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Once Again — Mystery in the Lost Notebook

| have shown you today the highest secret of
my own realization. It is supreme and most
mysterious indeed.

Verse 575, Vivekachudamani of Adi Shankaracharya
Sixth Century, A.D.
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Ramanujan’s Passport Photo
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The Dirichlet Divisor Problem

d(n) denotes the number of positive divisors of n.
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The Dirichlet Divisor Problem

d(n) denotes the number of positive divisors of n.

Theorem (Dirichlet, 1849)

For x > 0, set

D(x) = 3 "d(n) = x(log x + 27 — 1) + % FAK), ()

n<x

where the prime on the summation sign on the left-hand side
indicates that if x is an integer then only 3d(x) is counted, 7 is
Euler’s constant, and A(x) is the “error term.” Then, as x — oo,

A(x) = O(VX). (2)
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The Dirichlet Divisor Problem
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Figure: The Dirichlet Divisor Problem 6/



The Dirichlet Divisor Problem

Conjecture For each € > 0, as x — oo,

A(x) = O(x1/4Fe),
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Theorem (Hardy, 1916)

A(x) = Q4 ({xlog x}*/* log log x).
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The Dirichlet Divisor Problem

Conjecture For each € > 0, as x — oo,

A(x) = O(x1/4Fe),

Theorem (Hardy, 1916)

A(x) = Q4 ({xlog x}*/* log log x).
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As x — 00,

A(x) = O(x'/3log x),
_ O(X131/416+e)

131
— =0.3149...
216 0.3149
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The Dirichlet Divisor Problem

Theorem (Voronoi, 1904)
If x >0,

S 'd(n) = x (log x + 27 — 1) +1+Zd (’;)1/2

n<x —

where 1(z) is defined by

h(4my/nx),
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A Page From Ramanujan’s Lost Notebook
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Second Bessel Function Series Claim

Define

[x], if x is not an integer,
F(x) = ! o (4)
X =3, if x is an integer,

where, as customary, [x] is the greatest integer less than or equal
to x.
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Second Bessel Function Series Claim

Define
[x], if x is not an integer,
F(x) = 1 e (4)
X =5, if x is an integer,
where, as customary, [x] is the greatest integer less than or equal
to x.
2
L(z) ==Y, (2) — ;K,,(z). (5)
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Second Bessel Function Series Claim

Let F(x) be defined by (4), and let l,(x) be defined by (5). For
x>0and0 <0 <1,

Z F (i) cos(2mnf) = % — x log(2sin(76))

| = /1(4w¢m)+/1(4wm)]
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Second Bessel Function Series Claim

As x — oo,
2 . TV 1
Yol = 7rxsm<x_2_4)+o<x3/2)’

[T 1
KV(X) = 5 € + 0 <e X3/2> .
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Second Bessel Function Series Claim

As x — oo,
2 . TV 1
Yol = 7rxsm<x_2_4)+o<x3/2)’

[T 1
KV(X) = 5 € + 0 <e X3/2> .

T 2x1/4m3/4

(san @WW- gw) sin (4w¢m_ gﬂ))

(n 1 6)3/ * (n+1—0)7"
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Equivalent Theorem with the Order of Summation

Reversed

Theorem

Fix x > 0 and set § = u+ %, where —1 < u < 1. Recall that F(x)
is defined in (4). If the identity below is valid for at least one value
of 6, then it exists for all values of §, and

Z (—1)" ( ) cos(2mnu) — 1 + x log(2 cos(mu))

1<n<x

1 & 1 Mo 2n(n+ % + u)x
= —— lim E sin

27r $n + + u M—co — m

_/M i <2w(n+ PR u)x) dt}
0 t
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Equivalent Theorem with the Order of Summation
Reversed

Theorem (Continued)

[e.9]

1 m(n+ 1 — u)x
il = 2
+27rzn+ uMinoo{Zsm< m )

