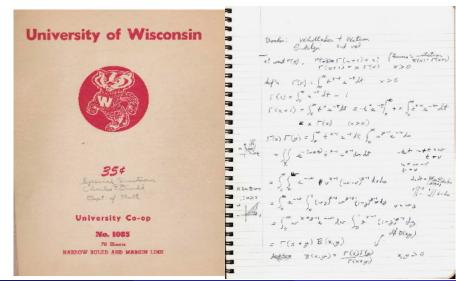
Geometry and Hypergeometry

Charles F. Dunkl

U. of Virginia

December 2013

Historical Documents



The Symmetry Group of the Regular m-gon

Consider the symmetry group $I_2(m)$ of the regular m-gon in \mathbb{R}^2 ; it consists of the identity, m reflections and m-1 rotations

$$\begin{bmatrix} \cos\frac{2\pi j}{m} & \sin\frac{2\pi j}{m} \\ \sin\frac{2\pi j}{m} & -\cos\frac{2\pi j}{m} \end{bmatrix}, 0 \leq j < m; \begin{bmatrix} \cos\frac{2\pi j}{m} & \sin\frac{2\pi j}{m} \\ -\sin\frac{2\pi j}{m} & \cos\frac{2\pi j}{m} \end{bmatrix}, 1 \leq j < m.$$

It is often useful to employ complex coordinates for $x=(x_1,x_2)\in\mathbb{R}^2$, $z=x_1+\mathrm{i} x_2, \overline{z}=x_1-\mathrm{i} x_2, \ \omega:=\exp\frac{2\pi\mathrm{i}}{m}.$ Then the reflections are expressed as $z\sigma_j:=\overline{z}\omega^j$ $(0\leq j< m)$ and the rotations are $z\varrho_j:=z\omega^j$ $(1\leq j< m).$

Fix a real parameter κ . We consider differential-difference operators on polynomials, first on ordinary (scalar) then on vector-valued polynomials in z, \bar{z} . (Notation: $\partial_u := \frac{\partial}{\partial u}$)

$$\mathcal{D}f(z,\overline{z}) := \partial_{z}f(z,\overline{z}) + \kappa \sum_{j=0}^{m-1} \frac{f(z,\overline{z}) - f(\overline{z}\omega^{j},z\omega^{-j})}{z - \overline{z}\omega^{j}},$$

$$\overline{\mathcal{D}}f(z,\overline{z}) := \partial_{\overline{z}}f(z,\overline{z}) - \kappa \sum_{j=0}^{m-1} \frac{f(z,\overline{z}) - f(\overline{z}\omega^{j},z\omega^{-j})}{z - \overline{z}\omega^{j}}\omega^{j}.$$

Then $\overline{\mathcal{D}}\mathcal{D}=\mathcal{D}\overline{\mathcal{D}}$ and the Laplacian is $4\mathcal{D}\overline{\mathcal{D}}$. A polynomial f such that $\mathcal{D}\overline{\mathcal{D}}f=0$ is called harmonic. Harmonic homogenous polynomials of different degrees are orthogonal with respect to the measure $\left|\sin m\theta\right|^{2\kappa}d\theta$ on the unit circle for $\kappa>-\frac{1}{2}$ and the measure

$$|z^{m}-\overline{z}^{m}|^{2\kappa} e^{-|z|^{2}/2} dm_{2}(z)$$

on $\mathbb{C} \cong \mathbb{R}^2$ for $\kappa > -\frac{1}{m}$.

For n = 0, 1, 2, ... let

$$C_n^{(\kappa,\kappa+1)}(w) := \sum_{j=0}^n \frac{(\kappa+1)_{n-j}(\kappa)_j}{(n-j)!} y^{n-j} \overline{w}^j,$$

then

$$\overline{\mathcal{D}}z^{r}C_{n}^{(\kappa,\kappa+1)}\left(z^{m}\right)=0,0\leq r< m,n\geq0.$$

There is a two-term recurrence for the monic

$$c_n\left(w
ight) := rac{n!}{\left(\kappa+1
ight)_n} C_n^{\left(\kappa,\kappa+1
ight)}\left(w
ight); \ ext{let} \ \sigma_0 p\left(w,\overline{w}
ight) := p\left(\overline{w},w
ight) \ ext{then}$$

$$c_{0}(w) = 1,$$
 $c_{n+1}(w) = w c_{n}(w) + \frac{\kappa}{\kappa + n + 1} \overline{w} \sigma_{0} c_{n}(w).$

