Title and Place

THE DIRICHLET DIVISOR PROBLEM, BESSEL SERIES EXPANSIONS IN RAMANUJAN'S LOST NOTEBOOK, AND RIESZ SUMS

Bruce Berndt

University of Illinois at Urbana-Champaign

IN CELEBRATION OF THE 80TH BIRTHDAY OF RICHARD ASKEY

December 6, 2013

・ロン ・回と ・ヨン ・ ヨン

Research Conducted by the Speaker with

Sun Kim

Ohio State University

and

Alexandru Zaharescu

University of Illinois at Urbana-Champaign

I have shown you today the highest secret of my own realization. It is supreme and most mysterious indeed.

Verse 575, Vivekachudamani of Adi Shankaracharya Sixth Century, A.D.

Ramanujan's Passport Photo

d(n) denotes the number of positive divisors of n.

d(n) denotes the number of positive divisors of n.

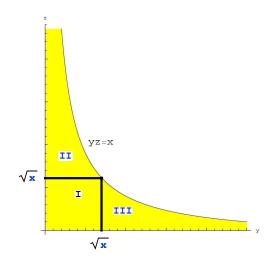
Theorem (Dirichlet, 1849)

For x > 0, set

$$D(x) := \sum_{n \le x} d(n) = x(\log x + 2\gamma - 1) + \frac{1}{4} + \Delta(x), \qquad (1)$$

where the prime on the summation sign on the left-hand side indicates that if x is an integer then only $\frac{1}{2}d(x)$ is counted, γ is Euler's constant, and $\Delta(x)$ is the "error term." Then, as $x \to \infty$,

$$\Delta(x) = O(\sqrt{x}). \tag{2}$$



Conjecture For each $\epsilon > 0$, as $x \to \infty$,

$$\Delta(x) = O(x^{1/4+\epsilon}).$$

Conjecture For each $\epsilon > 0$, as $x \to \infty$,

$$\Delta(x) = O(x^{1/4+\epsilon}).$$

Theorem (Hardy, 1916)

$$\Delta(x) = \Omega_+(\{x \log x\}^{1/4} \log \log x).$$

Conjecture For each $\epsilon > 0$, as $x \to \infty$,

$$\Delta(x) = O(x^{1/4+\epsilon}).$$

Theorem (Hardy, 1916)

$$\Delta(x) = \Omega_+(\{x \log x\}^{1/4} \log \log x).$$

Theorem (Voronoï, 1904; Huxley, 2003)

As $x \to \infty$,

$$\Delta(x) = O(x^{1/3} \log x),$$

= $O(x^{131/416+\epsilon})$

Conjecture For each $\epsilon > 0$, as $x \to \infty$,

$$\Delta(x) = O(x^{1/4+\epsilon}).$$

Theorem (Hardy, 1916)

$$\Delta(x) = \Omega_+(\{x \log x\}^{1/4} \log \log x).$$

Theorem (Voronoï, 1904; Huxley, 2003)

As $x \to \infty$,

$$\Delta(x) = O(x^{1/3} \log x),$$

= $O(x^{131/416+\epsilon})$

$$\frac{131}{416} = 0.3149\dots$$

7/29

ロト (日) (王) (王) (王)

Theorem (Voronoï, 1904)

If x > 0,

$$\sum_{n\leq x}' d(n) = x \left(\log x + 2\gamma - 1 \right) + \frac{1}{4} + \sum_{n=1}^{\infty} d(n) \left(\frac{x}{n} \right)^{1/2} l_1(4\pi\sqrt{nx}),$$

where $I_1(z)$ is defined by

$$I_{\nu}(z) := -Y_{\nu}(z) - \frac{2}{\pi} K_{\nu}(z).$$
(3)

A Page From Ramanujan's Lost Notebook

9/29

Define

$$F(x) = \begin{cases} [x], & \text{if } x \text{ is not an integer}, \\ x - \frac{1}{2}, & \text{if } x \text{ is an integer}, \end{cases}$$
(4)

where, as customary, [x] is the greatest integer less than or equal to x.