—/Msin <27T(n+t2 — U)X) dt}. (6)
0

Moreover, the series on the right-hand side of (6) converges

uniformly on compact subintervals of (—3, ).
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Another Interpretation of Ramanujan’s Claim

Let F(x) be defined by (4), and let I1(x) be defined by (5). For
x>0and 0 <60 <1,

Z ( )cos 27nd) = % — x log(2sin(76))

—|—1f Z h (477\/m(n+0)x) . h (47T\/M) ]
2 szl,nzo \ /m(n—l— 9) /m(n _}_71 — 0) J .
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Weighted Divisor Sums

If x denotes any character modulo g, we define

dy(n) := Z x(d),
d|n
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Weighted Divisor Sums

If x denotes any character modulo g, we define

(n) =" x(d)
d|n

C(s)L(s,x) = D _ dy(n)
n=1
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Weighted Divisor Sums

If x denotes any character modulo g, we define

dy(n) := Z x(d),
d|n
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Functional Equation for Nonprincipal Even Primitive

Characters

ol
_ ) <7T> 2, (L —s)c(1—25)L(1 — 25,%).
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Hark Back to My Ph.D. Thesis

If x is a nonprincipal even primitive character modulo q, then

'd (n) = 3 I (47+/nx/q
; X n:1 \/>1 )
q—1

@ 2 X(h) log (2sin(h/q)). (7)
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e We have proved Ramanujan's Second Identity with the order of
summation reversed.
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e We have proved Ramanujan's Second Identity with the order of

summation reversed.
e We have proved Ramanujan’s Second ldentity with the product
of the summation indices tending to infinity.
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e We have proved Ramanujan's Second Identity with the order of

summation reversed.

e We have proved Ramanujan’s Second ldentity with the product
of the summation indices tending to infinity.

e We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.
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e We have proved Ramanujan's Second Identity with the order of
summation reversed.

e We have proved Ramanujan’s Second ldentity with the product
of the summation indices tending to infinity.

e We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.

e We have proved Ramanujan's First Identity under all three
interpretations.
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e We have proved Ramanujan's Second Identity with the order of
summation reversed.

e We have proved Ramanujan’s Second ldentity with the product
of the summation indices tending to infinity.

e We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.

e We have proved Ramanujan's First Identity under all three
interpretations.

e Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.
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e We have proved Ramanujan's Second Identity with the order of
summation reversed.

e We have proved Ramanujan’s Second ldentity with the product
of the summation indices tending to infinity.

e We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.

e We have proved Ramanujan's First Identity under all three
interpretations.

e Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.

e The proofs under different interpretations are completely
different.
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e We have proved Ramanujan's Second Identity with the order of
summation reversed.

e We have proved Ramanujan’s Second ldentity with the product
of the summation indices tending to infinity.

e We have not proved Ramanujan’s Second Identity with the order
of summation as written by Ramanujan.

e We have proved Ramanujan's First Identity under all three
interpretations.

e Road Blocks: The plus sign between the two Bessel functions;
singularities at 0.

e The proofs under different interpretations are completely
different.

e New methods of estimating trigonometric sums are introduced.
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Riesz Sums

> a(n)(x —n)®
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Analogue of a Theorem of Dixon and Ferrar

Let a denote a positive integer, and let x be an even primitive
nonprincipal character of modulus q. Set for x > 0,

Dy(a; x) := r(al—l—l) ;de(n)(x —n)?

Then, for a > 2,

T i‘* () (Xq>

x{—Ya <47r nX>—i—2cos wa) <47T )}—i—Sa
q T \ g

Dy(a—1;x) =
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Analogue of a Theorem of Dixon and Ferrar

Theorem (Continued)

where S, is the sum of the residues at the poles —2m — 1,
0<m<[3a] -1, of

ML) oot
M(s+a) ’
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The Riesz Sum Generalization of Ramanujan’s Entry 5

