Lecture 15. Stochastic Processes & Stock Options

Introduction to Stochastic Processes
Wiener Processes and Itô’s Lemma

More sophisticated approach to modeling the behavior of assets underlying derivatives - view motion as a stochastic process.

A stochastic process is a process where future evolution is described by probability distributions.

Two types: discrete-time stochastic process changes values at discrete time steps. A continuous-time stochastic process changes value at any time.

Stochastic process can be continuous variable or discrete variable. A continuous-variable process can take any value within a certain range. (motion of a particle in fluid). A discrete-variable process can take only certain prescribed values. (coin flips)

Markov Process is a stochastic process where only present value of a variable is relevant for predicting the future. Coin flips are Markovian. If we flip the coin 30 times and comes up heads 30 straight times, next flip still 50/50 chance.
Let $\phi(\mu, \sigma)(x)$ denote the normal distribution. Then ϕ satisfies

$$
\phi(\mu, \sigma)(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

Probability of sum of
Consider a random number $x \in (0, 1)$ then most likely within the middle of the curve, if we undo it.

Sums of two normal distributions mean zero is a normal distribution with mean zero and variance that's the sum of the two variances. Proof: next time.
Continuous-Time Stochastic Processes

- Consider a Markov stochastic process. Suppose that the current value is 10 and the change in its value during 1 year is $\phi(0, 1)$.
- After two years? The change in two years is a sum of two one year Markov stochastic process with mean zero and standard deviation 1.
- Therefore, the sum is a normal distribution with mean zero and variance $1 + 1 = 2$. Thus the standard deviation is $\sqrt{2}$.
- Consider now the change in the variable during 6 months. The variance of the change in the value of the variable during 1 year equals the variance of the change during the first 6 months plus the variance of the change during the second 6 months.
- We assume they are the same. Then variance of change during a 6-month period must be 0.5. Thus, the standard deviation of the change is $\sqrt{0.5}$. Thus 6-month distribution is $\phi(0, \sqrt{0.5})$.
- Consider a small time step $\Delta t = \frac{1}{N}$, during which each period is an independent normal distribution. Then sum of the variances are equal to 1, so each variance should be Δt.
- The standard deviation then is $\sqrt{\Delta t}$.

Uncertainty is proportional to square root of time.
Wiener Processes

We continue letting $\Delta t \to 0$ carefully! This is called the Wiener process or Brownian motion. It is a Markov stochastic process with mean zero and variance 1.0 per year. Therefore, it has

1. Change Δz during a small period of time Δt is

$$\Delta z = \epsilon \sqrt{\Delta t}$$

where ϵ has a standardized normal distribution $\phi(0, 1)$. Therefore, Δz has a normal distribution with

- mean of $\Delta z = 0$
- standard deviation of $\Delta z = \sqrt{\Delta t}$
- variance of $\Delta z = \Delta t$.

2. Values of Δz for any two different short intervals of time Δt are independent. Therefore, z follows a Markov process.
Measure the value of \(z(T') - z(0) \) over a long period of time \(T \).

View as a sum of \(N \) small changes over small time changes \(\Delta t \), i.e.

\[
N = \frac{T}{\Delta t} \implies z(T) - z(0) = \sum_{i=1}^{N} \epsilon_i \sqrt{\Delta t}
\]

where \(\epsilon_i \) for \(i \in \{1, \ldots, N\} \) are distributed \(\phi(0, 1) \). The \(\epsilon_i \)'s are independent of each other.

Then \(z(T) - z(0) \) is normally distributed with

- mean of \([z(T) - z(0)] \) = 0
- variance of \([z(T) - z(0)] \) = \(N\Delta t = T \)
- standard deviation of \([z(T) - z(0)] \) = \(\sqrt{\Delta T} \).
Approximating Wiener Process

\[z \]

Relatively large value of \(\Delta t \)
Approximating Wiener Process

![Graph of Wiener Process]

Smaller value of Δt
Approximating Wiener Process

1. Expected length of the path followed by \(z \) in any time interval is infinite!

2. Expected number of times \(z \) equals any particular value in any time interval is infinite!
Self-similar structure. Lies in $C^{0,\frac{1}{2}}$.
Generalized Wiener Process

The mean change per unit time for a stochastic process is known as the drift rate.

The variance per unit time for a stochastic process is known as the variance rate.

