More Math 8669 Homework \#1 Solutions, Spring 2016

2. Prove that if P is Sperner, and $P_{\max }$ is a maximum level, then the bipartite graphs

$$
P_{\max -1} \cup P_{\max } \quad \text { and } P_{\max +1} \cup P_{\max }
$$

both have complete matchings.
Solution: Suppose, by contradiction, that there is no complete match from $P_{\max -1} \rightarrow P_{\max }$. Then by Hall's theorem there exists a subset $S \subset P_{\max -1}$ whose relatives $R(S) \subset P_{\max }$ satisfy $|S|>|R(S)|$. Then $A=S \cup\left(P_{\max }-R(S)\right)$ is an antichain of size larger than $P_{\max }$, which is a contradiction.
3. Characterize all maximum sized antichains in the Boolean algebra B_{N}.

Solution: Claim: The maximum sized antichains are precisely the maximum sized level sets, and no others.
As in lecture, the LYM property for B_{N} implies that a maximum sized antichain must lie inside the maximum levels. So for N even this is unique. Let's assume $N=2 m+1$ is odd, and prove that a maximum sized antichain A could not be in both levels, $A=A_{1} \cup A_{2}, \varnothing \neq A_{1} \subset B_{N}(m)$, $\varnothing \neq A_{2} \subset B_{N}(m+1)$ is impossible.
Note that the bipartite graph $G=B_{N}(m) \cup B_{N}(m+1)$ is regular of degree $m+1$. Let $R\left(A_{1}\right) \subset$ $B_{N}(m+1)$ be the relatives of A_{1}. Because we know that a complete match exists in G, by Hall's condition $\left|A_{1}\right| \leq\left|R\left(A_{1}\right)\right|$. But since $A_{2} \subset B_{N}(m+1)-R\left(A_{1}\right)$ and $\left|A_{1}\right|+\left|A_{2}\right|=\binom{2 m+1}{m}$, we have $\left|A_{1}\right|=\left|R\left(A_{1}\right)\right|$, so each of the $(m+1)\left|A_{1}\right|$ edges from A_{1} go to $R\left(A_{1}\right)$, and each of the $(m+1)\left|R\left(A_{1}\right)\right|$ edges from $R\left(A_{1}\right)$ do in fact go to A_{1}. The same reasoning applies to A_{2} and $R\left(A_{2}\right)$. So the bipartite graph G is disconnected, which is a contradiction.
7. Here is another way to verify that $P=B_{N}(q)$ has the matching property. For $0 \leq k \leq N$ let W_{k} be the \mathbb{R} vector space whose basis is given by elements at level k of $B_{N}(q)$, so $\operatorname{dim}\left(W_{k}\right)=\left[\begin{array}{c}N \\ k\end{array}\right]_{q}$. Let $D_{k}: W_{k} \rightarrow W_{k-1}$ and $U_{k}: W_{k} \rightarrow W_{k+1}, 0 \leq k \leq N$, be the natural down and up linear transformations using the edges of $B_{N}(q)$.
(a) What is $D_{k+1} U_{k}-U_{k-1} D_{k}$ as a linear transformation on W_{k}
(b) Show if $2 k<n$, the map U_{k} is 1-1, and find $\operatorname{rank}\left(U_{k}\right)$.

Solution: From (a) $D_{k+1} U_{k}=U_{k-1} D_{k}+c_{k} I$, where $c_{k}>0$. As a amtrix $U_{k-1}=D_{k}^{T}$, so $U_{k-1} D_{k}$ is positvie semidefinite, therefore $D_{k+1} U_{k}$ is positive definite, so invertible, This implies that $\operatorname{ker}\left(U_{k}\right)=\overrightarrow{0}$ and U_{k} is injective and $\operatorname{rank}\left(U_{k}\right)=\left[\begin{array}{c}N \\ k\end{array}\right]_{q}$.
(c) Show that the matrix of U_{k} has a non-singular $\left[\begin{array}{c}N \\ k\end{array}\right]_{q} \times\left[\begin{array}{c}N \\ k\end{array}\right]_{q}$ submatrix, and conclude that a complete matching from P_{k} to P_{k+1} exists.

Solution: Any $m \times n$ matrix A with $\operatorname{rank}(A)=m$ has an $m \times m$ non-singular matrix B, by choosing m linearly independent columns. Here we have

$$
\operatorname{det}(B)=\sum_{\pi \in S_{m}} \operatorname{sign}(\pi) \prod_{i=1}^{m} B_{i \pi(i)}
$$

and $\operatorname{det}(B) \neq 0$ implies that $B_{i \pi(i)} \neq 0$ for all i for some $\pi \in S_{m}$.
Applying this to part (b), the permutation π gives the matching.
9. Let $P_{n}=N C(n)$ the poset of non-crossing set partitions under refinement of blocks. Recall that $\left|P_{n}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the $n^{t h}$ Catalan number, and the $k^{t h}$ level numbers are the Narayana numbers $N_{n, k}=\frac{1}{k+1}\binom{n-1}{k}\binom{n}{k}, 0 \leq k \leq n-1$.
(c) Prove that P_{n} has a symmetric chain decomposition.

