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Once Again – Mystery in the Lost Notebook

I have shown you today the highest secret of
my own realization. It is supreme and most
mysterious indeed.

Verse 575, Vivekachudamani of Adi Shankaracharya

Sixth Century, A.D.
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Ramanujan’s Passport Photo

4 / 29



The Dirichlet Divisor Problem

d(n) denotes the number of positive divisors of n.

Theorem (Dirichlet, 1849)

For x > 0, set

D(x) :=
∑
n≤x

′
d(n) = x(log x + 2γ − 1) +

1

4
+ ∆(x), (1)

where the prime on the summation sign on the left-hand side
indicates that if x is an integer then only 1

2d(x) is counted, γ is
Euler’s constant, and ∆(x) is the “error term.” Then, as x →∞,

∆(x) = O(
√

x). (2)
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The Dirichlet Divisor Problem

Figure: The Dirichlet Divisor Problem
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The Dirichlet Divisor Problem

Conjecture For each ε > 0, as x →∞,

∆(x) = O(x1/4+ε).

Theorem (Hardy, 1916)

∆(x) = Ω+({x log x}1/4 log log x).

Theorem (Voronöı, 1904; Huxley, 2003)

As x →∞,

∆(x) = O(x1/3 log x),

= O(x131/416+ε)

131

416
= 0.3149 . . .
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The Dirichlet Divisor Problem

Theorem (Voronöı, 1904)

If x > 0,

∑
n≤x

′
d(n) = x (log x + 2γ − 1) +

1

4
+
∞∑
n=1

d(n)
(x

n

)1/2
I1(4π

√
nx),

where I1(z) is defined by

Iν(z) := −Yν(z)− 2

π
Kν(z). (3)
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A Page From Ramanujan’s Lost Notebook
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Second Bessel Function Series Claim

Define

F (x) =

{
[x ], if x is not an integer,

x − 1
2 , if x is an integer,

(4)

where, as customary, [x ] is the greatest integer less than or equal
to x .

Iν(z) := −Yν(z)− 2

π
Kν(z). (5)
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Second Bessel Function Series Claim

Entry

Let F (x) be defined by (4), and let I1(x) be defined by (5). For
x > 0 and 0 < θ < 1,

∞∑
n=1

F
(x

n

)
cos(2πnθ) =

1

4
− x log(2 sin(πθ))

+
1

2

√
x
∞∑

m=1

∞∑
n=0

 I1
(

4π
√

m(n + θ)x
)

√
m(n + θ)

+
I1
(

4π
√

m(n + 1− θ)x
)

√
m(n + 1− θ)

 .
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Second Bessel Function Series Claim

As x →∞,

Yν(x) =

√
2

πx
sin
(

x − πν

2
− π

4

)
+ O

(
1

x3/2

)
,

Kν(x) =

√
π

2x
e−x + O

(
e−x

1

x3/2

)
.

1

π
√

2x1/4m3/4sin
(

4π
√

m(n + θ)x − 3
4π
)

(n + θ)3/4
+

sin
(

4π
√

m(n + 1− θ)x − 3
4π
)

(n + 1− θ)3/4

 .
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Second Bessel Function Series Claim

As x →∞,

Yν(x) =

√
2

πx
sin
(

x − πν

2
− π

4

)
+ O

(
1

x3/2

)
,

Kν(x) =

√
π

2x
e−x + O

(
e−x

1

x3/2

)
.

1

π
√

2x1/4m3/4sin
(

4π
√

m(n + θ)x − 3
4π
)

(n + θ)3/4
+

sin
(

4π
√

m(n + 1− θ)x − 3
4π
)

(n + 1− θ)3/4

 .
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Equivalent Theorem with the Order of Summation
Reversed

Theorem

Fix x > 0 and set θ = u + 1
2 , where −1

2 < u < 1
2 . Recall that F (x)

is defined in (4). If the identity below is valid for at least one value
of θ, then it exists for all values of θ, and∑

1≤n≤x
(−1)nF

(x

n

)
cos(2πnu)− 1

4
+ x log(2 cos(πu))

=
1

2π

∞∑
n=0

1

n + 1
2 + u

lim
M→∞

{
M∑

m=1

sin

(
2π(n + 1

2 + u)x

m

)

−
∫ M

0
sin

(
2π(n + 1

2 + u)x

t

)
dt

}
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Equivalent Theorem with the Order of Summation
Reversed

Theorem (Continued)

