More Math 8669 Homework #1 Solutions, Spring 2016

2. Prove that if P is Sperner, and P_{max} is a maximum level, then the bipartite graphs

$$P_{max-1} \cup P_{max}$$
 and $P_{max+1} \cup P_{max}$

both have complete matchings.

Solution: Suppose, by contradiction, that there is no complete match from $P_{max-1} \rightarrow P_{max}$. Then by Hall's theorem there exists a subset $S \subset P_{max-1}$ whose relatives $R(S) \subset P_{max}$ satisfy |S| > |R(S)|. Then $A = S \cup (P_{max} - R(S))$ is an antichain of size larger than P_{max} , which is a contradiction.

3. Characterize all maximum sized antichains in the Boolean algebra B_N .

Solution: Claim: The maximum sized antichains are precisely the maximum sized level sets, and no others.

As in lecture, the LYM property for B_N implies that a maximum sized antichain must lie inside the maximum levels. So for N even this is unique. Let's assume N = 2m + 1 is odd, and prove that a maximum sized antichain A could not be in both levels, $A = A_1 \cup A_2$, $\emptyset \neq A_1 \subset B_N(m)$, $\emptyset \neq A_2 \subset B_N(m+1)$ is impossible.

Note that the bipartite graph $G = B_N(m) \cup B_N(m+1)$ is regular of degree m+1. Let $R(A_1) \subset B_N(m+1)$ be the relatives of A_1 . Because we know that a complete match exists in G, by Hall's condition $|A_1| \leq |R(A_1)|$. But since $A_2 \subset B_N(m+1) - R(A_1)$ and $|A_1| + |A_2| = \binom{2m+1}{m}$, we have $|A_1| = |R(A_1)|$, so each of the $(m+1)|A_1|$ edges from A_1 go to $R(A_1)$, and each of the $(m+1)|R(A_1)|$ edges from $R(A_1)$ do in fact go to A_1 . The same reasoning applies to A_2 and $R(A_2)$. So the bipartite graph G is disconnected, which is a contradiction.

7. Here is another way to verify that $P = B_N(q)$ has the matching property. For $0 \le k \le N$ let W_k be the \mathbb{R} vector space whose basis is given by elements at level k of $B_N(q)$, so $dim(W_k) = \begin{bmatrix} N \\ k \end{bmatrix}_q$. Let $D_k : W_k \to W_{k-1}$ and $U_k : W_k \to W_{k+1}$, $0 \le k \le N$, be the natural down and up linear

transformations using the edges of $B_N(q)$.

(a) What is $D_{k+1}U_k - U_{k-1}D_k$ as a linear transformation on W_k

(b) Show if 2k < n, the map U_k is 1-1, and find $rank(U_k)$.

Solution: From (a) $D_{k+1}U_k = U_{k-1}D_k + c_kI$, where $c_k > 0$. As a amtrix $U_{k-1} = D_k^T$, so $U_{k-1}D_k$ is positive semidefinite, therefore $D_{k+1}U_k$ is positive definite, so invertible. This implies that $ker(U_k) = \vec{0}$ and U_k is injective and $rank(U_k) = \begin{bmatrix} N \\ k \end{bmatrix}_q$.

(c) Show that the matrix of U_k has a non-singular $\begin{bmatrix} N \\ k \end{bmatrix}_q \times \begin{bmatrix} N \\ k \end{bmatrix}_q$ submatrix, and conclude that a complete matching from P_k to P_{k+1} exists.

Solution: Any $m \times n$ matrix A with rank(A) = m has an $m \times m$ non-singular matrix B, by choosing m linearly independent columns. Here we have

$$det(B) = \sum_{\pi \in S_m} sign(\pi) \prod_{i=1}^m B_{i\pi(i)},$$

and $det(B) \neq 0$ implies that $B_{i\pi(i)} \neq 0$ for all *i* for some $\pi \in S_m$.

Applying this to part (b), the permutation π gives the matching.

9. Let $P_n = NC(n)$ the poset of non-crossing set partitions under refinement of blocks. Recall that $|P_n| = C_n = \frac{1}{n+1} \binom{2n}{n}$, the n^{th} Catalan number, and the k^{th} level numbers are the Narayana numbers $N_{n,k} = \frac{1}{k+1} \binom{n-1}{k} \binom{n}{k}, 0 \le k \le n-1$.