Furthermore (with $z=r\mathrm{e}^{\mathrm{i}\theta}$, $-\pi<\theta\leq\pi$) there is an expression in Gegenbauer polynomials:

$$C_n^{(\kappa,\kappa+1)}(z^m) = \frac{n+2\kappa}{2\kappa} r^{mn} C_n^{\kappa}(\cos m\theta) + \mathrm{i} r^{mn} \sin m\theta \ C_{n-1}^{\kappa+1}(\cos m\theta).$$

Group-invariant Hermitian Forms on Polynomials

• There is a Hermitian (contravariant) form $\langle \cdot, \cdot \rangle$ on polynomials given by

$$c\left\langle p,q
ight
angle =\left\langle \overline{c}p,q
ight
angle =\left\langle p,cq
ight
angle ,\left\langle p,q
ight
angle =\overline{\left\langle q,p
ight
angle }, \ \left\langle zp,q
ight
angle =\left\langle p,2\overline{\mathcal{D}}q
ight
angle ,\left\langle \overline{z}p,q
ight
angle =\left\langle p,2\overline{\mathcal{D}}q
ight
angle ,\left\langle 1,1
ight
angle =1.$$

Group-invariant Hermitian Forms on Polynomials

• There is a Hermitian (contravariant) form $\langle \cdot, \cdot \rangle$ on polynomials given by

$$c\left\langle p,q\right
angle =\left\langle \overline{c}p,q
ight
angle =\left\langle p,cq
ight
angle$$
 , $\left\langle p,q
ight
angle =\overline{\left\langle q,p
ight
angle }$, $\left\langle zp,q
ight
angle =\left\langle p,2\overline{\mathcal{D}}q
ight
angle$, $\left\langle \overline{z}p,q
ight
angle =\left\langle p,2\overline{\mathcal{D}}q
ight
angle$, $\left\langle 1,1
ight
angle =1$.

Define the Gaussian form

$$\langle p, q \rangle_{\mathcal{G}} := \left\langle e^{2\mathcal{D}\overline{\mathcal{D}}} p, e^{2\mathcal{D}\overline{\mathcal{D}}} q \right\rangle;$$

it satisfies

$$\langle \mathcal{D}p,q
angle_{\mathcal{G}}=\left\langle p,\left(rac{z}{2}-\overline{\mathcal{D}}
ight)q
ight
angle _{\mathcal{G}}$$
 , $\left\langle zp,q
ight
angle _{\mathcal{G}}=\left\langle p,\overline{z}q
ight
angle _{\mathcal{G}}$,

Group-invariant Hermitian Forms on Polynomials

• There is a Hermitian (contravariant) form $\langle \cdot, \cdot \rangle$ on polynomials given by

$$c\left\langle p,q\right\rangle =\left\langle \overline{c}p,q\right\rangle =\left\langle p,cq\right\rangle ,\left\langle p,q\right\rangle =\overline{\left\langle q,p\right\rangle }, \ \left\langle zp,q\right\rangle =\left\langle p,2\mathcal{D}q\right\rangle ,\left\langle \overline{z}p,q\right\rangle =\left\langle p,2\overline{\mathcal{D}}q\right\rangle ,\left\langle 1,1\right\rangle =1.$$

Define the Gaussian form

$$\langle p, q \rangle_{G} := \left\langle e^{2\mathcal{D}\overline{\mathcal{D}}} p, e^{2\mathcal{D}\overline{\mathcal{D}}} q \right\rangle;$$

it satisfies

$$\left\langle \mathcal{D}p,q
ight
angle _{\mathcal{G}}=\left\langle p,\left(rac{z}{2}-\overline{\mathcal{D}}
ight) q
ight
angle _{\mathcal{G}}$$
 , $\left\langle zp,q
ight
angle _{\mathcal{G}}=\left\langle p,\overline{z}q
ight
angle _{\mathcal{G}}$,

