
Homework #4 Mathematics 8669 Selected Solutions

2. Let the symmetric group S7 act on all 3-element subsets of {1, 2, 3, 4, 5, 6, 7}
with permutation character χ. What is char(χ) in terms of Schur functions?
What are the irreducibles in this permutation representation? Is the represen-
tation multiplicity free?

Solution: char(χ) = h4h3 = h3s4 = s7 + s61 + s52 + s43 by the Pieri rule. We
may also do this by Young’s rule. It is multiplicity free.

3. Set up an appropriate collection of weighted lattice paths whose non-intersecting
version proves the dual Jacobi-Trudi identity for skew shapes

sλ′/µ′ = det(eλi−µj−i+j)1≤i,j,≤m, where λ = λ1 · · ·λm.

Solution: You must be careful while setting up the lattice paths. For example,
if you want each elementary function to have variables x1, x2, · · · , xN , and you
weight each path by the sequential number of the edges which are horizontal,
then each path should have N steps and a weight which is a squarefree mono-
mial. Moreover the “tail-swapping” should preserve the weights. For example
if λ = 531, µ = ∅ and N = 25, we can consider paths from (1, 3), (2, 2), (3, 1)
to (2, 26), (5, 23), (8, 20). Then each possible path has length 25, the diagonal
entry will be e5(x1, · · · , xN )e3(x1, · · · , xN )e1(x1, · · · , xN ), and swapping tails
will preserve the weights.

5. The unsigned Stirling numbers of the first (c(n, k)) and second (S(n, k))
kinds may be defined by

xn =

n∑
k=1

S(n, k)x(x− 1) · · · (x− k + 1),

x(x+ 1) · · · (x+ n− 1) =

n∑
k=1

c(n, k)xk.

Recall that these numbers count permutations of [n] with k cycles and set par-
titions of [n] with k parts.

(a) Show that c(n, k) = en−k(1, 2, · · · , n− 1).

(b) Show that

∞∑
n=0

S(n, k)tn =
tk

(1− t)(1− 2t) · · · (1− kt)

and conclude that
S(n, k) = hn−k(1, 2, · · · , k).

(c) Recall that the Stirling numbers satisfy the orthogonality relations

n∑
k=`

S(n, k)c(k, `)(−1)k−` =

n∑
k=`

c(n, k)S(k, `)(−1)k−` = δn,`.
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Can you find and prove an orthogonality relation involving symmetric functions
which generalizes the above orthogonality?

Solution: (a) Upon dividing both sides of the generating function by x, this is
the defintion of en−k(1, 2, · · · , n− 1).

(b) Let H(k, t) be the right side, and label the coefficient of tn by SS(n, k). We
have (1− kt)H(k, t) = tH(k − 1, t), so equating coefficeints of xn gives

SS(n, k)− kSS(n− 1, k) = SS(n− 1, k − 1),

which is the Stirling number recurrence. After checking the initial values,
SS(n, k) = S(n, k).

(c) Consider for ` ≤ n− 1, the polynomial of degree n− 1− `.

(1− tx1)(1− tx2) · · · (1− txn−1)

(1− tx1)(1− tx2) · · · (1− tx`)

The coefficient of tn−` in this polynomial is 0, so

n−∑̀
k=0

en−k−`(x1, · · · , xn−1)(−1)n−k−`hk(x1, · · · , x`) = 0, ` < n.

which is

n∑
k=`

en−k(x1, · · · , xn−1)(−1)n−khk−`(x1, · · · , x`) = 0, ` < n

and the choice of xi = i gives

n∑
k=`

c(n, k)(−1)n−kS(k, `) = 0, ` < n.

6. Prove that if λ dominates µ, and both are partitions of n, then the Kostka
number Kλ,µ > 0.

Solution: Let’s prove the following: if λ dominates µ and Kλ,µ > 0, and µ
covers µ1 in dominance, then Kλ,µ1

> 0. Then we will be done by noting that
Kλ,λ = 1 and taking a saturated chain from λ to µ,

1 = Kλ,λ, Kλ,µ1
> 0, Kλ,µ2

> 0, · · · , Kλ,µ > 0.

So what are the covers in dominance? Just sliding a single corner box down to
its first available cell. This may be accomplished by either subtracting one from
a part µk and adding 1 to µk+1 when µk+1 ≤ µk − 2, or by sliding the cell past
some parts which are equal to µk−1, and then inserting it into the lext row. In
the second case as we are sliding the cell, we are doing an adjacent transposition
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of the content vector, so we know from the Bender-Knuth swiching rule that
positivity is preserved.

Thus we need only check the case of sliding a box from a row to the next row,
namely reduce the number of k by 1 and increase the number of k + 1’s by 1.
So it suffices to find a k that may be switched to a k + 1. Pair the k’s and the
k+1’s as in Bender-Knuth, there are at least 2 unpaired k’s. Find the rightmost
such k in a row, and change it to a k + 1.

7. Consider the “hook” shape λ = (n− j, 1j).
(a) Show that if λ dominates µ, then µ must have at least j + 1 parts.

(b) Show that

Kλ,µ =

(
(#parts of µ)− 1

j

)
.

(c) Show that

n−1∑
j=0

s(n−j,1j)(q − 1)j =
∑
µ`n

q(#parts of µ)−1mµ.

Solution: (c) Many people made this problem too hard. It follows from (b),(a)
and the binomal theorem.

n−1∑
j=0

s(n−j,1j)(q − 1)j =

n−1∑
j=0

∑
µ`n

(
(#parts of µ)− 1

j

)
(q − 1)jmµ

=
∑
µ`n

mµ

n−1∑
j=0

(
(#parts of µ)− 1

j

)
(q − 1)j

=
∑
µ`n

q(#parts of µ)−1mµ.