(c) Prove that P_n has a symmetric chain decomposition.

Solution:

Let's do this by induction on n, the first few cases were done in part (b). Since $rank(P_n) = n - 1$, we need saturated chains whose bottom and top ranks add to n - 1.

The main idea is to consider the block containing 1. Suppose the next smallest element in 1's block is a $k \ge 3$. Then the non-crossing partitions which contain a block (1k...) split into two posets: those non-crossing set partitions of $\{2, 3, ..., k-1\}$ and those for $\{k+1, k+2, ..., n, 1k\}$, where 1kis melded megapoint, $P_{k-2} \times P_{n-k+1}$. The smallest element here has two blocks (rank = 1), while the largest has n-1 blocks (rank = n-2), so these inductive chains are centered correctly.

Finally we deal with the two remaining cases: 1 in a block by itself or 12 in a block. These are each just P_{n-1} , so their union is $P_{n-1} \times C_1$, where C_1 is a chain of length. P_{n-1} has symmetric chains by induction, and so the product does too.

10. The inequality that we used for log-concavity

$$e_k(x_1, \cdots, x_n)^2 \ge e_{k-1}(x_1, \cdots, x_n)e_{k+1}(x_1, \cdots, x_n), \quad 0 \le k \le n-1, \quad x_i > 0$$

is a weaker version of the Newton inequalities

$$\left(\frac{e_k(x_1,\cdots,x_n)}{\binom{n}{k}}\right)^2 \ge \left(\frac{e_{k-1}(x_1,\cdots,x_n)}{\binom{n}{k-1}}\right) \left(\frac{e_{k+1}(x_1,\cdots,x_n)}{\binom{n}{k+1}}\right), \quad 0 \le k \le n-1, \quad x_i > 0.$$

(b) Prove the Newton inequalities by induction on n, fixing k. First verify the case n = k + 1 by showing a certain quadratic form is positive semidefinite. Then do the inductive case by assuming $0 < x_1 < x_2 < \cdots < x_n$ and letting

$$P(t) = \prod_{i=1}^{n} (t + x_i), \quad P'(t) = n \prod_{i=1}^{n-1} (t + x'_i)$$

where $x_i < x'_i < x_{i+1}$. Use

$$(n)e_k(x'_1, x'_2, \cdots, x'_{n-1}) = (n-k)e_k(x_1, \cdots, x_n), \quad 0 \le k \le n-1$$

in the induction.

Solution: First let's take care of the case n = k + 1. Dividing both sides of the desired inequality by $(x_1x_2\cdots x_n)^2$, and putting $y_i = 1/x_i$, we need

$$(y_1 + y_2 + \dots + y_{k+1})^2 \ge \frac{2(k+1)}{k} \sum_{1 \le i < j \le k+1} y_i y_j,$$

or

$$Q(y) = \sum_{i=1}^{k+1} y_i^2 - \frac{2}{k} \sum_{1 \le i < j \le k+1} y_i y_j \ge 0.$$

Let A be the $(k + 1) \times (k + 1)$ real symmetric matrix whose diagonal entries are 1 and whose off-diagonal entries are -1/k. Then we need $Q(y) = y^T A y \ge 0$ for y > 0. But we can check this by noting that the matrix A is positive semidefinite: the eigenvalues of A are 1 + 1/k with multiplicity k and 0 with multiplicity 1.

Next we prove the Newton inequalities by induction on n, the base case of n = k + 1 has just been proven. Since the zeros of P(t) are distinct, Rolle's theorem implies that the zeros of P'(t) must interlace with the zeros of P(t), so we can write

$$P'(t) = n \prod_{i=1}^{n-1} (t + x'_i), \quad x_i < x'_i < x_{i+1}, \quad 1 \le i \le n-1.$$

Finding the coefficient of t^{n-1-k} in P'(t) gives

$$(n)e_k(x'_1, x'_2, \cdots, x'_{n-1}) = (n-k)e_k(x_1, \cdots, x_n) \quad 0 \le k \le n-1.$$

So by induction

$$\begin{pmatrix} \frac{e_k(x_1, \cdots, x_n)}{\binom{n}{k}} \end{pmatrix}^2 = \left(\frac{e_k(x'_1, \cdots, x'_{n-1})}{\binom{n-1}{k}} \right)^2 \\ \ge \left(\frac{e_{k-1}(x'_1, \cdots, x'_{n-1})}{\binom{n-1}{k-1}} \right) \left(\frac{e_{k+1}(x'_1, \cdots, x'_{n-1})}{\binom{n-1}{k+1}} \right) \\ = \left(\frac{e_{k-1}(x_1, \cdots, x_n)}{\binom{n}{k-1}} \right) \left(\frac{e_{k+1}(x_1, \cdots, x_n)}{\binom{n}{k+1}} \right).$$

12. In this problem you will prove the unimodality of the q-binomial coefficient by finding an explicit formula, called the *KOH identity*.