• and for $\kappa > -\frac{1}{m}$

$$\langle p,q\rangle_{\mathcal{G}}=\gamma\int_{\mathbb{R}^{2}}\overline{p\left(z\right)}q\left(z\right)\left|z^{m}-\overline{z}^{m}\right|^{2\kappa}e^{-\left|z\right|^{2}/2}dm_{2}\left(z\right),$$

(normalizing constant γ). Note $e^{2D\overline{D}}$ is invertible on polynomials. The condition $\kappa > -\frac{1}{m}$ also appears as $\langle z, z \rangle_{\mathcal{C}} = 2(1 + m\kappa) > 0$

• Observe the special property of harmonic polynomials with respect to the Gaussian form, namely $\langle p,q\rangle_G=\langle p,q\rangle$. Harmonic homogeneous polynomials of different degrees are trivially orthogonal to each other. For $0\leq r< m$, and $n\geq 0$ set

$$p_{mn+r}(z) := z^r C_n^{(\kappa,\kappa+1)}(z^m)$$

then $\{p_{mn+r}, \overline{p_{mn+r}}\}$ is a basis for the harmonic homogeneous polynomials of degree nm+r, orthogonal except for r=0, in which case $\{\operatorname{Re} p_{mn}, \operatorname{Im} p_{mn}\}$ is orthogonal.

• Observe the special property of harmonic polynomials with respect to the Gaussian form, namely $\langle p,q\rangle_G=\langle p,q\rangle$. Harmonic homogeneous polynomials of different degrees are trivially orthogonal to each other. For $0\leq r< m$, and $n\geq 0$ set

$$p_{mn+r}(z) := z^r C_n^{(\kappa,\kappa+1)}(z^m)$$

then $\{p_{mn+r}, \overline{p_{mn+r}}\}$ is a basis for the harmonic homogeneous polynomials of degree nm+r, orthogonal except for r=0, in which case $\{\operatorname{Re} p_{mn}, \operatorname{Im} p_{mn}\}$ is orthogonal.

• The weight function $|z^m - \overline{z}^m|^{2\kappa}$ equals $\overline{L}L$ where L satisfies

$$\partial_z L = \kappa L \sum_{j=0}^{m-1} \frac{1}{z - \overline{z}\omega^j} = \kappa L \frac{mz^{m-1}}{z^m - \overline{z}^m},$$

$$\partial_z L = \kappa L \sum_{j=0}^{m-1} -\omega^j = \kappa L \frac{mz^{m-1}}{z^m - \overline{z}^{m-1}}.$$

$$\partial_{\overline{z}}L = \kappa L \sum_{i=0}^{m-1} \frac{-\omega^{j}}{z - \overline{z}\omega^{j}} = \kappa L \frac{-m\overline{z}^{m-1}}{z^{m} - \overline{z}^{m}}.$$

Vector-valued Polynomials

We extend these concepts to vector-valued polynomials. The (pairwise nonequivalent) 2-dimensional irreducible representations of the group are given by

$$au_{\ell}\left(\sigma_{j}
ight) = \left[egin{array}{cc} 0 & \omega^{-j\ell} \ \omega^{j\ell} & 0 \end{array}
ight], 1 \leq \ell \leq \left\lfloor rac{m-1}{2}
ight
floor, 0 \leq j < m.$$

Henceforth fix ℓ .

We consider the standard module $\mathcal{P}_{m,\ell}$ consisting of polynomials

$$f(z,\overline{z},t,\overline{t})=f_1(z,\overline{z})t+f_2(z,\overline{z})\overline{t}$$

with the group action

$$\sigma_{j}f(z,\overline{z},t,\overline{t})=f_{2}(\overline{z}\omega^{j},z\omega^{-j})\omega^{-\ell j}t+f_{1}(\overline{z}\omega^{j},z\omega^{-j})\omega^{\ell j}\overline{t}.$$

There is a representation of the rational Cherednik algebra - the abstract algebra generated by $\{z, \overline{z}, \mathcal{D}, \overline{\mathcal{D}}\} \cup I_2(m)$ (with certain relations) - on the space $\mathcal{P}_{m,\ell}$.