Solution:

Let's do this by induction on n, the first few cases were done in part (b). Since $\operatorname{rank}\left(P_{n}\right)=n-1$, we need saturated chains whose bottom and top ranks add to $n-1$.
The main idea is to consider the block containing 1. Suppose the next smallest element in 1's block is a $k \geq 3$. Then the non-crossing partitions which contain a block ($1 k \ldots$...) split into two posets: those non-crossing set partitions of $\{2,3, \ldots k-1\}$ and those for $\{k+1, k+2, \ldots n, 1 k\}$, where $1 k$ is melded megapoint, $P_{k-2} \times P_{n-k+1}$. The smallest element here has two blocks (rank=1), while the largest has $n-1$ blocks (rank $=n-2$), so these inductive chains are centered correctly.
Finally we deal with the two remaining cases: 1 in a block by itself or 12 in a block. These are each just P_{n-1}, so their union is $P_{n-1} \times C_{1}$, where C_{1} is a chain of length. P_{n-1} has symmetric chains by induction, and so the product does too.
10. The inequality that we used for log-concavity

$$
e_{k}\left(x_{1}, \cdots, x_{n}\right)^{2} \geq e_{k-1}\left(x_{1}, \cdots, x_{n}\right) e_{k+1}\left(x_{1}, \cdots, x_{n}\right), \quad 0 \leq k \leq n-1, \quad x_{i}>0
$$

is a weaker version of the Newton inequalities

$$
\left(\frac{e_{k}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k}}\right)^{2} \geq\left(\frac{e_{k-1}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k-1}}\right)\left(\frac{e_{k+1}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k+1}}\right), \quad 0 \leq k \leq n-1, \quad x_{i}>0
$$

(b) Prove the Newton inequalities by induction on n, fixing k. First verify the case $n=k+1$ by showing a certain quadratic form is positive semidefinite. Then do the inductive case by assuming $0<x_{1}<x_{2}<\cdots<x_{n}$ and letting

$$
P(t)=\prod_{i=1}^{n}\left(t+x_{i}\right), \quad P^{\prime}(t)=n \prod_{i=1}^{n-1}\left(t+x_{i}^{\prime}\right)
$$

where $x_{i}<x_{i}^{\prime}<x_{i+1}$. Use

$$
(n) e_{k}\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n-1}^{\prime}\right)=(n-k) e_{k}\left(x_{1}, \cdots, x_{n}\right), \quad 0 \leq k \leq n-1
$$

in the induction.
Solution: First let's take care of the case $n=k+1$. Dividing both sides of the desired inequality by $\left(x_{1} x_{2} \cdots x_{n}\right)^{2}$, and putting $y_{i}=1 / x_{i}$, we need

$$
\left(y_{1}+y_{2}+\cdots+y_{k+1}\right)^{2} \geq \frac{2(k+1)}{k} \sum_{1 \leq i<j \leq k+1} y_{i} y_{j}
$$

or

$$
Q(y)=\sum_{i=1}^{k+1} y_{i}^{2}-\frac{2}{k} \sum_{1 \leq i<j \leq k+1} y_{i} y_{j} \geq 0
$$

Let A be the $(k+1) \times(k+1)$ real symmetric matrix whose diagonal entries are 1 and whose off-diagonal entries are $-1 / k$. Then we need $Q(y)=y^{T} A y \geq 0$ for $y>0$. But we can check this by noting that the matrix A is positive semidefinite: the eigenvalues of A are $1+1 / k$ with multiplicity k and 0 with multiplicity 1.

Next we prove the Newton inequalities by induction on n, the base case of $n=k+1$ has just been proven. Since the zeros of $P(t)$ are distinct, Rolle's theorem implies that the zeros of $P^{\prime}(t)$ must
interlace with the zeros of $P(t)$, so we can write

$$
P^{\prime}(t)=n \prod_{i=1}^{n-1}\left(t+x_{i}^{\prime}\right), \quad x_{i}<x_{i}^{\prime}<x_{i+1}, \quad 1 \leq i \leq n-1
$$

Finding the coefficient of t^{n-1-k} in $P^{\prime}(t)$ gives

$$
(n) e_{k}\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n-1}^{\prime}\right)=(n-k) e_{k}\left(x_{1}, \cdots, x_{n}\right) \quad 0 \leq k \leq n-1
$$

