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Motivation

We are interested in specifications of computational systems
for several purposes

They provide a precise description of the system

They can be executed and used as a prototype or
implementation of the system

They can be used to support reasoning about the system

In this work we are specifically interested in specifications
based on the dependently typed λ-calculus
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An Example System

Typing Rules for the Simply Typed λ-Calculus

Γ1, x : τ, Γ2 ` x : τ

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` (t1 t2) : τ2

Given these rules we can pose questions about whether
particular typing judgments hold.

Does the term λx : τ. x have type τ → τ?

Does the term λx : τ. y have a type?

Are there any terms of type τ → τ?
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Specifying the System Using Dependent Types

The system can be formalized in three steps:

1 Describe an encoding of the objects relevant to the system

Use expressions of type ty to represent (object-language)
types
Use expressions of type tm to represent (object-language)
terms

2 Use dependent types to capture relationships between
these objects.
ofType : tm -> ty -> type.

3 Identify constants to encode each rule of the system.
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` (t1 t2) : τ2

app : ofType t1 (τ1 → τ2) -> ofType t2 τ1 -> ofType (t1 t2) τ2.
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Using the Specification for Logic Programming

Questions about whether particular typing judgments hold
becomes a question about the inhabitation of particular
dependent types.

Does the term λx : τ. x have type τ → τ?
Is the type ofType (λx : τ. x) (τ → τ) inhabited?

Does the term λx : τ. y have a type?
Is there any T such that ofType (λx : τ. y) T is inhabited?

Are there any terms of type τ → τ?
Is there any X such that ofType X (τ → τ) is inhabited?

This work aims to provide a mechanical means for answering
such questions
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Animating the Specifications

To support logic programming based on the specifications, we
provide a means for answering inhabitation questions

1 We describe a translation of the dependently typed
language into an executable predicate logic:

1 Type and term level constants are translated into simply
typed constants

ofType : tm -> ty -> type. ofType : LFterm -> LFterm -> LFtype.

2 Next the dependencies are recaptured using formulas

∀X hastype X tm -> ∀Y hastype Y ty -> istype (ofType X Y ).

2 We use the Teyjus system to solve the logical queries

3 We translate the results in step 2 to yield solutions in the
dependently typed setting

The research has to address theoretical questions concerning
steps 1 and 3 to make the overall process work
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Wrapping Up

We are interested in the efficient animation of dependently
typed specifications

Our translation based approach to this problem requires the
consideration of two conceptual questions

1 How do we enforce typing constraints in the translation for
variables which may be instantiated during search?

2 Can we describe an inverse for the translation of
dependently typed terms to simply typed terms?

We are developing a tool based on these ideas which uses the
Teyjus system to solve queries
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