
An Implementation of Logic Programming
Based on the Edinburgh Logical Framework

Mary Southern and Gopalan Nadathur

Department of Computer Science and Engineering
University of Minnesota

Midwest Verification Day 2016

Mary Southern and Gopalan Nadathur An Implementation of Logic Programming



Motivation

We are interested in specifications of computational systems
for several purposes

They provide a precise description of the system

They can be executed and used as a prototype or
implementation of the system

They can be used to support reasoning about the system

In this work we are specifically interested in specifications
based on the dependently typed λ-calculus

Mary Southern and Gopalan Nadathur An Implementation of Logic Programming



An Example System

Typing Rules for the Simply Typed λ-Calculus

Γ1, x : τ, Γ2 ` x : τ

Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1. t) : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` (t1 t2) : τ2

Given these rules we can pose questions about whether
particular typing judgments hold.

Does the term λx : τ. x have type τ → τ?

Does the term λx : τ. y have a type?

Are there any terms of type τ → τ?

Mary Southern and Gopalan Nadathur An Implementation of Logic Programming



Specifying the System Using Dependent Types

The system can be formalized in three steps:

1 Describe an encoding of the objects relevant to the system

Use expressions of type ty to represent (object-language)
types
Use expressions of type tm to represent (object-language)
terms

2 Use dependent types to capture relationships between
these objects.
ofType : tm -> ty -> type.

3 Identify constants to encode each rule of the system.
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` (t1 t2) : τ2

app : ofType t1 (τ1 → τ2) -> ofType t2 τ1 -> ofType (t1 t2) τ2.

Mary Southern and Gopalan Nadathur An Implementation of Logic Programming



Using the Specification for Logic Programming

Questions about whether particular typing judgments hold
becomes a question about the inhabitation of particular
dependent types.

Does the term λx : τ. x have type τ → τ?
Is the type ofType (λx : τ. x) (τ → τ) inhabited?

Does the term λx : τ. y have a type?
Is there any T such that ofType (λx : τ. y) T is inhabited?

Are there any terms of type τ → τ?
Is there any X such that ofType X (τ → τ) is inhabited?

This work aims to provide a mechanical means for answering
such questions

Mary Southern and Gopalan Nadathur An Implementation of Logic Programming



Animating the Specifications

To support logic programming based on the specifications, we
provide a means for answering inhabitation questions

1 We describe a translation of the dependently typed
language into an executable predicate logic:

1 Type and term level constants are translated into simply
typed constants

ofType : tm -> ty -> type. ofType : LFterm -> LFterm -> LFtype.

2 Next the dependencies are recaptured using formulas

∀X hastype X tm -> ∀Y hastype Y ty -> istype (ofType X Y ).

2 We use the Teyjus system to solve the logical queries

3 We translate the results in step 2 to yield solutions in the
dependently typed setting

The research has to address theoretical questions concerning
steps 1 and 3 to make the overall process work

Mary Southern and Gopalan Nadathur An Implementation of Logic Programming



Wrapping Up

We are interested in the efficient animation of dependently
typed specifications

Our translation based approach to this problem requires the
consideration of two conceptual questions

1 How do we enforce typing constraints in the translation for
variables which may be instantiated during search?

2 Can we describe an inverse for the translation of
dependently typed terms to simply typed terms?

We are developing a tool based on these ideas which uses the
Teyjus system to solve queries

Mary Southern and Gopalan Nadathur An Implementation of Logic Programming