The Dunkl operators are defined by

$$\begin{split} \mathcal{D}f\left(z,\overline{z},t,\overline{t}\right) &:= \partial_{z}f\left(z,\overline{z},t,\overline{t}\right) \\ &+ \kappa \sum_{j=0}^{m-1} \frac{f\left(z,\overline{z},\omega^{\ell j}\overline{t},\omega^{-\ell j}t\right) - f\left(\overline{z}\omega^{j},z\omega^{-j},\omega^{\ell j}\overline{t},\omega^{-\ell j}t\right)}{z - \overline{z}\omega^{j}}, \\ \overline{\mathcal{D}}f\left(z,\overline{z},t,\overline{t}\right) &:= \partial_{\overline{z}}f\left(z,\overline{z},t,\overline{t}\right) \\ &- \kappa \sum_{i=0}^{m-1} \frac{f\left(z,\overline{z},\omega^{\ell j}\overline{t},\omega^{-\ell j}t\right) - f\left(\overline{z}\omega^{j},z\omega^{-j},\omega^{\ell j}\overline{t},\omega^{-\ell j}t\right)}{z - \overline{z}\omega^{j}}\omega^{j}. \end{split}$$

As before they satisfy $\overline{\mathcal{D}}\mathcal{D}=\mathcal{D}\overline{\mathcal{D}}$.

Harmonic Polynomials

• The *leading term* of a homogeneous polynomial $\sum_{j=0}^{n} a_j z^{n-j} \overline{z}^j t + \sum_{j=0}^{n} b_j z^{n-j} \overline{z}^j \overline{t}$ is defined to be $(a_0 z^n + a_n \overline{z}^n) t + (b_0 z^n + b_n \overline{z}^n) \overline{t}$.

Harmonic Polynomials

- The *leading term* of a homogeneous polynomial $\sum_{j=0}^{n} a_j z^{n-j} \overline{z}^j t + \sum_{j=0}^{n} b_j z^{n-j} \overline{z}^j \overline{t}$ is defined to be $(a_0 z^n + a_n \overline{z}^n) t + (b_0 z^n + b_n \overline{z}^n) \overline{t}$.
- There are 4 linearly independent harmonic polynomials of each degree ≥ 1 , with bases given by two sequences $\left\{p_n^{(1)}, \sigma_0 p_n^{(1)} : n \geq 1\right\}$ and $\left\{p_n^{(2)}, \sigma_0 p_n^{(2)} : n \geq 1\right\} \left(\sigma_0 p\left(z, \overline{z}, t, \overline{t}\right) := p\left(\overline{z}, z, \overline{t}, t\right)\right)$. The leading terms of $p_n^{(1)}, \sigma_0 p_n^{(1)}, p_n^{(2)}, \sigma_0 p_n^{(2)}$ are $z^n t, \overline{z}^n \overline{t}, z^n \overline{t}$ respectively.

Harmonic Polynomials

- The *leading term* of a homogeneous polynomial $\sum_{j=0}^{n} a_j z^{n-j} \overline{z}^j t + \sum_{j=0}^{n} b_j z^{n-j} \overline{z}^j \overline{t}$ is defined to be $(a_0 z^n + a_n \overline{z}^n) t + (b_0 z^n + b_n \overline{z}^n) \overline{t}$.
- There are 4 linearly independent harmonic polynomials of each degree ≥ 1 , with bases given by two sequences $\left\{p_n^{(1)}, \sigma_0 p_n^{(1)} : n \geq 1\right\}$ and $\left\{p_n^{(2)}, \sigma_0 p_n^{(2)} : n \geq 1\right\} \left(\sigma_0 p\left(z, \overline{z}, t, \overline{t}\right) := p\left(\overline{z}, z, \overline{t}, t\right)\right)$. The leading terms of $p_n^{(1)}, \sigma_0 p_n^{(1)}, p_n^{(2)}, \sigma_0 p_n^{(2)}$ are $z^n t$, $\overline{z}^n \overline{t}$, $z^n \overline{t}$, $\overline{z}^n t$ respectively.
- Let λ be a parameter with $\lambda > 0$ and define polynomials

$$Q_n^{(1)}(\kappa,\lambda;w,\overline{w}), Q_n^{(2)}(\kappa,\lambda;w,\overline{w})$$
 by

$$Q_0^{(1)}(\kappa,\lambda;w,\overline{w})=1, Q_0^{(2)}(\kappa,\lambda;w,\overline{w})=\frac{\kappa}{\lambda},$$