Define

$$F(x) = \begin{cases} [x], & \text{if } x \text{ is not an integer}, \\ x - \frac{1}{2}, & \text{if } x \text{ is an integer}, \end{cases}$$
(4)

where, as customary, [x] is the greatest integer less than or equal to x.

$$I_{\nu}(z) := -Y_{\nu}(z) - \frac{2}{\pi}K_{\nu}(z).$$
 (5)

10/29

Entry

Let F(x) be defined by (4), and let $I_1(x)$ be defined by (5). For x > 0 and $0 < \theta < 1$,

$$\sum_{n=1}^{\infty} F\left(\frac{x}{n}\right) \cos(2\pi n\theta) = \frac{1}{4} - x \log(2\sin(\pi\theta))$$
$$+ \frac{1}{2}\sqrt{x} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \left\{ \frac{I_1\left(4\pi\sqrt{m(n+\theta)x}\right)}{\sqrt{m(n+\theta)}} + \frac{I_1\left(4\pi\sqrt{m(n+1-\theta)x}\right)}{\sqrt{m(n+1-\theta)}} \right\}$$

Second Bessel Function Series Claim

As $x o \infty$,

$$Y_{\nu}(x) = \sqrt{rac{2}{\pi x}} \sin\left(x - rac{\pi
u}{2} - rac{\pi}{4}
ight) + O\left(rac{1}{x^{3/2}}
ight),$$

 $K_{
u}(x) = \sqrt{rac{\pi}{2x}} e^{-x} + O\left(e^{-x}rac{1}{x^{3/2}}
ight).$

Second Bessel Function Series Claim

As $x \to \infty$,

$$Y_{\nu}(x) = \sqrt{\frac{2}{\pi x}} \sin\left(x - \frac{\pi\nu}{2} - \frac{\pi}{4}\right) + O\left(\frac{1}{x^{3/2}}\right),$$
$$K_{\nu}(x) = \sqrt{\frac{\pi}{2x}} e^{-x} + O\left(e^{-x}\frac{1}{x^{3/2}}\right).$$

$$\frac{\frac{1}{\pi\sqrt{2}x^{1/4}m^{3/4}}}{\left(\frac{\sin\left(4\pi\sqrt{m(n+\theta)x}-\frac{3}{4}\pi\right)}{(n+\theta)^{3/4}}+\frac{\sin\left(4\pi\sqrt{m(n+1-\theta)x}-\frac{3}{4}\pi\right)}{(n+1-\theta)^{3/4}}\right)}.$$

Equivalent Theorem with the Order of Summation Reversed

Theorem

Fix x > 0 and set $\theta = u + \frac{1}{2}$, where $-\frac{1}{2} < u < \frac{1}{2}$. Recall that F(x) is defined in (4). If the identity below is valid for at least one value of θ , then it exists for all values of θ , and

$$\sum_{1 \le n \le x} (-1)^n F\left(\frac{x}{n}\right) \cos(2\pi nu) - \frac{1}{4} + x \log(2\cos(\pi u))$$
$$= \frac{1}{2\pi} \sum_{n=0}^{\infty} \frac{1}{n + \frac{1}{2} + u} \lim_{M \to \infty} \left\{ \sum_{m=1}^M \sin\left(\frac{2\pi(n + \frac{1}{2} + u)x}{m}\right) - \int_0^M \sin\left(\frac{2\pi(n + \frac{1}{2} + u)x}{t}\right) dt \right\}$$

୦୯୯ 3/29

Equivalent Theorem with the Order of Summation Reversed

Theorem (Continued)

$$+\frac{1}{2\pi}\sum_{n=0}^{\infty}\frac{1}{n+\frac{1}{2}-u}\lim_{M\to\infty}\left\{\sum_{m=1}^{M}\sin\left(\frac{2\pi(n+\frac{1}{2}-u)x}{m}\right) -\int_{0}^{M}\sin\left(\frac{2\pi(n+\frac{1}{2}-u)x}{t}\right)dt\right\}.$$
(6)

Moreover, the series on the right-hand side of (6) converges uniformly on compact subintervals of $\left(-\frac{1}{2},\frac{1}{2}\right)$.

