Homework \#3 Mathematics 8669 Selected solutions

1. Find the character table of the symmetric group S_{4}.

Solution: There are 5 conjugacy classes so 5 irreducible characters. We know 2 1-dimensional characters- the trivial and the sign. If we let S_{4} act on $\{1,2,3,4\}$, the characters values, call them $\chi(g)$ are given counting fixed points. So

$$
\chi(i d)=4, \quad \chi((12))=2, \quad \chi((123))=1, \quad \chi((1234))=0, \quad \chi((12)(34))=0 .
$$

Subtracting the identity from this, $\phi=\chi-i d$ we might test if this new class function is irreducible:
$\left.<\phi, \phi>=\frac{1}{24}(3 * 3+6 * 1 * 1+8 * 0 * 0+6 *(-1) *(-1)+3 *(-1) *(-1))\right)=1$
so it is. We have found three irreducible characters, and $\operatorname{sign} * \phi$ is also irreducible,

	$i d$	(12)	(123)	(1234)	$(12)(34)$
$i d$	1	1	1	1	1
sign	1	-1	1	-1	1
ϕ	3	1	0	-1	-1
$\operatorname{sign} * \phi$	3	-1	0	1	-1

Since the sum of the squares of the dimensions of the irreducibles is 24 , the last irreducible must have dimension 2 . Then we use column orthogonality to fill in the last row.

	$i d$	(12)	(123)	(1234)	$(12)(34)$
$i d$	1	1	1	1	1
sign	1	-1	1	-1	1
ϕ	3	1	0	-1	-1
$\operatorname{sign} * \phi$	3	-1	0	1	-1
ψ	2	0	-1	0	2

2. What is the orthogonality relation for the characters of the cyclic group of order n ?

Solution: All of the irredecible characters are 1-dimensional. Let ρ and θ be distinct $n^{\text {th }}$ roots of 1 . Let g be a generator of G. Then two irreducible characters are

$$
\chi^{\rho}\left(g^{k}\right)=\rho^{k}, \quad \chi^{\theta}\left(g^{k}\right)=\theta^{k}
$$

and the orthogonality relation is

$$
0=\frac{1}{n} \sum_{k=0}^{n-1} \rho^{k} \overline{\theta^{k}}=\frac{1}{n} \sum_{k=0}^{n-1} \rho^{k} \theta^{-k}=\frac{1}{n} \frac{1-(\rho / \theta)^{n}}{1-\rho / \theta}=0
$$

3. Show that for any character χ and $g \in G,|\chi(g)| \leq \chi(e)=\operatorname{dimension}(\chi)$.

Solution: $\chi(g)$ is the sum of $\operatorname{dim}(V)$ eigenvalues of g. Each eigenvalue λ satisfies $\lambda^{|G|}=1$, so is a root of unity, $|\lambda| \leq 1$.
4. Let G be a finite group of order p^{2}, p a prime. By considering the possible dimensions of the irreducible representations of G, prove that G is abelian.
Solution: The dimensions of the irreducible representations of G must be either $1, p$ or p^{2}, since they divide $|G|$. They also must be strictly less than p, because the sum of the squares equals p^{2}, and $i d$ is there. So they are all 1 , and G is abelian.
5. Prove that the sum of any row of the character table of G is a non-negative integer (see problem 9 for notation),

$$
\sum_{i=1}^{s} \chi^{L}\left(K_{i}\right) \text { is a non-negative integer. }
$$

Solution: Let's use the hint and find the value of the permutation character $\chi^{C}(g)$ obtained by letting G act on itself by conjugation. Let $g \in K_{i}$. Since G acts transitively on $K_{i}, \chi^{C}(g)$ is the size of the stablizer of g, which is

$$
\chi^{C}(g)=\frac{|G|}{\left|K_{i}\right|} .
$$

Thus

$$
\begin{aligned}
<\chi^{L}, \chi^{C}>_{G} & =\frac{1}{|G|} \sum_{i=1}^{s}\left|K_{i}\right| \chi^{L}\left(K_{i}\right) \chi^{C}\left(K_{i}\right) \\
& =\frac{1}{|G|} \sum_{i=1}^{s}\left|K_{i}\right| \chi^{L}\left(K_{i}\right) \frac{|G|}{\left|K_{i}\right|} \\
& =\sum_{i=1}^{s} \chi^{L}\left(K_{i}\right) .
\end{aligned}
$$

