Homework #4 Mathematics 8669 Selected Solutions

2. Let the symmetric group S7 act on all 3-element subsets of {1,2,3,4,5,6,7}
with permutation character x. What is char(x) in terms of Schur functions?
What are the irreducibles in this permutation representation? Is the represen-
tation multiplicity free?

Solution: char(x) = hahs = hgsy = s7+ Sg1 + Ss52 + sa3 by the Pieri rule. We
may also do this by Young’s rule. It is multiplicity free.

3. Set up an appropriate collection of weighted lattice paths whose non-intersecting
version proves the dual Jacobi-Trudi identity for skew shapes

S)\//#/ = det<€)\i7uj7i+j>1§i,j,§m7 where \ = )\1 R )\m.

Solution: You must be careful while setting up the lattice paths. For example,
if you want each elementary function to have variables x1,x2, -,z N, and you
weight each path by the sequential number of the edges which are horizontal,
then each path should have N steps and a weight which is a squarefree mono-
mial. Moreover the “tail-swapping” should preserve the weights. For example
if A\ =531, p =@ and N = 25, we can consider paths from (1, 3),(2,2),(3,1)
to (2,26),(5,23),(8,20). Then each possible path has length 25, the diagonal
entry will be es(x1,--- ,xn)es(x1, - ,xn)er(z1, -, 2n), and swapping tails
will preserve the weights.

5. The unsigned Stirling numbers of the first (c(n,k)) and second (S(n,k))
kinds may be defined by

S(n,k)x(x—1)---(r —k+1),
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Recall that these numbers count permutations of [n] with k cycles and set par-
titions of [n] with k parts.

(a) Show that ¢(n, k) = ep—x(1,2,--+ ,n—1).

(b) Show that

o0 . tk
ZS(n,k)t = (1—t)(1 —2t)--- (1 — kt)

n=0

and conclude that
S(n, k) = hp_r(1,2,--- , k).

(c) Recall that the Stirling numbers satisfy the orthogonality relations

S S, K)ek, O(~1)F 1 = 3 eln, k)S(k, ) (~1)F* = 6,5
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Can you find and prove an orthogonality relation involving symmetric functions
which generalizes the above orthogonality?

Solution: (a) Upon dividing both sides of the generating function by z, this is
the defintion of e,,_(1,2,--- ,n —1).

(b) Let H(k,t) be the right side, and label the coefficient of t™ by SS(n, k). We

have (1 — kt)H (k,t) = tH(k — 1,t), so equating coefficeints of ™ gives
SS(n,k) —kSS(n—1,k)=5S(n—1,k—1),

which is the Stirling number recurrence. After checking the initial values,

SS(n, k)= S(n,k).

(¢) Consider for £ < n — 1, the polynomial of degree n — 1 — £.

(1 — txl)(l — t.TQ) s (1 — tIn_l)
(1 —txq)(1 —tag) -+ (1 —txy)

The coefficient of "¢ in this polynomial is 0, so

n—~
D enkelwr, o) (1) by, @) =0, £<n.
k=0
which is
Zen—k(xla o @) (D) (@1, ) =0, £<n
k=t

and the choice of x; = i gives

zn:c(n,k')(—l)"*kS(k,f) =0, {<n.
k=¢

6. Prove that if A dominates p, and both are partitions of n, then the Kostka
number K , > 0.

Solution: Let’s prove the following: if A dominates y and K, , > 0, and p
covers fi1 in dominance, then K ,, > 0. Then we will be done by noting that
K),» =1 and taking a saturated chain from A to p,

1=K, KA7M1>O7 KA>M2>O’ cee KA’M>0'

So what are the covers in dominance? Just sliding a single corner box down to
its first available cell. This may be accomplished by either subtracting one from
a part pg and adding 1 to pug+1 when pg1 < pgx — 2, or by sliding the cell past
some parts which are equal to ur — 1, and then inserting it into the lext row. In
the second case as we are sliding the cell, we are doing an adjacent transposition



of the content vector, so we know from the Bender-Knuth swiching rule that
positivity is preserved.

Thus we need only check the case of sliding a box from a row to the next row,
namely reduce the number of k£ by 1 and increase the number of k£ + 1’s by 1.
So it suffices to find a k that may be switched to a k + 1. Pair the k’s and the
k+1’s as in Bender-Knuth, there are at least 2 unpaired k’s. Find the rightmost
such k in a row, and change it to a k + 1.

7. Consider the “hook” shape A = (n — j,17).

(a) Show that if A dominates u, then g must have at least j 4+ 1 parts.

(b) Show that
K, = ((#parts of 1) — 1)
o i
(c) Show that
Z S(n—j4,19) q — 1 i = Zq(#parts of pu)— 1

pkEn

Solution: (¢) Many people made this problem too hard. It follows from (b),(a)
and the binomal theorem.