Entry

Let F(x) be defined by (4), and let $I_1(x)$ be defined by (5). For x > 0 and $0 < \theta < 1$,

$$\sum_{n=1}^{\infty} F\left(\frac{x}{n}\right) \cos(2\pi n\theta) = \frac{1}{4} - x \log(2\sin(\pi\theta))$$
$$+ \frac{1}{2}\sqrt{x} \sum_{m \ge 1, n \ge 0} \left\{ \frac{I_1\left(4\pi\sqrt{m(n+\theta)x}\right)}{\sqrt{m(n+\theta)}} + \frac{I_1\left(4\pi\sqrt{m(n+1-\theta)x}\right)}{\sqrt{m(n+1-\theta)}} \right\}$$

If χ denotes any character modulo q, we define

$$d_{\chi}(n) := \sum_{d|n} \chi(d),$$

If χ denotes any character modulo q, we define

$$d_{\chi}(n) := \sum_{d|n} \chi(d),$$

$$\zeta(s)L(s,\chi)=\sum_{n=1}^{\infty}d_{\chi}(n)n^{-s},$$

イロン イヨン イヨン イヨン 三日

16/29

If χ denotes any character modulo q, we define

$$d_{\chi}(n) := \sum_{d|n} \chi(d).$$

$$\zeta(s)L(s,\chi) = \sum_{n=1}^{\infty} d_{\chi}(n)n^{-s},$$

$$\tau(\chi) := \sum_{h=1}^{q-1} \chi(h) e^{2\pi i h/q}.$$

(ロ)、(部)、(目)、(目)、(目)、(の)、(の)、(16/29)

Functional Equation for Nonprincipal Even Primitive Characters

$$\begin{pmatrix} \frac{\pi}{\sqrt{q}} \end{pmatrix}^{-2s} \Gamma^2(s)\zeta(2s)L(2s,\chi)$$

= $\frac{\tau(\chi)}{\sqrt{q}} \left(\frac{\pi}{\sqrt{q}}\right)^{-2(\frac{1}{2}-s)} \Gamma^2\left(\frac{1}{2}-s\right)\zeta(1-2s)L(1-2s,\overline{\chi}).$

Theorem

If χ is a nonprincipal even primitive character modulo q, then

$$\sum_{n \le x} d_{\chi}(n) = \frac{\sqrt{q}}{\tau(\overline{\chi})} \sum_{n=1}^{\infty} d_{\overline{\chi}}(n) \sqrt{\frac{x}{n}} l_1 (4\pi \sqrt{nx/q}) - \frac{x}{\tau(\overline{\chi})} \sum_{h=1}^{q-1} \overline{\chi}(h) \log (2\sin(\pi h/q)).$$
(7)

• We have proved Ramanujan's Second Identity with the product of the summation indices tending to infinity.

- We have proved Ramanujan's Second Identity with the product of the summation indices tending to infinity.
- We have not proved Ramanujan's Second Identity with the order of summation as written by Ramanujan.

- We have proved Ramanujan's Second Identity with the product of the summation indices tending to infinity.
- We have not proved Ramanujan's Second Identity with the order of summation as written by Ramanujan.
- We have proved Ramanujan's First Identity under all three interpretations.

• We have proved Ramanujan's Second Identity with the product of the summation indices tending to infinity.

• We have not proved Ramanujan's Second Identity with the order of summation as written by Ramanujan.

• We have proved Ramanujan's First Identity under all three interpretations.

• Road Blocks: The plus sign between the two Bessel functions; singularities at 0.

• We have proved Ramanujan's Second Identity with the product of the summation indices tending to infinity.

- We have not proved Ramanujan's Second Identity with the order of summation as written by Ramanujan.
- We have proved Ramanujan's First Identity under all three interpretations.
- Road Blocks: The plus sign between the two Bessel functions; singularities at 0.
- The proofs under different interpretations are completely different.

• We have proved Ramanujan's Second Identity with the product of the summation indices tending to infinity.

- We have not proved Ramanujan's Second Identity with the order of summation as written by Ramanujan.
- We have proved Ramanujan's First Identity under all three interpretations.
- Road Blocks: The plus sign between the two Bessel functions; singularities at 0.
- The proofs under different interpretations are completely different.
- New methods of estimating trigonometric sums are introduced.