$$Q_{n+1}^{(1)}\left(\kappa,\lambda;w,\overline{w}\right)=wQ_{n}^{(1)}\left(\kappa,\lambda;w,\overline{w}\right)+\frac{\kappa}{\lambda+n+1}\overline{w}Q_{n}^{(2)}\left(\kappa,\lambda;\overline{w},w\right),$$

$$Q_{n+1}^{(2)}\left(\kappa,\lambda;w,\overline{w}\right) = \frac{\kappa}{\lambda+n+1}\overline{w}Q_{n}^{(1)}\left(\kappa,\lambda;\overline{w},w\right) + wQ_{n}^{(2)}\left(\kappa,\lambda;w,\overline{w}\right).$$

December 2013

Now let

$$\begin{split} P_n^{(1)} &:= z^{m-\ell+1}Q_n^{(1)}\left(\kappa, \frac{m-\ell}{m}; z^m, \overline{z}^m\right)t \\ &+ z\overline{z}^{m-\ell}Q_n^{(2)}\left(\kappa, \frac{m-\ell}{m}; z^m, \overline{z}^m\right)\overline{t}, \\ P_n^{(2)} &:= z^{\ell+1}Q_n^{(1)}\left(\kappa, \frac{\ell}{m}; z^m, \overline{z}^m\right)\overline{t} + z\overline{z}^\ell Q_n^{(2)}\left(\kappa, \frac{\ell}{m}; z^m, \overline{z}^m\right)t. \end{split}$$

Then the following are harmonic polynomials $(\mathcal{D}\overline{\mathcal{D}}p=0)$:

- ① $p_r^{(1)} = z^r t$ for $1 \le r \le m \ell$ and $p_s^{(1)} = z^r P_n^{(1)}$ for $s = m(n+1) \ell + 1 + r$ and $0 \le r < m$;
- ② $p_r^{(2)} = z^r \overline{t}$ for $1 \le r \le \ell$ and $p_s^{(2)} = z^r P_n^{(2)}$ for $s = nm + \ell + 1 + r$ and $0 \le r < m$.

There are properties similar to the scalar case such as $\overline{\mathcal{D}}p_r^{(j)}=0$ for certain r,j.

There are closed expressions for the polynomials $Q_n^{(1)}$, $Q_n^{(2)}$:

$$\begin{split} Q_{n}^{(1)}\left(\kappa,\lambda;w,\overline{w}\right) &= w^{n} \\ &+ \sum_{j=1}^{n} \frac{\kappa^{2}\left(n-j+1\right)}{\lambda\left(\lambda+n\right)} \, _{4}F_{3}\left(\begin{matrix} 1-j,j-n,1-\kappa,1+\kappa\\2,\lambda+1,-\lambda-n+1 \end{matrix};1\right) w^{n-j}\overline{w}^{j}, \\ Q_{n}^{(2)}\left(\kappa,\lambda;w,\overline{w}\right) &= \sum_{j=0}^{n} \frac{\kappa}{\lambda+j} \, _{4}F_{3}\left(\begin{matrix} -j,j-n,-\kappa,+\kappa\\1,\lambda,-\lambda-n \end{matrix};1\right) w^{n-j}\overline{w}^{j}, \end{split}$$

(terminating and balanced!) and an evaluation formula:

$$Q_n^{(1)}(\kappa,\lambda;1,1) = \frac{(\lambda+\kappa)_{n+1} + (\lambda-\kappa)_{n+1}}{2(\lambda)_{n+1}},$$

$$Q_n^{(2)}(\kappa,\lambda;1,1) = \frac{(\lambda+\kappa)_{n+1} - (\lambda-\kappa)_{n+1}}{2(\lambda)_{n+1}}.$$

