Math 8680 HW \#2 Spring 2004

1. The q-Charlier polynomials may be defined by the 3 -term recurrence

$$
\begin{aligned}
C_{n+1}(x ; a, q) & =\left(x-a q^{n}-[n]_{q}\right) C_{n}(x ; a, q)-a[n]_{q} C_{n-1}(x ; a, q), \\
C_{0}(x ; a, q) & =1, \quad C_{-1}(x ; a, q)=0 .
\end{aligned}
$$

(a) Establish the generating function

$$
\sum_{n=0}^{\infty} C_{n}(x ; a, q) \frac{t^{n}}{(q ; q)_{n}}=\frac{(a t,-t /(1-q) ; q)_{\infty}}{(t(x-1 / 1-q) ; q)_{\infty}}
$$

where

$$
\begin{aligned}
{[n]_{q} } & =\left(1-q^{n}\right) /(1-q) \\
(A, B, C, \cdots ; q)_{\infty} & =(A ; q)_{\infty}(B ; q)_{\infty}(C ; q)_{\infty} \cdots, \\
(a ; q)_{n} & =\prod_{i=0}^{n-1}\left(1-a q^{i}\right)
\end{aligned}
$$

(b) Show that

$$
C_{n}(x ; a, q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-a)^{n-k} q^{\left(n_{2}^{2-k}\right)} \prod_{i=0}^{k-1}\left(x-[i]_{q}\right) .
$$

(c) Recall that the unsigned Stirling numbers of the first kind $|s(n, k)|$ count the number of permutations in S_{n} with exactly k cycles, and

$$
\begin{align*}
x(x-1) \cdots(x-n+1) & =\sum_{k=1}^{n}|s(n, k)| x^{k}(-1)^{n-k} \\
& =\sum_{\sigma \in S_{n}} x^{\# \operatorname{cycles}(\sigma)}(-1)^{n-\# c y c l e s(\sigma)} . \tag{1}
\end{align*}
$$

By defining an appropriate q-version of (1) give a combinatorial interpretation for $C_{n}(x ; a, q)$.
(d) The moments of the Charlier polynomials are $\mu_{n}=\sum_{k=1}^{n} S(n, k) a^{k}$. Show that the moments of the q-Charlier polynomials are

$$
\mu_{n}(q)=\sum_{k=1}^{n} S_{q}(n, k) a^{k},
$$

for an appropriately defined set of q-Stirling number of the second kind which satisfy

$$
S_{q}(n, k)=S_{q}(n-1, k-1)+[k]_{q} S_{q}(n-1, k) .
$$

(Possible Hint: Find an orthogonality relation for q-Stirling numbers of the first kind (which you have in (c)) and the second kind (defined above) which implies orthogonality of $C_{n}(x ; a, q)$ to $C_{0}(x ; a, q)$. Or use part (e).)
(e) Recall that an RG-function is a word w such if $i+1$ occurs in w, then i must occur to the left of $i+1$ in w. For exmaple, 112321341 is an RG-function, but 1122423 is not. Also recall that there is a bijection between RG-functions of length n whose entries are exactly $1,2 \cdots, k$ denoted $R G(n, k)$ and set partitions of $[n]$ with exactly k parts. (For example $134|28| 5 \mid 67 \rightarrow 12113442$.)
Using weighted Motzkin paths, show that

$$
\mu_{n}(q)=\sum_{k=1}^{n} \sum_{w \in R G(n, k)} a^{k} q^{r s(w)}=\sum_{k=1}^{n} S_{q}(n, k) a^{k},
$$

where $r s(w)=$ "right $-\operatorname{smaller}(w)$ ". $r s(w)$ is computed in the following way: for each entry $w_{i} \in w$ find the cardinality of $\left\{j: j<w_{i}, j\right.$ occurs to the right of $\left.w_{i}\right\}$. Then add all values to find $r s(w)$. For example, if $w=1213114221$, then $r s(w)=$ $0+1+0+2+0+0+3+1+1$.
(f) Show that the RG-statistic "lb=left-bigger" is equidstributed with rs.
(g) Write down the continued fraction which is the moment generating function.
(h) By considering the Al-Salam-Cralitz polynomials which appear in Chapter 18 of our text, find an explicit representing measure for $C_{n}(x ; a, q)$ when $a>0,0<q<1$. What happens if $q \rightarrow 1$?
(i) ${ }^{*}$) What q-version of non-crossing set partitions gives a nice q-Catalan as moments?

