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A class of positivity problems

Given:

• Polynomial P (univariate or multivariate) with real coefficients,

and P (0) > 0.

• Real number β > 0.

Question: Does P−β have all nonnegative Taylor coefficients?

Example (Friedrichs + Lewy, late 1920s):

P (y1, y2, y3) = (1−y1)(1−y2)+ (1−y1)(1−y3)+ (1−y2)(1−y3)

and β = 1. Szegő (1933) solved a generalization of this problem:

Pn(y1, . . . , yn) =

n
∑

i=1

∏

j 6=i

(1 − yj)

Then P−β
n has nonnegative Taylor coefficients whenever β ≥ 1/2.

Szegő’s proof was surprisingly indirect (exploits identities for Bessel

functions).

Alternate proofs:

• Kaluza (1933): Elementary but intricate (only for n = 3, β = 1).

• Askey and Gasper (1972): Jacobi polynomials instead of Bessel

functions.

• Straub (2008): Elementary and simple (but only for n = 3, 4,

β = 1).
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The Lewy–Askey problem

Consider

P (y1, y2, y3, y4) =

(1 − y1)(1 − y2) + (1 − y1)(1 − y3) + (1 − y1)(1 − y4) +

(1 − y2)(1 − y3) + (1 − y2)(1 − y4) + (1 − y3)(1 − y4)

Question: Does the rational function P (y1, y2, y3, y4)
−1 have

nonnegative Taylor coefficients?

Askey (1975): This problem “has caused me many hours of frustration”:

“So far the most powerful method of treating problems
of this type is to translate them into another problem
involving special functions and then use the results

and methods which have been developed for the last
two hundred years to solve the special function prob-

lem. So far I have been unable to make a reduction in
[Lewy’s problem] and so have no place to start.”

But Dick adds that “it is possible to solve some problems without using

special functions, so others should not give up on [Lewy’s problem].”

Theorem (Scott–Sokal): P (y1, y2, y3, y4)
−β has nonnegative Taylor

coefficients for all β ≥ 1.

Our methods are completely elementary; we don’t use special functions.

This is a corollary of a much more general result . . .
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A combinatorial point of view

Askey and Gasper (1972):

“There should be a combinatorial interpretation of these results.”

“This might suggest new methods.”

Definition: For a connected graph G = (V, E), we define the

spanning-tree generating polynomial

TG(x) =
∑

T∈T (G)

∏

e∈T

xe

where x = {xe}e∈E are indeterminates indexed by the edges of G,

and T (G) denotes the family of edge sets of spanning trees in G.

Observation: The Szegő polynomial

Pn(y1, . . . , yn) =

n
∑

i=1

∏

j 6=i

(1 − yj)

is the spanning-tree polynomial TG(x) for the n-cycle G = Cn,

after the change of variables xi = 1 − yi.

Question: Might Szegő’s result extend to the spanning-tree

polynomials of some wider class of graphs?

Answer: Yes!

In fact, we can generalize the change of variables xi = 1 − yi to

xi = ci−yi for constants ci > 0 that are not necessarily equal. (This

turns out to be important.)
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A result for series-parallel graphs

Definition: A connected graph G = (V, E) is called series-parallel

if it can be obtained from a tree by a finite sequence of series and

parallel extensions of edges.

Theorem: Let G = (V, E) be a connected series-parallel graph,

and let TG(x) be its spanning-tree polynomial. Then, for all β ≥ 1/2

and all choices of strictly positive constants c = {ce}e∈E, the function

TG(c − y)−β has nonnegative Taylor coefficients in the variables y.

Conversely, if G is a connected graph and there exists β ∈
(0, 1)r{1

2} such that TG(c−y)−β has nonnegative Taylor coefficients

(in the variables y) for all c > 0, then G is series-parallel.

Proof of direct half is completely elementary.

Proof of converse half relies on a deep result from harmonic analysis

on Euclidean Jordan algebras (Gindikin 1975). More on this later.
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A rephrasing in terms of complete monotonicity

Definition: A C∞ function f(x1, . . . , xn) defined on (0,∞)n is

called completely monotone if its partial derivatives of all orders

alternate in sign, i.e.

(−1)k
∂kf

∂xi1 · · · ∂xik

≥ 0

for all x ∈ (0,∞)n, all k ≥ 0 and all choices of indices i1, . . . , ik.

Theorem (rephrased): Let G = (V, E) be a connected series-

parallel graph, and let TG(x) be its spanning-tree polynomial. Then

T−β
G is completely monotone on (0,∞)E for all β ≥ 1/2.

Conversely, if G = (V, E) is a connected graph and there exists

β ∈ (0, 1) r {1
2
} such that T−β

G is completely monotone on (0,∞)E,

then G is series-parallel.