So by induction

$$
\begin{aligned}
\left(\frac{e_{k}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k}}\right)^{2} & =\left(\frac{e_{k}\left(x_{1}^{\prime}, \cdots, x_{n-1}^{\prime}\right)}{\binom{n-1}{k}}\right)^{2} \\
& \geq\left(\frac{e_{k-1}\left(x_{1}^{\prime}, \cdots, x_{n-1}^{\prime}\right)}{\binom{n-1}{k-1}}\right)\left(\frac{e_{k+1}\left(x_{1}^{\prime}, \cdots, x_{n-1}^{\prime}\right)}{\binom{n-1}{k+1}}\right) \\
& =\left(\frac{e_{k-1}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k-1}}\right)\left(\frac{e_{k+1}\left(x_{1}, \cdots, x_{n}\right)}{\binom{n}{k+1}}\right)
\end{aligned}
$$

12. In this problem you will prove the unimodality of the q-binomial coefficient by finding an explicit formula, called the KOH identity.
First some notation. For an integer partition λ, let $|\lambda|$ be the sum of the parts of λ. Let λ^{\prime} be the conjugate of λ, and let $m_{i}(\lambda)$ be the multiplicity of the part i in λ. For example, if $\lambda=544422111$, then $|\lambda|=24, \lambda^{\prime}=96441$, and $m_{4}(\lambda)=3$. Finally, let

$$
n(\lambda)=\sum_{i}(i-1) \lambda_{i}=\sum_{j}\binom{\lambda_{j}^{\prime}}{2} .
$$

It is

$$
\left[\begin{array}{c}
N+k \tag{KOH}\\
k
\end{array}\right]_{q}=\sum_{\lambda,|\lambda|=k} q^{2 n(\lambda)} \prod_{i=1}^{\infty}\left[\begin{array}{c}
(N+2) i-2 \sum_{j=1}^{i} \lambda_{j}^{\prime}+m_{i}(\lambda) \\
m_{i}(\lambda)
\end{array}\right]_{q}
$$

(a) Write out (KOH) for $k=3$ and explain why it recursively proves that $\left[\begin{array}{c}M \\ 3\end{array}\right]_{q}$ is a unimodal polynomial in q.

Solution: Since $k=3$ there are 3 partitions in the sum on the right side $\lambda=3,21,111$. The (KOH) identity becomes

$$
\left[\begin{array}{c}
N+3 \tag{1}\\
3
\end{array}\right]_{q}=\left[\begin{array}{c}
3 N+1 \\
1
\end{array}\right]_{q}+q^{2}\left[\begin{array}{c}
N-1 \\
1
\end{array}\right]_{q}\left[\begin{array}{c}
2 N-1 \\
1
\end{array}\right]_{q}+q^{6}\left[\begin{array}{c}
N-1 \\
3
\end{array}\right]_{q}
$$

Now suppose we try to prove that $\left[\begin{array}{c}M \\ 3\end{array}\right]_{q}$ is unimodal by induction on M. If we can show that each of the three terms in 11 is unimodal and centered at the same center as $\left[\begin{array}{c}N+3 \\ 3\end{array}\right]_{q}$, which is $3 N / 2$, we are done. Since the second term is a product of symmetric unimodal polynomials, it is certainly symmetric and unimodal, as are the first and last (by induction) terms.
(1) $\left[\begin{array}{c}3 N+1 \\ 1\end{array}\right]_{q}:$ smallest term q^{0}, largest term $q^{3 N}, 0+3 N=3 N$ works.
(2) $q^{2}\left[\begin{array}{c}N-1 \\ 1\end{array}\right]_{q}\left[\begin{array}{c}2 N-1 \\ 1\end{array}\right]_{q}:$ smallest term q^{2}, largest term $q^{2+(N-2)+(2 N-2)}, 2+3 N-2=3 N$ works.
(3) $q^{6}\left[\begin{array}{c}N-1 \\ 3\end{array}\right]_{q}:$ smallest term q^{6}, largest term $q^{6+3(N-4)}, 6+3 N-6=3 N$ works.
(b) Repeat (a) for a general k by showing that the individual terms in (KOH) are "centered" correctly.

Solution: The induction goes through as before, we must check the centering condition for each term. This is

$$
2 n(\lambda)+\left(2 n(\lambda)+\sum_{i=1}^{\infty} m_{i}(\lambda)\left((N+2) i-2 \sum_{j=1}^{i} \lambda_{j}^{\prime}\right)\right)=k N
$$

Since

$$
\sum_{i=1}^{\infty} m_{i}(\lambda) i=k
$$

we must show that

$$
\begin{equation*}
2 n(\lambda)+k=\sum_{i=1}^{\infty} m_{i}(\lambda) \sum_{j=1}^{i} \lambda_{j}^{\prime} . \tag{2}
\end{equation*}
$$

Here is an example how this is proven, the general case is the same.
Let $\lambda=322111$, so $k=10, n(\lambda)=18$. Let compute $n(\lambda)+n(\lambda)+k$ pictorially:

0	0	0	5	2	0	1	1	1
1	1		4	1		1	1	
2	2		3	0		1	1	
3			2			1		
4			1			1		
5			0			1		

Adding these we find

6	3	1
6	3	
6	3	
6		
6		
6		

which is the right side of (2).

