More Math 8669 Homework #1 Solutions, Spring 2016

2. Prove that if P is Sperner, and P,,,, is a maximum level, then the bipartite graphs
Pmaz—l U Pmam and Pmaw-i—l U Pmaw
both have complete matchings.

Solution: Suppose, by contradiction, that there is no complete match from P41 — Paz-
Then by Hall’s theorem there exists a subset S C P4x—1 whose relatives R(S) C Ppq. satisfy
|S| > |R(S)|. Then A = S U (Phaz — R(5)) is an antichain of size larger than P,,,,, which is a
contradiction.

3. Characterize all maximum sized antichains in the Boolean algebra By .

Solution: Claim: The maximum sized antichains are precisely the maximum sized level sets, and
no others.

As in lecture, the LYM property for By implies that a maximum sized antichain must lie inside
the maximum levels. So for N even this is unique. Let’s assume N = 2m + 1 is odd, and prove
that a maximum sized antichain A could not be in both levels, A = A; U Ay, & # A1 C By(m),
& # Ay C By(m + 1) is impossible.

Note that the bipartite graph G = By (m) U By (m + 1) is regular of degree m + 1. Let R(A;) C
By (m+1) be the relatives of A;. Because we know that a complete match exists in G, by Hall’s
condition |A;| < |R(A;)|. But since Ay C By(m + 1) — R(A;) and |A;] + |As] = (*™11), we

m

have |A;1| = |R(A1)], so each of the (m + 1)|A;| edges from A; go to R(A;), and each of the
(m + 1)|R(A1)| edges from R(A;) do in fact go to A;. The same reasoning applies to Az and
R(As). So the bipartite graph G is disconnected, which is a contradiction.

7. Here is another way to verify that P = By(g¢) has the matching property. For 0 < k < N let Wy,

k

Let Dy : Wi, = Wiy and Uy : Wy, — Wiy, 0 < k < N, be the natural down and up linear
transformations using the edges of By (q).

be the R vector space whose basis is given by elements at level k of By (q), so dim(Wy) = [N} .
q

(a) What is Dy 41Uy — Ug—1Dy, as a linear transformation on Wy
(b) Show if 2k < n, the map Uy, is 1-1, and find rank(Uy).

Solution: From (a) Dy 1Ux = Ux_1Dy + cil, where ¢, > 0. As a amtrix Uy,_; = DI, so
Ui—_1Dy, is positvie semidefinite, therefore Dy1U}, is positive definite, so invertible, This implies

that ker(Uy) = 0 and Uy, is injective and rank(Uy) = []]ﬂ .
q

(¢) Show that the matrix of Uy has a non-singular []Iﬂ X {]Z] submatrix, and conclude that a
q q

complete matching from Py, to Py exists.
Solution: Any m x n matrix A with rank(A) = m has an m x m non-singular matrix B, by
choosing m linearly independent columns. Here we have

m

det(B) = > sign(m) [ [ Binco),

TESm i=1
and det(B) # 0 implies that B;.(;) # 0 for all i for some 7 € Sy,.

Applying this to part (b), the permutation 7 gives the matching.
1



9. Let P, = NC(n) the poset of non-crossing set partitions under refinement of blocks. Recall

that |P,| = C, = n%rl (™), the n*® Catalan number, and the k' level numbers are the Narayana

numbers Ny, = ﬁ(”;l) (Z)7 0<k<n-1.

(¢) Prove that P, has a symmetric chain decomposition.

Solution:

Let’s do this by induction on n, the first few cases were done in part (b). Since rank(P,) =n—1,
we need saturated chains whose bottom and top ranks add to n — 1.

The main idea is to consider the block containing 1. Suppose the next smallest element in 1’s block
is a k > 3. Then the non-crossing partitions which contain a block (1k...) split into two posets:
those non-crossing set partitions of {2,3,...k — 1} and those for {k+ 1,k +2,...n, 1k}, where 1k
is melded megapoint, Py_o X P,_g+1. The smallest element here has two blocks (rank = 1), while
the largest has n — 1 blocks (rank = n — 2), so these inductive chains are centered correctly.

Finally we deal with the two remaining cases: 1 in a block by itself or 12 in a block. These are
each just P,_1, so their union is P, 1 X Ci, where C is a chain of length. P, _; has symmetric
chains by induction, and so the product does too.