Allowing arbitrary constants c > 0 allows the result to be formulated

in terms of complete monotonicity, and leads to a characterization

that is both necessary and sufficient.

Szegő’s result (or rather, its generalization to arbitrary c) extends to

series-parallel graphs and no farther.
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But this is not the end . . .

• We can go far beyond series-parallel graphs if we relax our

demands about the set of β for which T−β
G has nonnegative

coefficients.

• Key here is Kirchhoff’s matrix-tree theorem , which expresses

spanning-tree polynomials as determinants.

A Szegő-like result holds for very general determinantal polynomials:

Theorem: Let A1, . . . , An (n ≥ 1) be m × m real or complex

matrices or hermitian quaternionic matrices, and let us form the

polynomial

P (x1, . . . , xn) = det

(

n
∑

i=1

xiAi

)

in the variables x = (x1, . . . , xn). [In the quaternionic case, det

denotes the Moore determinant.] Assume further that there exists a

linear combination of A1, . . . , An that has rank m (so that P 6≡ 0).

(a) If A1, . . . , An are real symmetric positive-semidefinite matrices,

then P−β is completely monotone on (0,∞)n for β = 0, 1
2, 1,

3
2, . . .

and for all real β ≥ (m − 1)/2.

(b) If A1, . . . , An are complex hermitian positive-semidefinite

matrices, then P−β is completely monotone on (0,∞)n for

β = 0, 1, 2, 3, . . . and for all real β ≥ m − 1.

(c) If A1, . . . , An are quaternionic hermitian positive-semidefinite

matrices, then P−β is completely monotone on (0,∞)n for

β = 0, 2, 4, 6, . . . and for all real β ≥ 2m − 2.

Proof is completely elementary.
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A more general approach

To understand better these curious conditions on β, take a slightly

more general perspective:

Definition: Let C be an open convex cone in a finite-dimensional

real vector space V . Then a C∞ function f : C → R is called com-

pletely monotone if for all k ≥ 0, all choices of vectors u1, . . . ,uk ∈ C,

and all x ∈ C, we have

(−1)kDu1
· · ·Duk

f(x) ≥ 0

where Du denotes a directional derivative.

We then have the following result that “explains” the previous one:

Theorem:

(a) Let V be the real vector space Sym(m, R) of real symmetric

m×m matrices, and let C ⊂ V be the cone Πm(R) of positive-

definite matrices. Then the map A 7→ (det A)−β is completely

monotone on C if and only if β ∈ {0, 1
2
, 1, 3

2
, . . .}∪[(m − 1)/2,∞).

Indeed, if β /∈ {0, 1
2, 1,

3
2, . . .}∪ [(m− 1)/2,∞), then the map

A 7→ (det A)−β is not completely monotone on any nonempty

open convex subcone C ′ ⊆ C.

(b,c) Analogous things for complex hermitian and quaternionic her-

mitian matrices.

Proof of direct half is completely elementary.

Proof of converse half again relies on the deep result from harmonic

analysis on Euclidean Jordan algebras.
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Unified formulation in terms of Euclidean Jordan algebras

Theorem: Let V be a simple Euclidean Jordan algebra of dimen-

sion n and rank r, with n = r + d
2r(r − 1). Let Ω ⊂ V be the

positive cone, and let ∆: V → R be the Jordan determinant. Then

the map x 7→ ∆(x)−β is completely monotone on Ω if and only if

β ∈ {0, d
2, . . . , (r − 1)d

2} or β > (r − 1)d
2 .

Indeed, if β /∈ {0, d
2
, . . . , (r − 1)d

2
} ∪ ((r − 1)d

2
,∞), then the

map x 7→ ∆(x)−β is not completely monotone on any nonempty

open convex subcone Ω′ ⊆ Ω.

Proof of “if” is completely elementary.

Proof of “only if” relies (once again) on a deep result from har-

monic analysis on Euclidean Jordan algebras: the characterization

of parameters for which the Riesz distribution is a positive measure

(Gindikin 1975; but see also Casalis and Letac 1994, Sokal 2011 for

elementary proofs).

Indeed, this theorem is essentially equivalent to the characterization

of parameters for which the Riesz distribution is a positive measure.

The set of values of β described here is known as the Gindikin–

Wallach set and arises in a number of contexts in representation

theory.
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Some applications

Corollary 1: Let G = (V, E) be a connected graph with p vertices,

and let TG(x) be its spanning-tree polynomial. Then T−β
G is com-

pletely monotone on (0,∞)E for β = 0, 1
2
, 1, 3

2
, . . . and for all real

β ≥ (p − 2)/2.

• Proof uses matrix-tree theorem to write TG(x) as determinantal

polynomial involving real symmetric matrices.

• Claimed set of β is not best possible in general. (Cf. series-

parallel graphs.)

