
Homework #2 Mathematics 8669 Selected solutions

1 (10). Verify the following identities using hypergeometric series.
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Then put C = 1 and take the limit as A→ n.

2. Expand (1 − x)A in terms of powers of x/(1 − x)2 by Lagrange inversion.
Then evaluate

2F1

(
a, a+ 1/2

2a

∣∣∣∣ −4x

(1− x)2

)
, 2F1

(
a, a+ 1/2

2a+ 1

∣∣∣∣ −4x

(1− x)2

)
.

How is this related to the Catalan number generating function
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Solution: Let y = x/(1− x)2, and

(1− x)A =

∞∑
n=0

any
n.

So
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Thus

(1) (1− x)A = 2F1
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)
.

which answers the second question if A = 2a.
Taking the derivative of (1) gives

−A(1−x)A−1 = −4
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which for A = 2a− 2 is the first requested function

(1− x)2a = (1 + x) 2F1
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The Catalan generating function is

C(t) = 2F1

(
1/2, 1

2

∣∣∣∣ t)
which is A = 1 in (1). So (1) for general A tells you how to explicitly expand
powers of the Catalan generating function.

3. Let a1, a2, a3 be non-negative integers. Prove that the constant term of the
Laurent polynomial∏

1≤i 6=j≤3

(1− xi/xj)ai is

(
a1 + a2 + a3
a1, a2, a3

)
.

Idea for Blitz-Proof: Let Fa1,a2,a3
(x1, x2, x3) be the Laurent polynomial on

the LHS. Suppose that we show that the entire polynomial F satisfies the Pascal
recurrence, not just the constant term

(2) Fa1,a2,a3
= Fa1−1,a2,a3

+ Fa1,a2−1,a3
+ Fa1,a2,a3−1.

Then we are done, because we need only check the a1 = 0 case, which is the
binomial theorem.

But (2) is equivalent to

(1− x2/x3)(1− x2/x1)(1− x3/x1)(1− x3/x2)

+(1− x1/x2)(1− x1/x3)(1− x3/x1)(1− x3/x1)

+(1− x2/x3)(1− x2/x1)(1− x1/x3)(1− x1/x2)

=(1− x1/x2)(1− x1/x3)(1− x2/x3)(1− x2/x1)(1− x3/x1)(1− x3/x2)

which is true!

4. Let A and B be relatively prime positive integers. What is the coefficient of
zAB in the power series for

(1− zA+B)A+B

(1− zA)A(1− zB)B
?
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Do you need to use GCD(A,B) = 1?

Solution: The coefficient of zAB is
(
A+B
B

)
, and we do not need to assume that

GCD(A,B) = 1. In fact more is true, the coefficient of zAB in

(1− λµzA+B)A+B

(1− λzA)A(1− µzB)B

is (
A+B − 1

B

)
λB +

(
A+B − 1

A

)
µA.

Proof if GCD(A,B)=1: Expanding in power series we have∑
k,j,m≥0

(
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k

)
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(
A+ j − 1

j

)
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(
B +m− 1

m

)
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So the coefficent of zAB has terms which satisfy k(A + B) + jA + mB = AB,
or (k + j)A = B(A−m− k). Since GCD(A,B) = 1 the solutions are (k + j =
B,m+ k = 0, so k = m = 0, j = B) and (k + j = 0,m+ k = A, so k = j = 0,
m = A). These are the two terms which are given.

Sketch of Proof if GCD(A,B)=d: We need, after dividing by d, and putting

A′ = A/d, B′ = B/d GCD(A′, B′) = 1,

(k + j)A′ = B′(dA′ − k −m).

The solutions are

k + j = wB′, dA′ − k −m = wA′

for some 0 ≤ w ≤ d. Note that in this case the coefficient of zAB includes
λwB′

µ(d−w)A′
. We will show that for a fixed w, which is not 0 or d, this term

is zero. So the only contributions are the two terms from w = 0 (k = j = 0 as
before) and w = d (k = m = 0 as before).

Fix w 6= 0, d, and put j = wB′ − k and m = (d− w)A′ − k. We must show
that∑

k≥0

(
A+B

k

)
(−1)k

(
A+ wB′ − k − 1

wB′ − k

)(
B + (w − d)A′ − k − 1
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)
= 0.

This is nearly Saalschutz’s theorem, but not quite

3F2

(
−A−B, −wB′, −(d− w)A′

1−A− wB′, 1−B − (d− w)A′

∣∣∣∣ 1) = 0.

You may write it as a sum of two terms, each evaluable by Saalschutz’s theorem
if you use the Pascal relation in the sum(

A+B

k

)
=

(
A+B − 1

k

)
+

(
A+B − 1

k − 1

)
.
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These two terms cancel, and the sum is 0.

5. Find a product formula for the sum

n∑
k=−n

[
2n
n− k

]
q

q(
k
2)xk.

What happens if n→∞?

Solution: The identity, which is equivalent to the q-binomial theorem, is

n∑
k=−n

[
2n
n− k

]
q

q(
k
2)xk = (−q/x; q)n(−x; q)n

Using for a fixed k,

lim
n→∞

[
2n
n− k

]
q

=
1

(q; q)∞

the limiting identity is

1

(q; q)∞

∞∑
k=−∞

q(
k
2)xk = (−q/x; q)∞(−x; q)∞.

6. Using weighted integer partitions, give a bijective proof of

(b+ aq)

∞∑
n=0

(−aq; q)n
(bq; q)n

qn =
(−aq; q)∞
(bq; q)∞

− (1− b).

Solution: Let’s slightly rewrite this as

∞∑
n=0

(−aq; q)n
(bq; q)n

(
bqn + aqn+1

)
=

(−aq; q)∞
(bq; q)∞

− (1− b).

Consider the infinite products on the RHS. The numerator product is the
generating function for partitions λ with distinct parts, each part weighted by
a. The denominator product is the generating function for all partitions µ,
each part weighted by b. So the infinte product is the generating function of all
ordered pairs (λ, µ). You can think of the parts of λ as red and those of µ to be
blue.

What happens if we shuffle these parts together to get a single partition
θ = λ ∪ µ?

CASE 1: θ has a unique largest part n + 1 which is red. This part has weight
aqn+1, the other red parts from 1 to n may or may not appear (−aq; q)n, and
the blue parts must be from 1 to n, 1

(bq;q)n
. This is the second term in the sum.
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CASE 2: The largest part is not uniquely red. This means that there is a blue
largest part, say of size n, and weight bqn. The remaining blue parts are from
1 to n, so again 1

(bq;q)n
. The red parts are distinct from 1 to n, again (−aq; q)n.

CASE 2 fails only when n = 0 and θ = ∅, so bq0 = b replaces 1 for the
weight of the empty partition, this is the term (b− 1) on the RHS.

5