Riesz Sums

$$\sum_{n\leq x}a(n)(x-n)^a$$

Analogue of a Theorem of Dixon and Ferrar

Theorem

Let a denote a positive integer, and let χ be an even primitive nonprincipal character of modulus q. Set for x > 0,

$$D_{\chi}(a;x) := rac{1}{\Gamma(a+1)} \sum_{n \leq x} d_{\chi}(n)(x-n)^a.$$

Then, for $a \ge 2$,

$$D_{\chi}(a-1;x) = \frac{L(1,\chi)x^{a}}{\Gamma(1+a)} + \frac{\tau(\chi)q^{a-1}}{(2\pi)^{a-1}} \sum_{n=1}^{\infty} d_{\overline{\chi}}(n) \left(\frac{x}{nq}\right)^{a/2} \\ \times \left\{-Y_{a}\left(4\pi\sqrt{\frac{nx}{q}}\right) + \frac{2}{\pi}\cos(\pi a)K_{a}\left(4\pi\sqrt{\frac{nx}{q}}\right)\right\} + S_{a},$$

Theorem (Continued)

where S_a is the sum of the residues at the poles -2m - 1, $0 \le m \le \left[\frac{1}{2}a\right] - 1$, of $\frac{\Gamma(s)\zeta(s)L(s,\chi)}{\Gamma(s+a)}x^{s+a-1}$.

The Riesz Sum Generalization of Ramanujan's Entry 5

Theorem

Let x > 0, $0 < \theta < 1$, and a be a positive integer. Then,

$$\frac{1}{(a-1)!} \sum_{n \le x} (x-n)^{a-1} \sum_{r|n} \cos(2\pi r\theta) = \frac{x^{a-1}}{4(a-1)!} - \frac{x^{a}}{a!} \log\left(2\sin(\pi\theta)\right) + \frac{x^{\alpha/2}}{2(2\pi)^{a-1}} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \left\{ \frac{I_a\left(4\pi\sqrt{m(n+\theta)x}\right)}{(m(n+\theta))^{a/2}} + \frac{I_a\left(4\pi\sqrt{m(n+1-\theta)x}\right)}{(m(n+1-\theta))^{a/2}} - \sum_{k=1}^{[a/2]} \frac{(-1)^k \zeta(1-2k) \left(\zeta(2k,\theta) + \zeta(2k,1-\theta)\right) x^{a-2k}}{(a-2k)!(2\pi)^{2k}}, \quad (8)$$

where $I_{\nu}(x)$ is defined in (3), and $\zeta(s, \alpha)$ denotes the Hurwitz zeta function.

イロト イポト イヨト イヨト

Theorem

Let $I_1(x)$ be defined by (5). If $0 < \theta$, $\sigma < 1$ and x > 0, then

$$\begin{split} &\sum_{nm\leq x} '\cos(2\pi n\theta)\cos(2\pi m\sigma) = \frac{1}{4} + \frac{\sqrt{x}}{4}\sum_{n,m\geq 0} \\ &\times \left\{ \frac{l_1(4\pi\sqrt{(n+\theta)(m+\sigma)x})}{\sqrt{(n+\theta)(m+\sigma)}} + \frac{l_1(4\pi\sqrt{(n+1-\theta)(m+\sigma)x})}{\sqrt{(n+1-\theta)(m+\sigma)}} \right. \\ &+ \frac{l_1(4\pi\sqrt{(n+\theta)(m+1-\sigma)x})}{\sqrt{(n+\theta)(m+1-\sigma)}} + \frac{l_1(4\pi\sqrt{(n+1-\theta)(m+1-\sigma)x})}{\sqrt{(n+1-\theta)(m+1-\sigma)}} \right\}. \end{split}$$

