list
cons : (nat → list → list)

append : (list → list → list → o)

∀l .(append nil l l)
∀x .∀l1.∀l2.∀l3.(append l1 l2 l3) ⊃ (append (cons x l1) l2 (cons x l3))

From LF specifications to hohh specifications

The translation is based on a two step process

1. First we map both LF types and objects into simply typed
λ-terms.

I we use hohh terms of type lf-type for LF types

I we use hohh terms of type lf-obj for LF objects

Notice that the LF typing information is lost in this translation
and only the functional structure of expressions is retained

2. We then encode LF typing relations in predicates over
hohh terms denoting LF objects and LF types

In particular,

I the predicate hastype : lf-obj→ lf-type→ o is used in this
encoding

I A type itself becomes a formula of one arguement that should
be satisfied by any term that has that type

The Translation of LF Types

Let 〈U〉 denote the simply typed λ-term representing the LF object
or type U

Then, LF types are translated as follows:

{{A}} := λM. hastype M 〈A〉 if A is a base type

{{Πx :A. B}} := λM. ∀x . ({{A}} x) ⊃ ({{B}} (M x))

For example, consider the translation of ΠL:list. append nil L L:

{{ΠL:list. append nil L L}}
λM. ∀L. ({{list}} L) ⊃ ({{append nil L L}} (M L))
λM. ∀L. (hastype L list) ⊃ (hastype (M L) (append nil L L))

Thus, the LF signature item appNil : ΠL:list. append nil L L yields
the hohh clause

∀L. (hastype L list) ⊃ (hastype (appNil L) (append nil L L)

A Deficiency with the Translation

We are interested in finding inhabitants of LF types

For example, we might want an M such that the following holds:

M : (append nil (cons z nil) (cons z nil))

I Notice that we already know the type to be well-formed here

In the translation based approach, we would try to solve the query

hastype M (append nil (cons z nil) (cons z nil))

using the clause

∀L. (hastype L list) ⊃ (hastype (appNil L) (append nil L L)

However, this requires solving the redundant goal

hastype (cons z nil) list

Can we avoid such redundancies by simplifying the clause to

∀L. hastype (appNil L) (append nil L L)?

Improving the Translation

The general question:

When we can use the translation

{{Πx :A. B}} := λM. ∀x . ({{B}} (M x)

without losing information?

We have identified a sufficient condition for this purpose:

I x must appear in the target type of B

I It must have at least one occurrence which will not disappear
after performing substitutions for other quantified variables

I If this occurrence is applied to arguments, they will not
change the shape of any term substituted for x

This condition, called strictness, can actually be improved to
embody a recursive structure

A Translation-Based Implementation of Twelf

I The approach described here has been tested in the Parinati
system that uses Teyjus to execute λProlog programs

I Experiments show that we can get up to an order of
magnitude improvement in speed in comparison to an ML
implementation

I Space conservation is even more dramatic: really large
examples can be run without problem using our approach

I We are now implementing the system in a way that makes
Teyjus an opaque backend to Twelf

I This implementation uses an inverse translation from simply
typed λ-terms to LF expressions that we have developed

Conclusion

We have developed the theoretical underpinnings for a translation
from LF specifications to hohh specifications

This translation has benefits at least for animating LF specification

Future Work

I Realize a complete implementation of logic programming in
Twelf based on the translation approach.

I Translate totality checking into Abella proofs.

I Reasoning directly using a dependently typed logic in an
Abella-like system.