ZS(" ]717 q_13_22<#partsof,u) )(q—l)jmu

j=0 7=0 pkn
#parts of u) — .
DB gy
pEn 7=0 ‘7
_ Z q(#parts of p)—1
pukEn

8. (a) Show that the total number of SSYT with content p = rr is the coefficient
of 125 N gy )(1 5 which is 7 4 1.
i T2 1T

(b) Show that the total number of SSYT with content p = rrr is

16(47“ + 1872 + 281 + 15+ (—1)").

Solution: (a) The total number of SSYT of any fixed content 1 is the coefficient

of m, in
ZS)\—H 1—2x;) 1H 1—951;16]

1<j

which for p = rr gives the coefficient of z7z} in

1
(I—z1)(1—z2)(1—z122)
(b) The next case is the coeflicient of zjz5z5 in

1
(1—21)(1 —22)(1 —23)(1 — z122)(1 — z123) (1 — w23)




This is the sum of all coefficients of x¢x4x§ for 0 < a,b,c < r in

1 B
(]. — le'g)(l — $1$3) ]. — fEQZL’g Z Z Z 1'11'2 -’L‘ll’3) (-’152-’133

A>0B>0C>0

)<

We must count the number of solutions (A4, B, C) to
0<A+B<r, 0<A+C<r, 0<B+C<r.

For any such (A, B), the number of allowed C' is min(r — A,r — B) + 1. So we

must find
T

A—r

Z Z (min(r — A,r — B)+1).
A=0 B=0

We can split this sum into two parts A < B and A > B to eliminate the mini-
mum function. Then each part can be summed doing basic calculus (indefinite
sums of first powers, second powers) to obtain the answer as a third degree
polynomial. The parity condition on r appears because the even case has a
middle term. (In fact the computer can do this for you. If you cannot do this,
you should see me.)

13. Suppose that we choose z; complex such that

- n __ 1
1O = 2, " = ==

namely h,, = p(n), the number of integer partitions of n.
(a) What is e,,?
(b) What is the determinant det(p(i — j + 1))1<s j<n”’

Solution: (a) Euler’s Pentagonal Number Theorem says that

Mz

1/H(t) — (1 _ t)(l _ t (tk'(Bk—l)/Q + tk(3k+1)/2>

k=1

Since E(t) = 1/H(—t), we see that e, = 0 unless n = k(3k £ 1)/2, in which
case e, = (71)k(,1)k(3ki1)/2'

(b) This is the Jacobi-Trudi determinant of s;n = e,, so the answer is 0,+1
depending upon n as in part (a).

16. (Summing along a column of the character table of S,,.) Let g € S,, have
cycle type u. Let
=> xMw)

AFn

u):<ZsA,p#>

all A

(a) Show that



(b) Show, by taking logarithms, that
Pn Py &
2 =1l e“’(ﬂzn) 11 ”(zn>
all A n odd n even

(c) If w=1m2m2... show that

() = y1(ma)ya(mz) - - -,

where y(m) is the coefficient of t™ in exp(t+kt?/2) for k odd, and the coefficient
of t™ in exp(kt?/2) for k even.

(d) Show that ¢(u) = 0 if p contains an even part with an odd multiplicity.
(e) Check the conclusion of (d) for = 4 or 211 using the Sy character table.

p
Sx = ZX/\(V)?:
v

<Y =< YW p =Y W)

all A all A v AEn

Solution: (a) Let’s use

using the power sum orthogonality < p,,p, >= 0,2,

(b)
ZS)\ :H(l - xi)71 H(l - xi;z:j)71
A i

i<j

n n

(o]
B (1,2, ) | Po(T102, 0102, 0124, - -+, ToT3, - +)
=exp +

n=1

However since
1 2
pu(@izs) = 5 (P (@1, 22, ,)° — pon (@1, @2, ,))

this is

ZS)\Z H exp(lzb—kgi;) H emp(ﬁ).

all A n odd n even

(c) Use parts (a) and (b). We must find
Pn , Ph p;
d(p) =< ngd exp (n + 2n> nl;[}w exp (271) yPu >

Using the orthogonality of the power sums, we can evaluate this part by part.

2
For each odd part n" of i we need the coefficient of pI* in exp (% + 12’7’;), while

2
the even parts need exp (’2’—;) The z,, factor rescales these generating functions.



(d) If u has an even part n wth odd multiplicity, since exp (%) has no odd

powers of p,, we have ¢(u) = 0.

(e) Let’s find the column of the character table for cycle type p = 4. By
Murnaghan-Nakayama, only hooks give a non-zero answer, and they are

X4(4) — 17 X31(4) — _17 X211(4) — 1, X1111(4) -1

so the sum is zero as predicted.
Let’s find the column of the character table for cycle type ;o = 211. By Murnaghan-
Nakayama

H211) =1, x*(211) =1, x*2(211) =0, x*"(211) = -1, ' (211)=-1

so the sum is zero as predicted.