10. The inequality that we used for log-concavity
en(zr, - an)? > ep1(mr, - wn)epa (e, o), 0<k<n—1, ;>0

is a weaker version of the Newton inequalities

2
k(T @) | o (ek_l(:m,m ,%)) <6k+1(x1,~~ ,xn)> 0<k<n—1 2 >0
( () ) UG )

(b) Prove the Newton inequalities by induction on n, fixing k. First verify the case n = k+ 1 by
showing a certain quadratic form is positive semidefinite. Then do the inductive case by assuming
0<zi <x9 <+ <y and letting

n—1
Pty =]Jt+z), P@)=n]]t+2})
i i=1

where z; < 2} < x;41. Use
(n)ek@:,l’xé’ T "’L‘;’Lfl) = (n - k)ek(xlv T ,xn)a 0<k<n-1

in the induction.

Solution: First let’s take care of the case n = k+ 1. Dividing both sides of the desired inequality
by (x175 - x,)?, and putting y; = 1/z;, we need

2(k+1
(Y1 +yo+ 4 yrg1)? > % Z Yilj,

1<i<j<k+1
or
k+1 9
2
Q)= wi-7 2. =0
i=1 1<i<j<k+1

Let A be the (k+ 1) x (k + 1) real symmetric matrix whose diagonal entries are 1 and whose
off-diagonal entries are —1/k. Then we need Q(y) = y" Ay > 0 for y > 0. But we can check
this by noting that the matrix A is positive semidefinite: the eigenvalues of A are 1 + 1/k with
multiplicity k£ and 0 with multiplicity 1.

Next we prove the Newton inequalities by induction on n, the base case of n = k+ 1 has just been
proven. Since the zeros of P(t) are distinct, Rolle’s theorem implies that the zeros of P’(t) must



interlace with the zeros of P(t), so we can write

n—
Ht—Fl‘ $i<$;<$i+1, 1<i<n-—1.
=1
Finding the coefficient of t”_l_l~c i

(n)ex(z), 25, 2l 1) =(n—k)eg(z1, - ,xn) 0<k<n-—1

n P/(t) gives

So by induction

. (ek_mxa,m ,x;_n) <ek+1<xa,-~ ,x;_n)
= n—1 n—1
(i21) (i)

_ (ek_l(x1,-~- ,%)) <6k+1(x1,~-- ,xn)> .
(1) (k1)

12. In this problem you will prove the unimodality of the g-binomial coefficient by finding an
explicit formula, called the KOH identity.

First some notation. For an integer partition ), let |A| be the sum of the parts of A. Let A\’ be the
conjugate of A, and let m;(A) be the multiplicity of the part ¢ in A\. For example, if A = 544422111,
then |A| = 24, X = 96441, and m4(A) = 3. Finally, let

n(A\) =Y (i—Dhi=) (AQJ)

i J

It is

(KOH) [NJF]“L: Z 2n(A)H[N+2 z—QZJ 1 ]—I—ml()\)}

K A A=k i=1 mi(A) q

(a) Write out (KOH) for & = 3 and explain why it recursively proves that []\?ﬂ is a unimodal

q
polynomial in q.

Solution: Since k = 3 there are 3 partitions in the sum on the right side A = 3,21,111. The
(KOH) identity becomes

" {N;:&LZ [3N1+1L+q2 [N11L [QNI 1L+q6 [Ngl]q.

Now suppose we try to prove that {]\:ﬂ is unimodal by induction on M. If we can show that
q

. . . N S
each of the three terms in is unimodal and centered at the same center as [ ;— 3} , which is
q

3N/2, we are done. Since the second term is a product of symmetric unimodal polynomials, it is
certainly symmetric and unimodal, as are the first and last (by induction) terms.

(1) FNlJF 1} : smallest term ¢°, largest term ¢*", 0+ 3N = 3N works.
q

(2) ¢ [Nl_ 1] {2]\[1_ 1} . smallest term ¢2, largest term ¢2+(N=2)+(2N=2) 91 3N _9 = 3N
q q

works.



(3) ¢° [N?)_ 1] : smallest term ¢%, largest term ¢%t3(N—%) 6 4+ 3N — 6 = 3N works.
q
(b) Repeat (a) for a general k by showing that the individual terms in (KOH) are “centered”
correctly.

Solution: The induction goes through as before, we must check the centering condition for each
term. This is

2n(A\) + [ 2n(N) + imi()\)((N +2)i — Zi)\;) =kN.
Since

> mi(N)i=k
i=1
we must show that
(2) MmN + k=Y mi(\)D N,
i=1 j=1
Here is an example how this is proven, the general case is the same.

Let A = 322111, so k = 10, n(A) = 18. Let compute n(A) + n(A) + k pictorially:

0 0 0 5 2 0 1 1 1
1 1 4 1 11
2 2 3 0 1 1
3 2 1
4 1 1
5 0 1
Adding these we find

6 3 1

6 3

6 3

6

6

6

which is the right side of .