A generalized Wiener process for a variable x can be defined in terms of dz as

$$dx = adt + bdz$$

where adt is the expected drift rate of a per unit time.

Holds since $dx = adt \implies \frac{dx}{dt} = a$. Therefore,

$$x = x_0 + at$$

After time T the variable x travels T units.
Generalized Wiener Process

The term $b \, dz$ regarded as noise added to the system, which is b times a Wiener process.

In a small time interval Δt, the change Δx in the variable of x is given by

$$\Delta x = a \Delta t + b \epsilon \sqrt{\Delta t}$$

where ϵ has a standard normal distribution.

- mean of $\Delta x = a \Delta t$
- standard deviation of $\Delta x = b \sqrt{\Delta t}$
- variance of $\Delta x = b^2 \Delta t$.

The same argument show that the change in the value of x in any time interval T is normally distributed with

- mean of $x = aT$
- standard deviation of $x = b \sqrt{T}$
- variance of $x = b^2 T$.
Figure 12.2 Generalized Wiener process with $a = 0.3$ and $b = 1.5$.

\[
dx = a \, dt + b \, dz
\]

Value of variable, x
Itô Process

A generalized Wiener process in which the parameters a and b are functions of the value of the underlying variable x and t. An Itô process can be written as

$$dx = a(x, t)dt + b(x, t)dz$$

Both the expected drift rate and the variance rate of an Itô process are liable to change over time. In a small time interval between t and $t + \Delta t$, the variable changes from x to $x + \Delta x$, where

$$\Delta x = a(x, t)\Delta t + b(x, t)\epsilon\sqrt{\Delta t}$$

Thus b^2 is the variance and a is the mean during the interval between t and $t + \Delta t$.
Discuss the process that models stock movements for a nondividend paying stock:

- Expected return $\mu = \frac{\text{Expected drift}}{\text{Stock price}}$ is constant
- If S is the stock price a time t, then the expected drift rate in S should be assumed to be μS for some constant parameter μ.
- So in short period of time Δt the expected increase in S should be $\mu S \Delta t$.

If volatility of the stock is zero then model implies

$$\Delta S = \mu S \Delta t$$

In the limit $\Delta t \to 0$,

$$dS = \mu S dt$$

or

$$\frac{dS}{S} = \mu dt$$

Then

$$S_T = S_0 e^{\mu T}$$
Including volatility then expect: variability of the percentage return in a short period of time Δt is the same regardless of the stock price. This suggests that the standard deviation of the change in a short period of time Δt should be proportional to the stock price and leads to

$$dS = \mu S \, dt + \sigma S \, dz$$

or

$$\frac{dS}{S} = \mu dt + \sigma dz$$ \hspace{1cm} (1)$$

We use (1) to price stocks. Here σ is the volatility and μ is the expected return rate.

Limiting case of the random walk we saw with binomial trees.

Example: Consider a stock that pays no dividends, has a volatility of 30% per annum, and provides an expected return of 15% per annum with continuous compounding. In this case, $\mu = 0.15$ and $\sigma = 0.30$. The process for the stock price is

$$\frac{dS}{S} = 0.15 dt + 0.30 dz$$
Process for a stock price

If S is the stock price at a particular time and ΔS is the increase in the stock price in the next small interval of time,

$$\frac{\Delta S}{S} = 0.15\Delta t + 0.30\epsilon\sqrt{\Delta t}$$

where ϵ has a standard normal distribution. Consider a time interval of 1 week or 0.0192 year and suppose that the initial stock price is $100. Then $\Delta t = 0.0192$, $S = 100$, and

$$\Delta S = 100 (0.00288 + 0.0416\epsilon)$$

or

$$\Delta S = 0.288 + 4.16\epsilon$$

showing that the price increase has a normal distribution with mean 0.288 and standard deviation 2.16.
Discrete-Time Model

Discrete-time version of the model is
\[
\frac{\Delta S}{S} = \mu \Delta t + \sigma \epsilon \sqrt{\Delta t}
\] \hspace{1cm} (2)
so the change in the stock value over a short period of time is
\[
\Delta S = \mu S \Delta t + \sigma S \epsilon \sqrt{\Delta t}
\]

- Variable ΔS is the change in the stock price S over a small interval of time Δt and ϵ has a standard normal distribution (normal distribution with $\sigma = 1$ and $\mu = 0$).
- μ is the expected rate of return by the stock in a short period of time Δt.
- σ is the volatility of the stock price.
Discrete-Time Model

Left-hand-side of (2) is the return provided by the stock in a short period of time.