8. (a) Show that the total number of SSYT with content µ = rr is the coefficient
of xr1x

r
2 in 1

(1−x1)(1−x2)(1−x1x2)
which is r + 1.

(b) Show that the total number of SSYT with content µ = rrr is

1

16
(4r3 + 18r2 + 28r + 15 + (−1)r).

Solution: (a) The total number of SSYT of any fixed content µ is the coefficient
of mµ in ∑

λ

sλ =
∏
i

(1− xi)−1
∏
i<j

(1− xixj)−1.

which for µ = rr gives the coefficient of xr1x
r
2 in 1

(1−x1)(1−x2)(1−x1x2)
.

(b) The next case is the coefficient of xr1x
r
2x
r
3 in

1

(1− x1)(1− x2)(1− x3)(1− x1x2)(1− x1x3)(1− x2x3)
.
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This is the sum of all coefficients of xa1x
b
2x
c
3 for 0 ≤ a, b, c ≤ r in

1

(1− x1x2)(1− x1x3)(1− x2x3)
=
∑
A≥0

∑
B≥0

∑
C≥0

(x1x2)A(x1x3)B(x2x3)C .

We must count the number of solutions (A,B,C) to

0 ≤ A+B ≤ r, 0 ≤ A+ C ≤ r, 0 ≤ B + C ≤ r.

For any such (A,B), the number of allowed C is min(r − A, r −B) + 1. So we
must find

r∑
A=0

A−r∑
B=0

(min(r −A, r −B) + 1) .

We can split this sum into two parts A ≤ B and A > B to eliminate the mini-
mum function. Then each part can be summed doing basic calculus (indefinite
sums of first powers, second powers) to obtain the answer as a third degree
polynomial. The parity condition on r appears because the even case has a
middle term. (In fact the computer can do this for you. If you cannot do this,
you should see me.)

13. Suppose that we choose xi complex such that

H(t) =

∞∑
n=0

hnt
n =

1

(1− t)(1− t2)(1− t3) · · ·

namely hn = p(n), the number of integer partitions of n.

(a) What is en?

(b) What is the determinant det(p(i− j + 1))1≤i,j≤n?

Solution: (a) Euler’s Pentagonal Number Theorem says that

1/H(t) = (1− t)(1− t2) · · · = 1 +

∞∑
k=1

(−1)k
(
tk(3k−1)/2 + tk(3k+1)/2

)
Since E(t) = 1/H(−t), we see that en = 0 unless n = k(3k ± 1)/2, in which
case en = (−1)k(−1)k(3k±1)/2.

(b) This is the Jacobi-Trudi determinant of s1n = en, so the answer is 0,±1
depending upon n as in part (a).

16. (Summing along a column of the character table of Sn.) Let g ∈ Sn have
cycle type µ. Let

φ(µ) =
∑
λ`n

χλ(µ).

(a) Show that

φ(µ) = <
∑
all λ

sλ , pµ > .
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(b) Show, by taking logarithms, that

∑
all λ

sλ =
∏
n odd

exp

(
pn
n

+
p2n
2n

) ∏
n even

exp

(
p2n
2n

)
.

(c) If µ = 1m12m2 · · · , show that

φ(µ) = y1(m1)y2(m2) · · · ,

where yk(m) is the coefficient of tm in exp(t+kt2/2) for k odd, and the coefficient
of tm in exp(kt2/2) for k even.

(d) Show that φ(µ) = 0 if µ contains an even part with an odd multiplicity.

(e) Check the conclusion of (d) for µ = 4 or 211 using the S4 character table.

Solution: (a) Let’s use

sλ =
∑
ν

χλ(ν)
pν
zν

<
∑
all λ

sλ , pµ >=<
∑
all λ

∑
ν

χλ(ν)
pν
zν
, pµ >=

∑
λ`n

χλ(µ)

using the power sum orthogonality < pµ, pν >= δµ,νzµ.

(b)∑
λ

sλ =
∏
i

(1− xi)−1
∏
i<j

(1− xixj)−1

=exp

( ∞∑
n=1

pn(x1, x2, · · · , )
n

+
pn(x1x2, x1x2, x1x4, · · · , x2x3, · · · )

n

)

However since

pn(xixj) =
1

2

(
pn(x1, x2, · · · , )2 − p2n(x1, x2, · · · , )

)
this is ∑

all λ

sλ =
∏
n odd

exp

(
pn
n

+
p2n
2n

) ∏
n even

exp

(
p2n
2n

)
.

(c) Use parts (a) and (b). We must find

φ(µ) =<
∏
n odd

exp

(
pn
n

+
p2n
2n

) ∏
n even

exp

(
p2n
2n

)
, pµ > .

Using the orthogonality of the power sums, we can evaluate this part by part.

For each odd part nm of µ we need the coefficient of pmn in exp
(
pn
n +

p2n
2n

)
, while

the even parts need exp
(
p2n
2n

)
. The zµ factor rescales these generating functions.
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(d) If µ has an even part n wth odd multiplicity, since exp
(
p2n
2n

)
has no odd

powers of pn, we have φ(µ) = 0.

(e) Let’s find the column of the character table for cycle type µ = 4. By
Murnaghan-Nakayama, only hooks give a non-zero answer, and they are

χ4(4) = 1, χ31(4) = −1, χ211(4) = 1, χ1111(4) = −1

so the sum is zero as predicted.

Let’s find the column of the character table for cycle type µ = 211. By Murnaghan-
Nakayama

χ4(211) = 1, χ31(211) = 1, χ22(211) = 0, χ211(211) = −1, χ1111(211) = −1

so the sum is zero as predicted.
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