
More Math 8669 Homework #1 Solutions, Spring 2016

2. Prove that if P is Sperner, and Pmax is a maximum level, then the bipartite graphs

Pmax−1 ∪ Pmax and Pmax+1 ∪ Pmax

both have complete matchings.

Solution: Suppose, by contradiction, that there is no complete match from Pmax−1 → Pmax.
Then by Hall’s theorem there exists a subset S ⊂ Pmax−1 whose relatives R(S) ⊂ Pmax satisfy
|S| > |R(S)|. Then A = S ∪ (Pmax − R(S)) is an antichain of size larger than Pmax, which is a
contradiction.

3. Characterize all maximum sized antichains in the Boolean algebra BN .

Solution: Claim: The maximum sized antichains are precisely the maximum sized level sets, and
no others.

As in lecture, the LYM property for BN implies that a maximum sized antichain must lie inside
the maximum levels. So for N even this is unique. Let’s assume N = 2m + 1 is odd, and prove
that a maximum sized antichain A could not be in both levels, A = A1 ∪ A2, ∅ 6= A1 ⊂ BN (m),
∅ 6= A2 ⊂ BN (m+ 1) is impossible.

Note that the bipartite graph G = BN (m) ∪BN (m+ 1) is regular of degree m+ 1. Let R(A1) ⊂
BN (m+ 1) be the relatives of A1. Because we know that a complete match exists in G, by Hall’s
condition |A1| ≤ |R(A1)|. But since A2 ⊂ BN (m + 1) − R(A1) and |A1| + |A2| =

(
2m+1
m

)
, we

have |A1| = |R(A1)|, so each of the (m + 1)|A1| edges from A1 go to R(A1), and each of the
(m + 1)|R(A1)| edges from R(A1) do in fact go to A1. The same reasoning applies to A2 and
R(A2). So the bipartite graph G is disconnected, which is a contradiction.

7. Here is another way to verify that P = BN (q) has the matching property. For 0 ≤ k ≤ N let Wk

be the R vector space whose basis is given by elements at level k of BN (q), so dim(Wk) =

[
N
k

]
q

.

Let Dk : Wk → Wk−1 and Uk : Wk → Wk+1, 0 ≤ k ≤ N, be the natural down and up linear
transformations using the edges of BN (q).

(a) What is Dk+1Uk − Uk−1Dk as a linear transformation on Wk

(b) Show if 2k < n, the map Uk is 1-1, and find rank(Uk).

Solution: From (a) Dk+1Uk = Uk−1Dk + ckI, where ck > 0. As a amtrix Uk−1 = DT
k , so

Uk−1Dk is positvie semidefinite, therefore Dk+1Uk is positive definite, so invertible, This implies

that ker(Uk) = ~0 and Uk is injective and rank(Uk) =

[
N
k

]
q

.

(c) Show that the matrix of Uk has a non-singular

[
N
k

]
q

×
[
N
k

]
q

submatrix, and conclude that a

complete matching from Pk to Pk+1 exists.

Solution: Any m × n matrix A with rank(A) = m has an m × m non-singular matrix B, by
choosing m linearly independent columns. Here we have

det(B) =
∑
π∈Sm

sign(π)

m∏
i=1

Biπ(i),

and det(B) 6= 0 implies that Biπ(i) 6= 0 for all i for some π ∈ Sm.

Applying this to part (b), the permutation π gives the matching.
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9. Let Pn = NC(n) the poset of non-crossing set partitions under refinement of blocks. Recall
that |Pn| = Cn = 1

n+1

(
2n
n

)
, the nth Catalan number, and the kth level numbers are the Narayana

numbers Nn,k = 1
k+1

(
n−1
k

)(
n
k

)
, 0 ≤ k ≤ n− 1.

(c) Prove that Pn has a symmetric chain decomposition.

Solution:

Let’s do this by induction on n, the first few cases were done in part (b). Since rank(Pn) = n− 1,
we need saturated chains whose bottom and top ranks add to n− 1.

The main idea is to consider the block containing 1. Suppose the next smallest element in 1’s block
is a k ≥ 3. Then the non-crossing partitions which contain a block (1k...) split into two posets:
those non-crossing set partitions of {2, 3, . . . k− 1} and those for {k+ 1, k+ 2, . . . n, 1k}, where 1k
is melded megapoint, Pk−2×Pn−k+1. The smallest element here has two blocks (rank = 1), while
the largest has n− 1 blocks (rank = n− 2), so these inductive chains are centered correctly.

Finally we deal with the two remaining cases: 1 in a block by itself or 12 in a block. These are
each just Pn−1, so their union is Pn−1 × C1, where C1 is a chain of length. Pn−1 has symmetric
chains by induction, and so the product does too.

10. The inequality that we used for log-concavity

ek(x1, · · · , xn)2 ≥ ek−1(x1, · · · , xn)ek+1(x1, · · · , xn), 0 ≤ k ≤ n− 1, xi > 0

is a weaker version of the Newton inequalities(
ek(x1, · · · , xn)(

n
k

) )2

≥

(
ek−1(x1, · · · , xn)(

n
k−1
) )(

ek+1(x1, · · · , xn)(
n
k+1

) )
, 0 ≤ k ≤ n− 1, xi > 0.

