Math 8680 Homework Fall 2005

1. Problem \#2, p. 22 in Björner-Brenti.
2. Problem \#4, p. 57 in Björner-Brenti.
3. For $w \in S_{n}$, let $l^{*}(w)$ be the minimum number k of transpositions whose product is $w=t_{1} t_{2} \cdots t_{k}$. So if w itself is any transposition, $l^{*}(w)=1$. Show that

$$
\sum_{w \in S_{n}} t^{l^{*}(w)}=(1+t)(1+2 t) \cdots(1+(n-1) t) .
$$

4. Let $l_{J}(w)$ be the number of left cosets $x W_{J}$ fixed by w under left multiplication.
(a) Prove (see $\S 1.16$ of Humphreys)

$$
\begin{equation*}
\sum_{J \subset S}(-1)^{|J|} l_{J}(w)=\operatorname{det}(w) \tag{ALT}
\end{equation*}
$$

(b) In type A_{n-1}, note that $l_{J}(w)$ is the character of a permutation representation of the symmetric group S_{n}. Moreover, $\operatorname{det}(w)=\operatorname{sign}(w)$ is a character, so (ALT) is a character identity. Which Schur function identity is equivalent to (ALT)?
5. In this problem you will prove that if (W, S) is a finite Coxeter group of rank n whose basic invariants have degrees d_{1}, \cdots, d_{n}, then
(Length GF)

$$
W(q)=\sum_{w \in W} q^{l(w)}=\prod_{i=1}^{n} \frac{1-q^{d_{i}}}{1-q} .
$$

Recall that we have already shown the recurrence relation

$$
\sum_{J \subset S} \frac{(-1)^{|J|}}{W_{J}(q)}=\frac{q^{N}}{W(q)}, \quad N=\# \text { of positive roots. }
$$

So to prove (Length GF), it is enough to show that the same recurrence holds for the right side

$$
\begin{equation*}
\sum_{J \subset S} \frac{(-1)^{|J|}}{\bar{W}_{J}(q)}=\frac{q^{N}}{\bar{W}(q)} \tag{5}
\end{equation*}
$$

where

$$
\bar{W}(q)=\prod_{i=1}^{n} \frac{1-q^{d_{i}}}{1-q} .
$$

To define $\bar{W}_{J}(q)$ in (5), let W_{J} act on the vector space V_{J} of dimension $|J|$ spanned by the roots corresponding to $|J|$, with invariants $d_{1}(J), \cdots, d_{|J|}(J)$. Then

$$
\bar{W}_{J}(q)=\prod_{i=1}^{|J|} \frac{1-q^{d_{i}(J)}}{1-q}
$$

Rewrite (5) as

$$
\begin{equation*}
\sum_{J \subset S} \frac{(-1)^{|J|}}{(1-q)^{n^{W}}} \bar{W}_{J}(q) \quad=\frac{q^{N}}{(1-q)^{n} \bar{W}(q)} \tag{5a}
\end{equation*}
$$

(a) Let $A l t_{k}$ be the vector space of homogeneous alternating polynomials of degree k (that is $w p(x)=\operatorname{sign}(w) p(x), \operatorname{deg}(p)=k)$. Show that the right side of (5a) is $\sum_{k=0}^{\infty} \operatorname{dim}\left(A l t_{k}\right) t^{k}$. (Possible hints: Any alternating polynomial must be divisible by

$$
\prod_{\alpha \in \Phi^{+}} H_{\alpha}(x), \text { what's left? }
$$

or try Molien's theorem with $\lambda=\operatorname{det}(w)$, a 1-dimensional irreducible representation of W.)
(b) Let $\mathbb{C}^{W_{J}}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ be the ring of W_{J}-invariants as W_{J} acts on V, whose $k^{t h}$ homogeneous part is $\mathbb{C}^{W_{J}}\left[x_{1}, x_{2}, \cdots, x_{n}\right](k)$. Show that

$$
1 /\left[(1-q)^{n} \bar{W}_{J}(q)\right]=\sum_{k=0}^{\infty} \operatorname{dim}\left(\mathbb{C}^{W_{J}}\left[x_{1}, x_{2}, \cdots, x_{n}\right](k)\right) q^{k}
$$

(c) Conclude that (5a) holds if, and only of,

$$
\sum_{J \subset S}(-1)^{|J|} \operatorname{dim}\left(\mathbb{C}^{W_{J}}\left[x_{1}, x_{2}, \cdots, x_{n}\right](k)\right)=\operatorname{dim}\left(A l t_{k}\right) .
$$

(d) Use (ALT) to verify the equality in (c). (Possible hint: Check that

$$
D=\frac{1}{|W|} \sum_{w \in W}(\operatorname{det} w) w
$$

is an idempotent, and that the trace of D on polynomials of degree k is $\operatorname{dim}\left(A l t_{k}\right)$. For the left side of (c), you need to use (ALT) and the Frobenius reciprocity theorem for induced characters, after realizing $l_{J}(w)=1_{W_{J}}^{W}(w)$ is an induced character.)