The Contravariant Form

• Consider $t=s_1+\mathrm{i} s_2$ with $\langle s_j,s_k\rangle=\delta_{jk}$, then $\langle t,t\rangle=2=\langle \overline{t},\overline{t}\rangle$ and $\langle t,\overline{t}\rangle=0$. For a scalar polynomial $p=\sum_{j,k}a_{jk}z^j\overline{z}^k$ let $p^*\left(2\mathcal{D},2\overline{\mathcal{D}}\right)=\sum_{j,k}\overline{a_{jk}}2^{j+k}\mathcal{D}^j\overline{\mathcal{D}}^k$). Then for $p,q\in\mathcal{P}_{m,\ell}$ $\langle p_1\left(z,\overline{z}\right)t+p_2\left(z,\overline{z}\right)\overline{t},q\left(z,\overline{z},t,\overline{t}\right)\rangle = \langle t,p_1^*\left(2\mathcal{D},2\overline{\mathcal{D}}\right)q\rangle|_{z=0}+\langle \overline{t},p_2^*\left(2\mathcal{D},2\overline{\mathcal{D}}\right)q\rangle|_{z=0},$

where $p\left(z,\overline{z},t,\overline{t}\right)=p_1\left(z,\overline{z}\right)t+p_2\left(z,\overline{z}\right)\overline{t}$. This form has the properties $\langle zp,q\rangle=\langle p,2\mathcal{D}q\rangle$ and $\langle \sigma_jp,\sigma_jq\rangle=\langle p,q\rangle$ (group invariance).

The Contravariant Form

• Consider $t=s_1+\mathrm{i} s_2$ with $\langle s_j,s_k\rangle=\delta_{jk}$, then $\langle t,t\rangle=2=\langle \overline{t},\overline{t}\rangle$ and $\langle t,\overline{t}\rangle=0$. For a scalar polynomial $p=\sum_{j,k}a_{jk}z^j\overline{z}^k$ let $p^*\left(2\mathcal{D},2\overline{\mathcal{D}}\right)=\sum_{j,k}\overline{a_{jk}}2^{j+k}\mathcal{D}^j\overline{\mathcal{D}}^k$). Then for $p,q\in\mathcal{P}_{m,\ell}$ $\langle p_1\left(z,\overline{z}\right)t+p_2\left(z,\overline{z}\right)\overline{t},q\left(z,\overline{z},t,\overline{t}\right)\rangle = \langle t,p_1^*\left(2\mathcal{D},2\overline{\mathcal{D}}\right)q\rangle|_{z=0}+\langle \overline{t},p_2^*\left(2\mathcal{D},2\overline{\mathcal{D}}\right)q\rangle|_{z=0},$

where $p\left(z,\overline{z},t,\overline{t}\right)=p_{1}\left(z,\overline{z}\right)t+p_{2}\left(z,\overline{z}\right)\overline{t}$. This form has the properties $\langle zp,q\rangle=\langle p,2\mathcal{D}q\rangle$ and $\langle \sigma_{j}p,\sigma_{j}q\rangle=\langle p,q\rangle$ (group invariance).

• For what values of κ is the form positive-definite? The polynomial $P_0^{(2)}$ is harmonic of degree $\ell+1$ and

$$\left\langle P_0^{(2)}, P_0^{(2)} \right\rangle = 2^{\ell+2} \left(\ell+1\right)! \left(\frac{m}{\ell}\right)^2 \left(\frac{\ell}{m} - \kappa\right) \left(\frac{\ell}{m} + \kappa\right),$$

thus $-\frac{\ell}{m} < \kappa < \frac{\ell}{m}$ is necessary - and sufficient, as will be seen.

The Gaussian Form

• The polynomials $\left\{p_n^{(1)}, \sigma_0 p_n^{(1)}, p_n^{(2)}, \sigma_0 p_n^{(2)} : n \ge 1\right\}$ form an orthogonal basis for the harmonic homogeneous polynomials with exceptions when $n \pm \ell \equiv 0 \mod m$.

If
$$n + \ell \equiv 0 \mod m$$
 then $p_n^{(1)} + \sigma_0 p_n^{(1)} \perp p_n^{(1)} - \sigma_0 p_n^{(1)}$.
If $n - \ell \equiv 0 \mod m$ then $p_n^{(2)} + \sigma_0 p_n^{(2)} \perp p_n^{(2)} - \sigma_0 p_n^{(2)}$.