- Term $\mu \Delta t$ is the expected value of the return
- Term $\sigma \epsilon \sqrt{\Delta t}$ is the stochastic component of the return. Variance is $\sigma^2 \Delta t$ (consistent with the definition of volatility defined earlier).

Then $\Delta S / S$ is normally distributed with mean $\mu \Delta t$ and standard deviation $\sigma \sqrt{\Delta t}$, so

$$\frac{\Delta S}{S} \sim \phi(\mu \Delta t, \sigma \sqrt{\Delta t})$$
Monte Carlo simulation of a stochastic process is a numerical procedure for sampling random outcomes for a process.

Example, consider a stock with expected return of 14% per annum with volatility of 20% per annum. Therefore, $\mu = 0.14$ and $\sigma = 0.20$. Suppose $\Delta t = 0.01$ (i.e. 1% of a year). Then

$$\Delta S = 0.14 \times 0.01 S + 0.2\sqrt{0.01}S\epsilon$$

or

$$\Delta S = 0.0014S + 0.02S\epsilon$$

In order to sample - take random number $(0, 1)$ - then use inverse normal distribution:
Monte Carlo

Table 12.1 Simulation of stock price when \(\mu = 0.14 \) and \(\sigma = 0.20 \) during periods of length 0.01 year.

<table>
<thead>
<tr>
<th>Stock price at start of period</th>
<th>Random sample for (\epsilon)</th>
<th>Change in stock price during period</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.000</td>
<td>0.52</td>
<td>0.236</td>
</tr>
<tr>
<td>20.236</td>
<td>1.44</td>
<td>0.611</td>
</tr>
<tr>
<td>20.847</td>
<td>-0.86</td>
<td>-0.329</td>
</tr>
<tr>
<td>20.518</td>
<td>1.46</td>
<td>0.628</td>
</tr>
<tr>
<td>21.146</td>
<td>-0.69</td>
<td>-0.262</td>
</tr>
<tr>
<td>20.883</td>
<td>-0.74</td>
<td>-0.280</td>
</tr>
<tr>
<td>20.603</td>
<td>0.21</td>
<td>0.115</td>
</tr>
<tr>
<td>20.719</td>
<td>-1.10</td>
<td>-0.427</td>
</tr>
<tr>
<td>20.292</td>
<td>0.73</td>
<td>0.325</td>
</tr>
<tr>
<td>20.617</td>
<td>1.16</td>
<td>0.507</td>
</tr>
<tr>
<td>21.124</td>
<td>2.56</td>
<td>1.111</td>
</tr>
</tbody>
</table>

More on Monte Carlo simulations later...
Parameters

The development of the pricing model depends on μ and σ so far.

For derivatives that depend on the stock, not important to have μ. However, very important to have σ. We saw this with binomial tree pricing.

The standard deviation of the proportional change in the stock price in a small interval of time Δt is $\sigma \sqrt{\Delta t}$. The standard deviation of the proportional change in the stock price over a relatively long period of time T is $\sigma \sqrt{T}$.
An Itô process is one in which the drift and the volatility depend on both x and t. Suppose x is an Itô’s process then

$$dx = a(x, t)dt + b(x, t)dz$$

where dz is a Wiener process and a, b are functions of x and t. Then x has a variance b^2.

Itô’s Lemma states that a function G of x and t follows the following process:

$$dG = \left(\frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2 \right) dt + \frac{\partial G}{\partial x} bdz$$

In particular G is an Itô process with drift rate

$$\frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2$$

and variance

$$\left(\frac{\partial G}{\partial x} \right)^2 b^2$$
Itô’s Lemma - formal argument

Assume G is a function of two variables x and t then we can formally take a power series expansion

$$
\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} (\Delta x)^2 + \frac{\partial^2 G}{\partial x \partial t} (\Delta x \Delta t) + \frac{1}{2} \frac{\partial^2 G}{\partial t^2} (\Delta t)^2 + O(\Delta^3)
$$