First some notation. For an integer partition λ , let $|\lambda|$ be the sum of the parts of λ . Let λ' be the conjugate of λ , and let $m_i(\lambda)$ be the multiplicity of the part i in λ . For example, if $\lambda = 544422111$, then $|\lambda| = 24$, $\lambda' = 96441$, and $m_4(\lambda) = 3$. Finally, let

$$n(\lambda) = \sum_{i} (i-1)\lambda_i = \sum_{j} {\lambda'_j \choose 2}$$

It is

(KOH)
$$\begin{bmatrix} N+k \\ k \end{bmatrix}_q = \sum_{\lambda, |\lambda|=k} q^{2n(\lambda)} \prod_{i=1}^{\infty} \begin{bmatrix} (N+2)i - 2\sum_{j=1}^i \lambda'_j + m_i(\lambda) \\ m_i(\lambda) \end{bmatrix}_q$$

(a) Write out (KOH) for k = 3 and explain why it recursively proves that $\begin{bmatrix} M \\ 3 \end{bmatrix}_q$ is a unimodal polynomial in q.

Solution: Since k = 3 there are 3 partitions in the sum on the right side $\lambda = 3, 21, 111$. The (KOH) identity becomes

(1)
$$\binom{N+3}{3}_{q} = \binom{3N+1}{1}_{q} + q^{2} \binom{N-1}{1}_{q} \binom{2N-1}{1}_{q} + q^{6} \binom{N-1}{3}_{q}.$$

Now suppose we try to prove that $\begin{bmatrix} M \\ 3 \end{bmatrix}_q$ is unimodal by induction on M. If we can show that each of the three terms in (1) is unimodal and centered at the same center as $\begin{bmatrix} N+3 \\ 3 \end{bmatrix}_q$, which is 3N/2, we are done. Since the second term is a product of symmetric unimodal polynomials, it is certainly symmetric and unimodal, as are the first and last (by induction) terms.

(1) $\begin{bmatrix} 3N+1\\1 \end{bmatrix}_{q} : \text{ smallest term } q^{0}, \text{ largest term } q^{3N}, 0+3N = 3N \text{ works.}$ (2) $q^{2} \begin{bmatrix} N-1\\1 \end{bmatrix}_{q} \begin{bmatrix} 2N-1\\1 \end{bmatrix}_{q} : \text{ smallest term } q^{2}, \text{ largest term } q^{2+(N-2)+(2N-2)}, 2+3N-2 = 3N \text{ works.}$ works.

(3)
$$q^6 \begin{bmatrix} N-1\\ 3 \end{bmatrix}_q$$
: smallest term q^6 , largest term $q^{6+3(N-4)}$, $6+3N-6=3N$ works.

(b) Repeat (a) for a general k by showing that the individual terms in (KOH) are "centered" correctly.

Solution: The induction goes through as before, we must check the centering condition for each term. This is

$$2n(\lambda) + \left(2n(\lambda) + \sum_{i=1}^{\infty} m_i(\lambda)((N+2)i - 2\sum_{j=1}^{i} \lambda'_j)\right) = kN.$$

Since

$$\sum_{i=1}^{\infty} m_i(\lambda)i = k$$

we must show that

(2)
$$2n(\lambda) + k = \sum_{i=1}^{\infty} m_i(\lambda) \sum_{j=1}^{i} \lambda'_j.$$

Here is an example how this is proven, the general case is the same.

Let $\lambda = 322111$, so k = 10, $n(\lambda) = 18$. Let compute $n(\lambda) + n(\lambda) + k$ pictorially:

0	0	0	5	2	0	1	1
1	1		4	1		1	1
2	2		3	0		1	1
3			2			1	
4			1			1	
5			0			1	

1

Adding these we find

which is the right side of (2).