Theorem

Let x > 0,0 < 0 <1, and a be a positive integer. Then,

|Z X —n)* lzcos (27r) ( 0~ );—?Iog (2sin(n@))
ZZ (47n/m( +9)x) . I, (4m/m(n+1—e)7<)}
27f = 1,,, i | (m(n+6)7 (m(n+1-0)"¢

[a/2] (—1)k¢(1 — 2k)(g(2k, 0) + C(2k,1 — 0))x3*2’<
B (a — 2k)!(27)2k - @

k=1

where 1,(x) is defined in (3), and (s, «) denotes the Hurwitz zeta
function.
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An Analogue of Ramanujan’s Entry 5

Let l(x) be defined by (5). If0 <6, 0 <1 and x > 0, then

Z,cos(27rn0) cos(2rmo) = Z \{ Z

nm<x n,m>0
{/1 (4ry/(n + 0)(m +0)x) , h(4m/(n+ 1 0)(m+0)x)
(n+6)(m+0) V(n+1=0)(m+o0)

h(4m/(n+6)(m+1—0)x) I1(47T\/(n—|—1—9)(m+1—0)><)}'
Vin+0)(m+1-o0) V(in+1-0)(m+1-o0)
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An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters x1 modulo p and y2 modulo g,

A ZXI )xa2(n/d).
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An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters x1 modulo p and y2 modulo g,

A ZXI )xa2(n/d).

T xa() S xa(m) _ = ()
(25, x1)L(2s, x2) Z 25 Z 25 —Z 25
= m=1

n=1
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An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters x1 modulo p and y2 modulo g,

A ZXI )xa2(n/d).

() S 12(m) _ S b0

1 _ X1:X2

L(2s, x1)L(2s, x2) Z 25 m2$ = 25
m=1 n=1

The Functional Equation

(72/(pq))~*T*(s)L(2s, x1)L(2s, x2)

:W(wz/(pq)) R
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An Analogue of Ramanujan’s Entry 5

Define, for Dirichlet characters x1 modulo p and y2 modulo g,

A ZXI )xa2(n/d).

() S 12(m) _ S b0

1 _ X1:X2

L(2s, x1)L(2s, x2) Z 25 m2$ = 25
m=1 n=1

The Functional Equation

(72/(pq))~*T*(s)L(2s, x1)L(2s, x2)

:W(wz/(pq)) R

n=1 25/29



Hark back to My Ph.D. Thesis

| had trouble estimating a crucial integral.
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Hark back to My Ph.D. Thesis

| had trouble estimating a crucial integral.
It was suggested that | see Professor Richard Askey,
who suggested that | see Professor Steve Wainger,

who suggested that | learn the method of steepest descent, and so
| was able to complete my dissertation.
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Hark back to My Ph.D. Thesis

| had trouble estimating a crucial integral.
It was suggested that | see Professor Richard Askey,
who suggested that | see Professor Steve Wainger,

who suggested that | learn the method of steepest descent, and so
| was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. |,
Trans. Amer. Math. Soc. 137 (1969), 345-359.

26 /29



Hark back to My Ph.D. Thesis

| had trouble estimating a crucial integral.
It was suggested that | see Professor Richard Askey,
who suggested that | see Professor Steve Wainger,

who suggested that | learn the method of steepest descent, and so
| was able to complete my dissertation.

Identities involving the coefficients of a class of Dirichlet series. |,
Trans. Amer. Math. Soc. 137 (1969), 345-359.

T. J. Kaczynski (The Unabomber), Boundary functions for
bounded harmonic functions, Trans. Amer. Math. Soc. 137
(1969), 203-209.
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Photograph, Shanghai, July 31, 2013
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Photograph, Shanghai, July 31, 2013




Happy Birthday

THE DIRicHLET DIvisor PROBLEM
ForR Dlck askey
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Happy Birthday

THE DIRicHLET DIvisor PROBLEM
ForR Dlck askey

Happy 80th Birthday, Dick
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Happy Birthday

THE DIRicHLET DIvisor PROBLEM
ForR Dlck askey

Happy 80th Birthday, Dick
and Many more
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