An Itô process satisfies

$$
dx = a(x, t) \, dt + b(x, t) \, dz
$$

where dz is a Wiener process. Then approximately (at the discrete level) we have

$$
\Delta x = a(x, t) \Delta t + b(x, t) \epsilon \sqrt{\Delta t}.
$$

Then returning to ΔG we have

$$
\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} (\Delta x)^2 + \frac{\partial^2 G}{\partial x \partial t} (\Delta x \Delta t) + \frac{1}{2} \frac{\partial^2 G}{\partial t^2} (\Delta t)^2 + O(\Delta^3)
$$

$$
= \frac{\partial G}{\partial x} \left[a \Delta t + b \epsilon \sqrt{\Delta t} \right] + \frac{\partial G}{\partial t} \Delta t
$$

$$
+ \frac{1}{2} \frac{\partial^2 G}{\partial x^2} \left[a \Delta t + b \epsilon \sqrt{\Delta t} \right]^2 + \frac{\partial^2 G}{\partial x \partial t} \Delta t \left[a \Delta t + b \epsilon \sqrt{\Delta t} \right] + \frac{1}{2} \frac{\partial^2 G}{\partial t^2} (\Delta t)^2 + O(\Delta^3)
$$

Expand out:
Itô’s Lemma - formal argument

$$\Delta G = \frac{\partial G}{\partial x} [a \Delta t + b \epsilon \sqrt{\Delta t}] + \frac{\partial G}{\partial t} \Delta t$$

$$+ \frac{1}{2} \frac{\partial^2 G}{\partial x^2} [a \Delta t + b \epsilon \sqrt{\Delta t}]^2 + \frac{\partial^2 G}{\partial x \partial t} \Delta t [a \Delta t + b \epsilon \sqrt{\Delta t}] + \frac{1}{2} \frac{\partial^2 G}{\partial t^2} (\Delta t)^2 + O(\Delta^3)$$

$$= \sqrt{\Delta t} b \epsilon \frac{\partial G}{\partial x}$$

$$+ \Delta t \left[\frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + b^2 \epsilon^2 \frac{1}{2} \frac{\partial^2 G}{\partial x^2} \right]$$

$$+ (\Delta t)^{\frac{3}{2}} \left[2ab \epsilon \frac{1}{2} \frac{\partial^2 G}{\partial x^2} \right]$$

$$+ (\Delta t)^2 \left[a^2 \frac{1}{2} \frac{\partial^2 G}{\partial x^2} + a \frac{\partial^2 G}{\partial x \partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial t^2} \right] + O((\Delta t)^3)$$

$$= \left[\frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + b^2 \epsilon^2 \frac{1}{2} \frac{\partial^2 G}{\partial x^2} \right] \Delta t + \frac{\partial G}{\partial x} b \epsilon \sqrt{\Delta t} + O((\Delta t)^{\frac{3}{2}})$$
Itô’s Lemma - formal argument

Therefore,

\[\Delta G = \left[\frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + b^2 \epsilon^2 \frac{1}{2} \frac{\partial^2 G}{\partial x^2} \right] \Delta t + \frac{\partial G}{\partial x} b \epsilon \sqrt{\Delta t} + O((\Delta t)^{3/2}) \]

Since is a normal distribution, then the variance \(\epsilon^2 \) is 1. Thus \(1 = E(\epsilon^2) - (E(\epsilon))^2 = E(\epsilon^2) \).

Therefore, the expected value of \(\epsilon^2 \Delta t \) is \(\Delta t \) (small fluctuations cancel out) and hence nonstochastic! Take the limit as \(\Delta t \to 0 \) then get formally

\[dG = \left[\frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + b^2 \frac{1}{2} \frac{\partial^2 G}{\partial x^2} \right] dt + \frac{\partial G}{\partial x} b dz \]
Itô's Lemma: Modeling stock movements

We argued that a reasonable model of stock movements should be

\[dS = \mu S dt + \sigma S dz \]

with \(\mu \) and \(\sigma \) constants.

From Itô’s Lemma we can consider a process \(G \) that depends on \(t \) and \(S \). Then

\[dG = \left(\frac{\partial G}{\partial S} \mu S + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial S^2} \sigma^2 S^2 \right) dt + \frac{\partial G}{\partial S} \sigma S dz \]

so both \(S \) and \(G \) are affected by \(dz \) - the noise in the system.
Lognormal Property

Recall that our model requires

\[dS = \mu S dt + \sigma S dz \]

with \(\mu \) and \(\sigma \) constants.