So the row sum is the multiplicity of the ireeducible L is the permutation representation C, and is a non-negative integer.
6. Solution: First let's get the conjugacy classes. Since $s r^{j} s=r^{-j}$, this class is $K_{j}=\left\{r^{j}, r^{-j}\right\}, 1 \leq j<n / 2$, and the classes $K_{0}=\{e\}, K_{n / 2}=\left\{r^{n / 2}\right\}$ for n even. Because $r\left(s r^{k}\right) r^{-1}=s r^{k-2}$, if n is odd a single class is $J=\left\{s r^{k}: 1 \leq k \leq\right.$ $n\}$ and for n even there are 2 classes, each of size $n / 2, J_{1}=\left\{s r^{2 k}: 1 \leq k \leq n / 2\right\}$, $J_{2}=\left\{s r^{2 k+1}: 0 \leq k<n / 2\right\}$. Here is a summary of the classes and sizes

$$
\begin{array}{ccccccccc}
& K_{0} & K_{1} & \cdots & K_{[n / 2]-1} & K_{n / 2} & J & J_{1} & J_{2} \\
\text { neven } & 1 & 2 & \cdots & 2 & 1 & 0 & n / 2 & n / 2 \\
\text { nodd } & 1 & 2 & \cdots & 2 & 0 & n & 0 & 0
\end{array}
$$

There are $n / 2+3$ classes for n even and $(n-1) / 2+2$ for n odd.

Next let's construct the 1-dimensional reps of D_{n}. Two adjacent reflections $s_{1}=s$ and $s_{2}=s r$ generate the entire group, with $\left(s_{1} s_{2}\right)^{n}=1$. So we can try to send s_{1}, s_{2} independently to ± 1, this is four choices, but to preserve $\left(s_{1} s_{2}\right)^{n}=1$ if n is odd only 2 of these four choices work.

It remains to construct the 2-dimensional reps from induced reps on $H=<$ $r>$ which has order n. Take H-coset reps of $\{e, s\}$. Let ρ be an $n^{t h}$ root of unity, and let $\chi\left(r^{k}\right)=\rho^{k}$ be the corresponding 1-dimensional character of H. The matrix for g is

$$
\left[\begin{array}{cc}
\hat{\chi}(g) & \hat{\chi}(g s) \\
\hat{\chi}(s g) & \hat{\chi}(s g s)
\end{array}\right]
$$

where

$$
\hat{\chi}(g)=\left\{\begin{array}{l}
\chi(g) \text { if } g \in H \\
0 \text { otherwise }
\end{array}\right.
$$

From this we see that

$$
\chi^{\rho}(g)=\left\{\begin{array}{l}
\rho^{k}+\rho^{-k} \text { if } g=r^{k} \in H \\
0 \text { otherwise }
\end{array}\right.
$$

Let's check for irreducibility

$$
<\chi^{\rho}, \chi^{\rho}>_{G}=\frac{1}{2 n} \sum_{k=0}^{n-1}\left(\rho^{k}+\rho^{-k}\right)^{2}=\left\{\begin{array}{l}
1 \text { if } \rho^{2} \neq 1 \\
2 \text { if } \rho^{2}=1
\end{array}\right.
$$

Note that the characters values are different for different $k<n / 2$.
So for n odd we take $k=1, \cdots,(n-1) / 2$ and for n even we take $k=$ $1, \cdots,(n-2) / 2$.
7. (a) Recall that the exponential formula says that

$$
\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \sum_{g \in S_{n}} x_{1}^{\# 1-\text { cycles of } g}=\exp \left(t x_{1}+\sum_{k=2}^{\infty} t^{k} / k\right)
$$

Show that this formula implies that the average number of fixed points of $g \in S_{n}$ is 1 for $n \geq 1$, and that the average of (number of fixed points) ${ }^{2}$ is 2 for $n \geq 2$.