+
1

2π

∞∑
n=0

1

n + 1
2 − u

lim
M→∞

{
M∑

m=1

sin

(
2π(n + 1

2 − u)x

m

)

−
∫ M

0
sin

(
2π(n + 1

2 − u)x

t

)
dt

}
. (6)

Moreover, the series on the right-hand side of (6) converges
uniformly on compact subintervals of (−1

2 ,
1
2).
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Another Interpretation of Ramanujan’s Claim

Entry

Let F (x) be defined by (4), and let I1(x) be defined by (5). For
x > 0 and 0 < θ < 1,

∞∑
n=1

F
(x

n

)
cos(2πnθ) =

1

4
− x log(2 sin(πθ))

+
1

2

√
x

∑
m≥1,n≥0

 I1
(

4π
√

m(n + θ)x
)

√
m(n + θ)

+
I1
(

4π
√

m(n + 1− θ)x
)

√
m(n + 1− θ)

 .
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Weighted Divisor Sums

If χ denotes any character modulo q, we define

dχ(n) :=
∑
d |n

χ(d),

ζ(s)L(s, χ) =
∞∑
n=1

dχ(n)n−s ,

τ(χ) :=

q−1∑
h=1

χ(h)e2πih/q.
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Functional Equation for Nonprincipal Even Primitive
Characters

(
π
√

q

)−2s
Γ2(s)ζ(2s)L(2s, χ)

=
τ(χ)
√

q

(
π
√

q

)−2(12−s)
Γ2
(
1
2 − s

)
ζ(1− 2s)L(1− 2s, χ).
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Hark Back to My Ph.D. Thesis

Theorem

If χ is a nonprincipal even primitive character modulo q, then

∑
n≤x

′
dχ(n) =

√
q

τ(χ)

∞∑
n=1

dχ(n)

√
x

n
I1
(
4π
√

nx/q
)

− x

τ(χ)

q−1∑
h=1

χ(h) log
(
2 sin(πh/q)

)
. (7)
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Summary

• We have proved Ramanujan’s Second Identity with the order of
summation reversed.

• We have proved Ramanujan’s Second Identity with the product
of the summation indices tending to infinity.
• We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.
• We have proved Ramanujan’s First Identity under all three
interpretations.
• Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.
• The proofs under different interpretations are completely
different.
• New methods of estimating trigonometric sums are introduced.

19 / 29



Summary

• We have proved Ramanujan’s Second Identity with the order of
summation reversed.
• We have proved Ramanujan’s Second Identity with the product
of the summation indices tending to infinity.

• We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.
• We have proved Ramanujan’s First Identity under all three
interpretations.
• Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.
• The proofs under different interpretations are completely
different.
• New methods of estimating trigonometric sums are introduced.

19 / 29



Summary

• We have proved Ramanujan’s Second Identity with the order of
summation reversed.
• We have proved Ramanujan’s Second Identity with the product
of the summation indices tending to infinity.
• We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.

• We have proved Ramanujan’s First Identity under all three
interpretations.
• Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.
• The proofs under different interpretations are completely
different.
• New methods of estimating trigonometric sums are introduced.

19 / 29



Summary

• We have proved Ramanujan’s Second Identity with the order of
summation reversed.
• We have proved Ramanujan’s Second Identity with the product
of the summation indices tending to infinity.
• We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.
• We have proved Ramanujan’s First Identity under all three
interpretations.

• Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.
• The proofs under different interpretations are completely
different.
• New methods of estimating trigonometric sums are introduced.

19 / 29



Summary

• We have proved Ramanujan’s Second Identity with the order of
summation reversed.
• We have proved Ramanujan’s Second Identity with the product
of the summation indices tending to infinity.
• We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.
• We have proved Ramanujan’s First Identity under all three
interpretations.
• Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.

• The proofs under different interpretations are completely
different.
• New methods of estimating trigonometric sums are introduced.

19 / 29



Summary

• We have proved Ramanujan’s Second Identity with the order of
summation reversed.
• We have proved Ramanujan’s Second Identity with the product
of the summation indices tending to infinity.
• We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.
• We have proved Ramanujan’s First Identity under all three
interpretations.
• Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.
• The proofs under different interpretations are completely
different.

• New methods of estimating trigonometric sums are introduced.

19 / 29



Summary

• We have proved Ramanujan’s Second Identity with the order of
summation reversed.
• We have proved Ramanujan’s Second Identity with the product
of the summation indices tending to infinity.
• We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.
• We have proved Ramanujan’s First Identity under all three
interpretations.
• Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.
• The proofs under different interpretations are completely
different.
• New methods of estimating trigonometric sums are introduced.