Define \(G = \ln S \) then

\[
\frac{\partial G}{\partial S} = \frac{1}{S} \quad \frac{\partial^2 G}{\partial S^2} = -\frac{1}{S^2} \quad \frac{\partial G}{\partial t} = 0
\]

by Itô’s Lemma we have

\[
dG = \left(\frac{\partial G}{\partial S} \mu S + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial S^2} \sigma^2 S^2 \right) dt + \frac{\partial G}{\partial S} \sigma S dz
\]

\[
= \left[\frac{1}{S} \mu S + 0 + \frac{1}{2} \frac{1}{S^2} \sigma^2 S^2 \right] dt + \frac{1}{S} \sigma S dz
\]

\[
= \left(\mu - \frac{\sigma^2}{2} \right) dt + \sigma dz
\]

Therefore, \(G \) follows a generalized Wiener process with

- Drift = \(\mu - \frac{\sigma^2}{2} \)
- Variance = \(\sigma^2 \)
Lognormal Property

Therefore, the change in \(\ln S \) between 0 and a future time \(T \) is normally distributed with mean
\[(\mu - \frac{\sigma^2}{2})T\] and variance \(\sigma^2 T \). Hence:

\[
\ln S_T - \ln S_0 \approx \phi \left[\left(\mu - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right]
\]
or

\[
\ln S_T \approx \phi \left[\ln S_0 + \left(\mu - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right]
\]

This implies that \(\log \) of the stock price is normally distributed:

A variable has a lognormal distribution if the natural \(\log \) of the variable is normally distributed.

The standard deviation of the logarithm of the stock price is \(\sigma \sqrt{T} \).
Application of Itô’s Lemma to Forward Contracts

A forward contract on a non-dividend-paying stock with interest rate \(r \) then

\[
F_0 = S_0 e^{rT}
\]

Let \(F \) be the forward price at a general time \(t \) and \(S \) the stock price at time \(t < T \). The relationship between \(F \) and \(S \) is

\[
F = S e^{r(T-t)}
\]

If \(S \) is given by

\[
dS = \mu S dt + \sigma S dz
\]

then we compute

\[
\frac{\partial F}{\partial S} = e^{r(T-t)} \quad \frac{\partial^2 F}{\partial S^2} = 0 \quad \frac{\partial F}{\partial t} = -rS e^{r(T-t)}
\]

then by Itô’s Lemma so that

\[
dF = \left[e^{r(T-t)} \mu S - rS e^{r(T-t)} \right] dt + e^{r(T-t)} \sigma S dz = (\mu - r) F dt + \sigma F dz
\]
Application of Itô’s Lemma to Forward Contracts

Then F is lognormally distributed. Set $G = \ln F$ then

$$dG = \left(\mu - r - \frac{\sigma^2}{2} \right) dt + \sigma dz$$

Thus

$$\ln F - \ln F_0 \approx \phi \left[\left(\mu - r - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right]$$
Summary

- Stochastic process describe the probabilistic evolution of the value of a variable through time.
- Markov process is a stochastic process where only the present value of the variable is relevant for predicting the future.
- Wiener process dz is the process describing the evolution of a normally distributed variable. Drift of the process is zero and variance rate is 1.0 per unit time.
- Generalized Wiener process describes the evolution of a normally distributed variable with a drift of a per unit time and a variance rate of b^2 per unit time, where a and b are constants. If the variable starts at 0 then it is normally distributed with mean aT and standard deviation of $b\sqrt{T}$ at time T.
- Itô process is a process where the drift and variance rate of x can be a function of both x itself and time. The change in x in a very short period of time is normally distributed, but changes over longer periods of time is liable to be nonnormal.
- Itô process is a way of calculating the stochastic process followed by a function of a variable from the stochastic process followed by the variable itself.
Use Itô’s Lemma to help price options. Let f be the price of a call option depending on a S that satisfies our model.

$$\frac{\partial f}{\partial t} + rS \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rS$$

with the boundary condition

$$f = \max\{S - K, 0\}$$

when $t = T$.

Where does this partial differential equation (PDE) come from?

How do we solve it?
Due Oct. 31, 5PM.

• 11.11, 11.15

• Graded: 11.19, 11.20 (Steps (a)&(b)), 11.21 (Steps (a)&(b)), 12.12, 12.15