(b) Prove the Newton inequalities by induction on n, fixing k. First verify the case n = k + 1 by
showing a certain quadratic form is positive semidefinite. Then do the inductive case by assuming
0 < x1 < x2 < · · · < xn and letting

P (t) =

n∏
i=1

(t+ xi), P ′(t) = n

n−1∏
i=1

(t+ x′i)

where xi < x′i < xi+1. Use

(n)ek(x′1, x
′
2, · · · , x′n−1) = (n− k)ek(x1, · · · , xn), 0 ≤ k ≤ n− 1

in the induction.

Solution: First let’s take care of the case n = k+ 1. Dividing both sides of the desired inequality
by (x1x2 · · ·xn)2, and putting yi = 1/xi, we need

(y1 + y2 + · · ·+ yk+1)2 ≥ 2(k + 1)

k

∑
1≤i<j≤k+1

yiyj ,

or

Q(y) =

k+1∑
i=1

y2i −
2

k

∑
1≤i<j≤k+1

yiyj ≥ 0.

Let A be the (k + 1) × (k + 1) real symmetric matrix whose diagonal entries are 1 and whose
off-diagonal entries are −1/k. Then we need Q(y) = yTAy ≥ 0 for y > 0. But we can check
this by noting that the matrix A is positive semidefinite: the eigenvalues of A are 1 + 1/k with
multiplicity k and 0 with multiplicity 1.

Next we prove the Newton inequalities by induction on n, the base case of n = k+ 1 has just been
proven. Since the zeros of P (t) are distinct, Rolle’s theorem implies that the zeros of P ′(t) must
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interlace with the zeros of P (t), so we can write

P ′(t) = n

n−1∏
i=1

(t+ x′i), xi < x′i < xi+1, 1 ≤ i ≤ n− 1.

Finding the coefficient of tn−1−k in P ′(t) gives

(n)ek(x′1, x
′
2, · · · , x′n−1) = (n− k)ek(x1, · · · , xn) 0 ≤ k ≤ n− 1.

So by induction(
ek(x1, · · · , xn)(

n
k

) )2

=

(
ek(x′1, · · · , x′n−1)(

n−1
k

) )2

≥

(
ek−1(x′1, · · · , x′n−1)(

n−1
k−1
) )(

ek+1(x′1, · · · , x′n−1)(
n−1
k+1

) )

=

(
ek−1(x1, · · · , xn)(

n
k−1
) )(

ek+1(x1, · · · , xn)(
n
k+1

) )
.

12. In this problem you will prove the unimodality of the q-binomial coefficient by finding an
explicit formula, called the KOH identity.

First some notation. For an integer partition λ, let |λ| be the sum of the parts of λ. Let λ′ be the
conjugate of λ, and let mi(λ) be the multiplicity of the part i in λ. For example, if λ = 544422111,
then |λ| = 24, λ′ = 96441, and m4(λ) = 3. Finally, let

n(λ) =
∑
i

(i− 1)λi =
∑
j

(
λ′j
2

)
.

It is

(KOH)

[
N + k
k

]
q

=
∑

λ,|λ|=k

q2n(λ)
∞∏
i=1

[
(N + 2)i− 2

∑i
j=1 λ

′
j +mi(λ)

mi(λ)

]
q

.

(a) Write out (KOH) for k = 3 and explain why it recursively proves that

[
M
3

]
q

is a unimodal

polynomial in q.

Solution: Since k = 3 there are 3 partitions in the sum on the right side λ = 3, 21, 111. The
(KOH) identity becomes

(1)

[
N + 3

3

]
q

=

[
3N + 1

1

]
q

+ q2
[
N − 1

1

]
q

[
2N − 1

1

]
q

+ q6
[
N − 1

3

]
q

.

Now suppose we try to prove that

[
M
3

]
q

is unimodal by induction on M . If we can show that

each of the three terms in (1) is unimodal and centered at the same center as

[
N + 3

3

]
q

, which is

3N/2, we are done. Since the second term is a product of symmetric unimodal polynomials, it is
certainly symmetric and unimodal, as are the first and last (by induction) terms.

(1)

[
3N + 1

1

]
q

: smallest term q0, largest term q3N , 0 + 3N = 3N works.

(2) q2
[
N − 1

1

]
q

[
2N − 1

1

]
q

: smallest term q2, largest term q2+(N−2)+(2N−2), 2+3N −2 = 3N

works.
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(3) q6
[
N − 1

3

]
q

: smallest term q6, largest term q6+3(N−4), 6 + 3N − 6 = 3N works.

(b) Repeat (a) for a general k by showing that the individual terms in (KOH) are “centered”
correctly.

Solution: The induction goes through as before, we must check the centering condition for each
term. This is

2n(λ) +

2n(λ) +

∞∑
i=1

mi(λ)((N + 2)i− 2

i∑
j=1

λ′j)

 = kN.

Since
∞∑
i=1

mi(λ)i = k

we must show that

(2) 2n(λ) + k =

∞∑
i=1

mi(λ)

i∑
j=1

λ′j .

Here is an example how this is proven, the general case is the same.

Let λ = 322111, so k = 10, n(λ) = 18. Let compute n(λ) + n(λ) + k pictorially:

0 0 0 5 2 0 1 1 1
1 1 4 1 1 1
2 2 3 0 1 1
3 2 1
4 1 1
5 0 1

Adding these we find
6 3 1
6 3
6 3
6
6
6

which is the right side of (2).