Define, for Dirichlet characters χ_1 modulo p and χ_2 modulo q,

$$d_{\chi_1,\chi_2}(n)=\sum_{d\mid n}\chi_1(d)\chi_2(n/d).$$

Define, for Dirichlet characters χ_1 modulo p and χ_2 modulo q,

$$d_{\chi_1,\chi_2}(n)=\sum_{d\mid n}\chi_1(d)\chi_2(n/d).$$

$$L(2s,\chi_1)L(2s,\chi_2) = \sum_{n=1}^{\infty} \frac{\chi_1(n)}{n^{2s}} \sum_{m=1}^{\infty} \frac{\chi_2(m)}{m^{2s}} = \sum_{n=1}^{\infty} \frac{d_{\chi_1,\chi_2}(n)}{n^{2s}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define, for Dirichlet characters χ_1 modulo p and χ_2 modulo q,

$$d_{\chi_1,\chi_2}(n)=\sum_{d\mid n}\chi_1(d)\chi_2(n/d).$$

$$L(2s,\chi_1)L(2s,\chi_2) = \sum_{n=1}^{\infty} \frac{\chi_1(n)}{n^{2s}} \sum_{m=1}^{\infty} \frac{\chi_2(m)}{m^{2s}} = \sum_{n=1}^{\infty} \frac{d_{\chi_1,\chi_2}(n)}{n^{2s}}$$

The Functional Equation

$$(\pi^2/(pq))^{-s}\Gamma^2(s)L(2s,\chi_1)L(2s,\chi_2) = \frac{\tau(\chi_1)\tau(\chi_2)}{\sqrt{pq}}(\pi^2/(pq))^{-(\frac{1}{2}-s)}\Gamma^2(\frac{1}{2}-s)L(1-2s,\overline{\chi_1})L(1-2s,\overline{\chi_2})$$

Define, for Dirichlet characters χ_1 modulo p and χ_2 modulo q,

$$d_{\chi_1,\chi_2}(n)=\sum_{d\mid n}\chi_1(d)\chi_2(n/d).$$

$$L(2s,\chi_1)L(2s,\chi_2) = \sum_{n=1}^{\infty} \frac{\chi_1(n)}{n^{2s}} \sum_{m=1}^{\infty} \frac{\chi_2(m)}{m^{2s}} = \sum_{n=1}^{\infty} \frac{d_{\chi_1,\chi_2}(n)}{n^{2s}}$$

The Functional Equation

$$\begin{aligned} &(\pi^2/(pq))^{-s}\Gamma^2(s)L(2s,\chi_1)L(2s,\chi_2)\\ &=\frac{\tau(\chi_1)\tau(\chi_2)}{\sqrt{pq}}(\pi^2/(pq))^{-(\frac{1}{2}-s)}\Gamma^2(\frac{1}{2}-s)L(1-2s,\overline{\chi_1})L(1-2s,\overline{\chi_2}) \end{aligned}$$

$$\sum_{n \le x} d_{\chi_1, \chi_2}(n) = \frac{\tau(\chi_1)\tau(\chi_2)}{\sqrt{pq}} \sum_{n=1}^{\infty} d_{\overline{\chi_1, \chi_2}}(n) \left(\frac{x}{n}\right)^{\frac{1}{2}} l_1\left(4\pi\sqrt{\frac{nx}{pq}}\right) = \frac{\sqrt{q}}{\frac{25}{29}}$$

Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and so I was able to complete my dissertation.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and so I was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I, Trans. Amer. Math. Soc. **137** (1969), 345–359.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

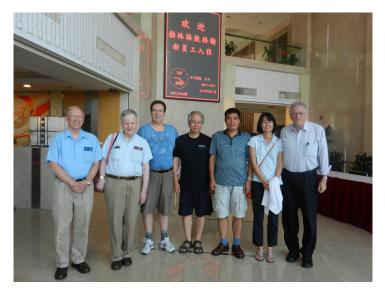
who suggested that I learn the method of steepest descent, and so I was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I, Trans. Amer. Math. Soc. **137** (1969), 345–359.

T. J. Kaczynski (The Unabomber), *Boundary functions for bounded harmonic functions*, Trans. Amer. Math. Soc. **137** (1969), 203–209.

Photograph, Shanghai, July 31, 2013

Photograph, Shanghai, July 31, 2013



THE DIRICHLET DIVISOR PROBLEM

тне DIRICHLET DIVISOR PROBLEM FOR DICK ASKEY Happy 80th Birthday, Dick

тне DIRICHLET DIVISOR PROBLEM FOR DICK ASKEY Happy 80th Birthday, Dick and Many more