19 / 29



Riesz Sums

∑
n≤x

a(n)(x − n)a
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Analogue of a Theorem of Dixon and Ferrar

Theorem

Let a denote a positive integer, and let χ be an even primitive
nonprincipal character of modulus q. Set for x > 0,

Dχ(a; x) :=
1

Γ(a + 1)

∑
n≤x

dχ(n)(x − n)a.

Then, for a ≥ 2,

Dχ(a− 1; x) =
L(1, χ)xa

Γ(1 + a)
+
τ(χ)qa−1

(2π)a−1

∞∑
n=1

dχ(n)

(
x

nq

)a/2

×
{
−Ya

(
4π

√
nx

q

)
+

2

π
cos(πa)Ka

(
4π

√
nx

q

)}
+ Sa,
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Analogue of a Theorem of Dixon and Ferrar

Theorem (Continued)

where Sa is the sum of the residues at the poles −2m − 1,
0 ≤ m ≤ [12a]− 1, of

Γ(s)ζ(s)L(s, χ)

Γ(s + a)
x s+a−1.
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The Riesz Sum Generalization of Ramanujan’s Entry 5

Theorem

Let x > 0, 0 < θ < 1, and a be a positive integer. Then,

1

(a− 1)!

∑
n≤x

′
(x − n)a−1

∑
r |n

cos(2πrθ) =
xa−1

4(a− 1)!
− xa

a!
log
(
2 sin(πθ)

)

+
xα/2

2(2π)a−1

∞∑
m=1

∞∑
n=0

 Ia
(

4π
√

m(n + θ)x
)

(
m(n + θ)

)a/2 +
Ia
(

4π
√

m(n + 1− θ)x
)

(
m(n + 1− θ)

)a/2


−
[a/2]∑
k=1

(−1)kζ(1− 2k)
(
ζ(2k , θ) + ζ(2k, 1− θ)

)
xa−2k

(a− 2k)!(2π)2k
, (8)

where Iν(x) is defined in (3), and ζ(s, α) denotes the Hurwitz zeta
function.
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An Analogue of Ramanujan’s Entry 5

Theorem

Let I1(x) be defined by (5). If 0 < θ, σ < 1 and x > 0, then

∑
nm≤x

′
cos(2πnθ) cos(2πmσ) =

1

4
+

√
x

4

∑
n,m≥0

×

{
I1(4π

√
(n + θ)(m + σ)x)√

(n + θ)(m + σ)
+

I1(4π
√

(n + 1− θ)(m + σ)x)√
(n + 1− θ)(m + σ)

+
I1(4π

√
(n + θ)(m + 1− σ)x)√

(n + θ)(m + 1− σ)
+

I1(4π
√

(n + 1− θ)(m + 1− σ)x)√
(n + 1− θ)(m + 1− σ)

}
.
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An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters χ1 modulo p and χ2 modulo q,

dχ1,χ2(n) =
∑
d |n

χ1(d)χ2(n/d).

L(2s, χ1)L(2s, χ2) =
∞∑
n=1

χ1(n)

n2s

∞∑
m=1

χ2(m)

m2s
=
∞∑
n=1

dχ1,χ2(n)

n2s

The Functional Equation

(π2/(pq))−sΓ2(s)L(2s, χ1)L(2s, χ2)

=
τ(χ1)τ(χ2)
√

pq
(π2/(pq))−(

1
2−s)Γ2(12 − s)L(1− 2s, χ1)L(1− 2s, χ2)

∑
n≤x

′
dχ1,χ2(n) =

τ(χ1)τ(χ2)
√

pq

∞∑
n=1

dχ1,χ2(n)
(x

n

) 1
2
I1
(

4π

√
nx

pq

)
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Hark back to My Ph.D. Thesis

I had trouble estimating a crucial integral.

It was suggested that I see Professor Richard Askey,

who suggested that I see Professor Steve Wainger,

who suggested that I learn the method of steepest descent, and so
I was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. I,
Trans. Amer. Math. Soc. 137 (1969), 345–359.

T. J. Kaczynski (The Unabomber), Boundary functions for
bounded harmonic functions, Trans. Amer. Math. Soc. 137
(1969), 203–209.
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Photograph, Shanghai, July 31, 2013
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Happy Birthday

THE DIRICHLET DIVISOR PROBLEM
FOR DICK ASKEY

Happy 80th Birthday, Dick
and Many more
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