Math 8669 Homework \#1, Spring 2016

1. Give examples of a finite ranked poset P such that
(a) P has the matching property but is not Sperner.
(b) P is rank unimodal but not Sperner.
(c) P is Sperner but not rank unimodal.
(d) P is Sperner and rank unimodal, but does not have the matching property.
2. Prove that if P is Sperner, and $P_{\max }$ is a maximum level, then the bipartite graphs

$$
P_{\max -1} \cup P_{\max } \quad \text { and } P_{\max +1} \cup P_{\max }
$$

both have complete matchings.
3. Characterize all maximum sized antichains in the Boolean algebra B_{N}.
4. What is the Greene-Kleitman partition for the Boolean algebra B_{N} ?
5. Can one prove log-concavity of the coefficients of the polynomial $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ using reality of the zeros?
6. Prove that $B_{n}(q)$ is Sperner by verifying that it is rank unimodal and has the matching property.
7. Here is another way to verify that $P=B_{N}(q)$ has the matching property. For $0 \leq k \leq N$ let W_{k} be the \mathbb{R} vector space whose basis is given by elements at level k of $B_{N}(q)$, so $\operatorname{dim}\left(W_{k}\right)=\left[\begin{array}{c}N \\ k\end{array}\right]_{q}$. Let $D_{k}: W_{k} \rightarrow W_{k-1}$ and $U_{k}: W_{k} \rightarrow W_{k+1}, 0 \leq k \leq N$, be the natural down and up linear transformations using the edges of $B_{N}(q)$.
(a) What is $D_{k+1} U_{k}-U_{k-1} D_{k}$ as a linear transformation on W_{k} ?
(b) Show if $2 k<n$, the map U_{k} is 1-1, and find $\operatorname{rank}\left(U_{k}\right)$.
(c) Show that the matrix of U_{k} has a non-singular $\left[\begin{array}{c}N \\ k\end{array}\right]_{q} \times\left[\begin{array}{c}N \\ k\end{array}\right]_{q}$ submatrix, and conclude that a complete matching from P_{k} to P_{k+1} exists.
8. Let $\lambda_{n}=(n-1, n-2, \cdots, 1)$ be the "staircase" partition. Let $P_{n}=\left[\varnothing, \lambda_{n}\right]$ be the interval in Young's lattice, namely the set of all partitions μ whose Ferrers diagram fit inside λ_{n}, under containment of Ferrers diagrams.
(a) Show that $\left|P_{n}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the $n^{t h}$ Catalan number.
(b) If $R_{n}(q)$ is the rank generating function of P_{n}, find a version of $C_{n}=\sum_{k=1}^{n} C_{k-1} C_{n-k}, n \geq 1$, for $R_{n}(q)$.
(c) Is P_{n} rank symmetric, rank unimodal*, or Sperner*?
(d) True or False?

$$
\begin{aligned}
\sum_{n=0}^{\infty} R_{n}(1 / q) q^{\binom{n}{2}} t^{n} & =\sum_{n=0}^{\infty} \frac{(-t)^{n} q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} / \sum_{n=0}^{\infty} \frac{(-t)^{n} q^{n^{2}-n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} \\
& =\frac{1}{1-\frac{x}{1-\frac{x q}{1-\frac{x q^{2}}{1-\frac{x q^{3}}{\ddots}}}}} \\
& 1
\end{aligned}
$$

9. Let $P_{n}=N C(n)$ the poset of non-crossing set partitions under refinement of blocks. Recall that $\left|P_{n}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the $n^{t h}$ Catalan number, and the $k^{t h}$ level numbers are the Narayana numbers $N_{n, k}=\frac{1}{k+1}\binom{n-1}{k}\binom{n}{k}, 0 \leq k \leq n-1$.
(a) Verify that P_{n} is a rank symmetric, rank unimodal poset.
(b) Verify that $P_{1}, P_{2}, P_{3}, P_{4}$ have symmetric chain decompositions by exhibiting one such decomposition on each Hasse diagram.
(c) Prove that P_{n} has a symmetric chain decomposition.
10. The inequality that we used for log-concavity

$$
e_{k}\left(x_{1}, \cdots, x_{n}\right)^{2} \geq e_{k-1}\left(x_{1}, \cdots, x_{n}\right) e_{k+1}\left(x_{1}, \cdots, x_{n}\right), \quad 0 \leq k \leq n-1, \quad x_{i}>0
$$

is a weaker version of the Newton inequalities

$$
\left(\frac{e_{k}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k}}\right)^{2} \geq\left(\frac{e_{k-1}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k-1}}\right)\left(\frac{e_{k+1}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k+1}}\right), \quad 0 \leq k \leq n-1, \quad x_{i}>0
$$

(a) Take $k=1$ and $n=3$ and show that the Newton inequalities do not follow from termwise polynomial positivity.
(b) Prove the Newton inequalities by induction on n, fixing k. First verify the case $n=k+1$ by showing a certain quadratic form is positive semidefinite. Then do the inductive case by assuming $0<x_{1}<x_{2}<\cdots<x_{n}$ and letting

$$
P(t)=\prod_{i=1}^{n}\left(t+x_{i}\right), \quad P^{\prime}(t)=n \prod_{i=1}^{n-1}\left(t+x_{i}^{\prime}\right)
$$

where $x_{i}<x_{i}^{\prime}<x_{i+1}$. Use

$$
(n) e_{k}\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n-1}^{\prime}\right)=(n-k) e_{k}\left(x_{1}, \cdots, x_{n}\right), \quad 0 \leq k \leq n-1
$$

in the induction.
11. Let P be finite ranked poset and suppose that $G \leq \operatorname{Aut}(P)$. Define a poset P / G whose elements are the orbits O of G on P, with order relation $O_{1} \leq O_{2}$ iff there exists $x \in O_{1}, y \in O_{2}$, with $x \leq y$ in P. True or False: If P is Sperner, then P / G is Sperner.
12. In this problem you will prove the unimodality of the q-binomial coefficient by using an explicit formula, called the KOH identity.
First some notation. For an integer partition λ, let $|\lambda|$ be the sum of the parts of λ. Let λ^{\prime} be the conjugate of λ, and let $m_{i}(\lambda)$ be the multiplicity of the part i in λ. For example, if $\lambda=544422111$, then $|\lambda|=24, \lambda^{\prime}=96441$, and $m_{4}(\lambda)=3$. Finally, let

$$
n(\lambda)=\sum_{i}(i-1) \lambda_{i}=\sum_{j}\binom{\lambda_{j}^{\prime}}{2}
$$

It is
(KOH)

$$
\left[\begin{array}{c}
N+k \\
k
\end{array}\right]_{q}=\sum_{\lambda,|\lambda|=k} q^{2 n(\lambda)} \prod_{i=1}^{\infty}\left[\begin{array}{c}
(N+2) i-2 \sum_{j=1}^{i} \lambda_{j}^{\prime}+m_{i}(\lambda) \\
m_{i}(\lambda)
\end{array}\right]_{q}
$$

(a) Write out (KOH) for $k=3$ and explain why it recursively proves that $\left[\begin{array}{c}M \\ 3\end{array}\right]_{q}$ is a unimodal polynomial in q.
(b) Repeat (a) for a general k by showing that the individual terms in (KOH) are "centered" correctly.