• Open problem: Determine exact set of allowable β for each graph G.

Second application: Represent elementary symmetric polynomial

E2,4(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

as determinantal polynomial with complex hermitian matrices

A1 =

(

1 0

0 0

)

A2 =

(

0 0

0 1

)

A3 =

(

1 1

1 1

)

A4 =

(

1 e−iπ/3

eiπ/3 1

)

We then have:

Corollary 2: The function E−β
2,4 is completely monotone on (0,∞)4

if and only if β = 0 or β ≥ 1.

In particular, the Lewy–Askey function
(

∑

1≤i<j≤4

(1 − yi)(1 − yj)

)−β

has nonnegative Taylor coefficients for all β ≥ 1.

[And same holds if 1− yi is replaced by ci − yi for arbitrary ci > 0.]
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General formulation in terms of matroids

• Let M be a matroid with ground set E.

• Let B(M) be its set of bases.

• Then the basis generating polynomial of M is

BM(x) =
∑

S∈B(M)

∏

e∈S

xe

where x = {xe}e∈E are indeterminates.

• Examples:

– Graphic matroid M(G): Then BM(x) = spanning-tree poly-

nomial TG(x).

– Uniform matroid Ur,n: Then BM = elementary symmetric

polynomial Er,n.

Corollary: Let M be a matroid of rank r on the ground set E,

and let BM(x) be its basis generating polynomial.

(a) If M is a regular [= real-unimodular] matroid, then B−β
M is com-

pletely monotone on (0,∞)E for β = 0, 1
2, 1,

3
2, . . . and for all

real β ≥ (r−1)/2. (This holds in particular if M is a graphic or

cographic matroid, i.e. for the spanning-tree or complementary-

spanning-tree polynomial of a connected graph.)

(b) If M is a complex-unimodular matroid [= sixth-root-of-unity

matroid], then B−β
M is completely monotone on (0,∞)E for

β = 0, 1, 2, 3, . . . and for all real β ≥ r − 1.

[There would also be a result for quaternionic-unimodular matroids

if we could understand better what they are!]
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Quadratic forms

Observation: E2,3 (Szegő) and E2,4 (Lewy–Askey) are quadratic

forms in the variables x.

Question: Can we say something about more general quadratic

forms?

Theorem: Let V be a finite-dimensional real vector space, let B be

a symmetric bilinear form on V having inertia (n+, n−, n0), and de-

fine the quadratic form Q(x) = B(x, x). Let C ⊂ V be a nonempty

open convex cone with the property that Q(x) > 0 for all x ∈ C.

Then n+ ≥ 1, and moreover:

(a) If n+ = 1 and n− = 0, then Q−β is completely monotone on C

for all β ≥ 0. For all other values of β, Q−β is not completely

monotone on any nonempty open convex subcone C ′ ⊆ C.

(b) If n+ = 1 and n− ≥ 1, then Q−β is completely monotone on C

for β = 0 and for all β ≥ (n− − 1)/2. For all other values of β,

Q−β is not completely monotone on any nonempty open convex

subcone C ′ ⊆ C.

(c) If n+ > 1, then Q−β is not completely monotone on any nonempty

open convex subcone C ′ ⊆ C for any β 6= 0.

Here proofs of both sufficiency and necessity are completely elementary.

Corollary: The function E−β
2,n is completely monotone on (0,∞)n

if and only if β = 0 or β ≥ (n − 2)/2.

(Provides an alternate proof for Szegő and Lewy–Askey problems.)
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Proof of direct half of theorem for real symmetric matrices

Step 1. Let A be a real symmetric positive-definite m×m matrix.

We then have the Gaussian integral

(det A)−1/2 =

∫

Rm

exp(−xTAx)
m
∏

j=1

dxj√
π

where x = (x1, . . . , xm). Differentiating under the integral sign

shows that the k-fold directional derivative of (det A)−1/2 in direc-

tions B1, . . . , Bk ∈ Πm(R) has sign (−1)k, because each derivative

brings down a factor −xTBix ≤ 0. This proves complete mono-

tonicity for β = 1/2.

Step 2. Any product of completely monotone functions is

completely monotone. So we get complete monotonicity for β = k/2

for k = 1, 2, 3, . . . .

Step 3. For real β > (m − 1)/2, use the integral representation

(det A)−β = const ×
∫

B>0

e− tr(AB) (det B)β − m+1
2 dB

where integration runs over real symmetric positive-definite m × m

matrices B. Once again we can differentiate under the integral sign.

Proof for complex hermitian matrices is completely analogous.

So the solution to the Lewy–Askey problem involves nothing more

than a Gaussian integral!

Quaternionic case requires Jordan theory but is otherwise similar.

Quadratic-form case is similar (and even easier).
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Happy Birthday, Dick!
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