Problem 8d:

Let $\tilde{R}_{n}(q)=q^{\binom{n}{2}} R_{n}(1 / q)$. Then part (b) which said

$$
R_{n}(q)=\sum_{k=1}^{n} q^{k(n-k)} R_{k-1}(q) R_{n-k}(q)
$$

becomes

$$
\begin{equation*}
\tilde{R}_{n}(q)=\sum_{k=1}^{n} q^{k-1} \tilde{R}_{k-1}(q) \tilde{R}_{n-k}(q) \tag{1}
\end{equation*}
$$

If we define the formal power series in t

$$
\begin{equation*}
A(t)=\sum_{n=0}^{\infty} \tilde{R}_{n}(q) t^{n} \tag{2}
\end{equation*}
$$

then (1) is equivalent to

$$
\begin{equation*}
A(t)=1+t A(t) A(q t) \tag{3}
\end{equation*}
$$

Note that if $q=1$ this is the Catalan generating function quadratic equation, $A(t)=1+t A(t)^{2}$.

Next, let

$$
B(t)=\sum_{n=0}^{\infty} \frac{q^{n^{2}-n}(-t)^{n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}
$$

Let's find a q-difference equation for $B(t)$. It is, upon subtracting term by term,

$$
\begin{equation*}
B(t)-B(t q)=-t B\left(t q^{2}\right) \tag{4}
\end{equation*}
$$

So

$$
\frac{B(t q)}{B(t)}=1+t \frac{B\left(t q^{2}\right)}{B(t q)} \frac{B(t q)}{B(t)}
$$

which says that $B(q t) / B(t)$ satisfies (3), so

$$
A(t)=B(t q) / B(t)
$$

is the first equation in Problem 8d.
If $F(t)$ is the continued fraction, then we have $F(t)=1 /(1-t F(q t))$ which is $F(t)=1+t F(t) F(q t)$, again (3).

Note: It is possible to independently show that the continued fraction converges as a formal power series in t and is equal to $A(t)$. Consider the more general finite continued fraction $\left(q^{i-1}=\lambda_{i}\right)$ which terminates at $\lambda_{n}, F_{n}(t, \lambda)$. For example

$$
F_{4}(t, \lambda)=\frac{1}{1-\frac{t \lambda_{1}}{1-\frac{t \lambda_{2}}{1-\frac{t \lambda_{3}}{1-t \lambda_{4}}}}}
$$

We have

$$
F_{4}(t, \lambda)=\frac{1}{1-t \lambda_{1} F_{3}\left(t, \lambda^{+}\right)}=\sum_{k=0}^{\infty}\left(t \lambda_{1} F_{3}\left(t, \lambda^{+}\right)\right)^{k}
$$

where λ^{+}means all of the λ indices have been increased by 1 .
Let's weight the down edge of a finite Dyck path from y-coordinate i to y coordinate $i-1$ by λ_{i}. Then $F_{1}(t, \lambda)=\sum_{k=0}^{\infty}\left(t \lambda_{1}\right)^{k}$ is the generating function for all Dyck paths which stay at or below the line $y=1$, (only zigzags), and $F_{n}(t, \lambda)=\frac{1}{1-t \lambda_{1} F_{n-1}\left(t, \lambda^{+}\right)}$is the generating function for all Dyck paths which stay at or below the line $y=n$. So for a fixed power of t say t^{s}, once n is past s, you get all such Dyck paths, and the coefficient of t^{s} in $F_{n}(t)$ stablizes as n increases. The infinite continued fraction

$$
\lim _{n \rightarrow \infty} F_{n}(t, \lambda)
$$

is the generating function for all Dyck paths with no restrictions on their heights.
By drawing a picture of a Dyck path one may see that the choice $\lambda_{i}=q^{i-1}$ gives the polynomials $\tilde{R}_{n}(q)$ as the coefficient of t^{n} in $F(t, \lambda)=A(t)$.