Solution: Let $F P_{n}(g)=$ \#fixed points of $g \in S_{n}$. For the average number of fixed point we take $\left.\frac{d}{d x_{1}}\right|_{x_{1}=1}$,

$$
\sum_{n=0}^{\infty} E\left(F P_{n}\right) t^{n}=t \exp \left(t+\sum_{k=2}^{\infty} t^{k} / k\right)=\operatorname{texp}(-\log (1-t))=t /(1-t)
$$

so $E\left(F P_{n}\right)=1$ for $n \geq 1$. Taking the next derivative we get

$$
\sum_{n=0}^{\infty} E\left(F P_{n}\left(F P_{n}-1\right)\right) t^{n}=t^{2} \exp \left(t+\sum_{k=2}^{\infty} t^{k} / k\right)=\operatorname{texp}(-\log (1-t))=t^{2} /(1-t)
$$

so

$$
\sum_{n=0}^{\infty} E\left(F P_{n}^{2}\right) t^{n}=t(1+t) /(1-t)
$$

and $E\left(F P_{n}^{2}\right)=2$ for $n \geq 2$.
(b) Use part (a) to show that $\theta=\chi^{V}-\chi^{\text {id }}$ satisfies $\langle\theta, \theta\rangle=1$, and conclude that θ is irreducible.
Solution: We have

$$
<\theta, \theta>_{S_{n}}=<\chi^{V}, \chi^{V}>-2<\chi^{V}, i d>+<i d, i d>=2-2+1=1 \text { if } n \geq 2 .
$$

9. (a) and (b) are routine.
(c) Solution: The coefficient of $x \in G$ in $e_{K} e_{L}$ is, using the matrix elements,

$$
\begin{aligned}
(\operatorname{dim} K)(\operatorname{dim} L) & \frac{1}{|G|^{2}} \sum_{g \in G} \chi^{L}\left(g^{-1}\right) \chi^{K}\left(x^{-1} g\right) \\
& =\frac{(\operatorname{dimK} K)(\operatorname{dimL} L}{|G|} \frac{1}{|G|} \sum_{g \in G} \sum_{i, s} T_{i s}^{K}\left(x^{-1}\right) T_{s i}^{K}(g) \chi^{L}\left(g^{-1}\right) \\
& =0 \text { if } K \neq L .
\end{aligned}
$$

If $K=L$, again expanding as matrix elements, the coefficient of $x \in G$ is

$$
=\frac{(\operatorname{dimK})(\operatorname{dimL} L}{|G|} \frac{1}{|G|} \sum_{g \in G} \sum_{i, s, p} T_{i s}^{L}\left(x^{-1}\right) T_{s i}^{L}(g) T_{p p}^{L}\left(g^{-1}\right) .
$$

Since matrix elements are orthogonal, the g-sum is $\delta_{p s} \delta_{p i}$ so we get

$$
\frac{(\operatorname{dimL} L)}{|G|} \sum_{x \in G} x \sum_{p} T_{p p}\left(x^{-1}\right)=\frac{(\operatorname{dimL} L}{|G|} \sum_{x \in G} \chi^{L}\left(x^{-1}\right) x=e_{L} .
$$

(d) Solution: We have, if $z=e_{K}$,

$$
\phi_{L}\left(e_{K}\right)=\frac{\operatorname{dim} K}{\operatorname{dimL}} \frac{1}{|G|} \sum_{g \in G} \chi^{K}\left(g^{-1}\right) \chi^{L}(g)=\delta_{K L}
$$

by group orthogonality of characters.