The Gaussian Form

• The polynomials $\left\{p_n^{(1)}, \sigma_0 p_n^{(1)}, p_n^{(2)}, \sigma_0 p_n^{(2)} : n \geq 1\right\}$ form an orthogonal basis for the harmonic homogeneous polynomials with exceptions when $n \pm \ell \equiv 0 \mod m$. If $n + \ell \equiv 0 \mod m$ then $p_n^{(1)} + \sigma_0 p_n^{(1)} \perp p_n^{(1)} - \sigma_0 p_n^{(1)}$. If $n - \ell \equiv 0 \mod m$ then $p_n^{(2)} + \sigma_0 p_n^{(2)} \perp p_n^{(2)} - \sigma_0 p_n^{(2)}$.

As before define the Gaussian form

$$\langle p, q \rangle_{\mathcal{G}} = \left\langle e^{2\mathcal{D}\overline{\mathcal{D}}} p, e^{2\mathcal{D}\overline{\mathcal{D}}} q \right\rangle;$$

which satisfies

$$\left\langle \mathcal{D}p,q
ight
angle _{\mathcal{G}}=\left\langle p,\left(rac{z}{2}-\overline{\mathcal{D}}
ight) q
ight
angle _{\mathcal{G}}$$
 , $\left\langle zp,q
ight
angle _{\mathcal{G}}=\left\langle p,\overline{z}q
ight
angle _{\mathcal{G}}$.

Note that the adjoint of multiplication by z is multiplication by \overline{z} .

The Matrix Weight Function

We want to find a 2×2 positive-definite matrix function K(z) such that

$$\left\langle p,q
ight
angle _{G}=\int_{\mathbb{C}}q\left(z
ight) K\left(z
ight) p\left(z
ight) ^{st }e^{-\leftert z
ightert ^{2}/2}dm_{2}\left(z
ight) ,$$

where $q=q_1\left(z\right)t+q_2\left(z\right)\overline{t}$ is considered as the vector (q_1,q_2) , similarly for p. This leads to the requirements $K\left(z\right)^*=K\left(z\right)$ and $K\left(zw\right)= au_\ell\left(w\right)^*K\left(z\right) au_\ell\left(w\right)$ for $w\in I_2\left(m\right)$. The key condition

$$\langle \mathcal{D}p, q \rangle_{G} = \left\langle p, \left(\frac{z}{2} - \overline{\mathcal{D}}\right) q \right\rangle_{G}$$

(and its complex conjugate) leads to a differential equation and boundary-value problem for K.

• The idea is to express $K\left(z\right)=L\left(z\right)^{*}ML\left(z\right)$ where M is a constant positive-definite matrix and L satisfies $L\left(zw\right)=L\left(z\right)\tau_{\ell}\left(w\right)$ $\left(\forall w\in I_{2}\left(m\right)\right)$ and the differential system.

$$\partial_{z}L(z,\overline{z}) = \kappa L(z,\overline{z}) \sum_{j=0}^{m-1} \frac{1}{z - \overline{z}\omega^{j}} \tau_{\ell}(\sigma_{j}),$$

$$\partial_{\overline{z}}L(z,\overline{z}) = \kappa L(z,\overline{z}) \sum_{j=0}^{m-1} \frac{-\omega^j}{z - \overline{z}\omega^j} \tau_\ell(\sigma_j).$$

• The idea is to express $K(z) = L(z)^* ML(z)$ where M is a constant positive-definite matrix and L satisfies $L(zw) = L(z) \tau_\ell(w)$ $(\forall w \in I_2(m))$ and the differential system.

$$\partial_{z}L(z,\overline{z}) = \kappa L(z,\overline{z}) \sum_{j=0}^{m-1} \frac{1}{z - \overline{z}\omega^{j}} \tau_{\ell}(\sigma_{j}),$$

$$\partial_{\overline{z}}L(z,\overline{z}) = \kappa L(z,\overline{z}) \sum_{j=0}^{m-1} \frac{-\omega^{j}}{z - \overline{z}\omega^{j}} \tau_{\ell}(\sigma_{j}).$$

Note

$$(z\partial_z + \overline{z}\partial_{\overline{z}}) L = 0,$$

thus L is positively homogeneous of degree 0 and depends only on $e^{\mathrm{i}\theta}$ for $z=re^{\mathrm{i}\theta}$ $(r>0,-\pi<\theta\leq\pi)$. Further $\partial_{\theta}=\mathrm{i}\,(z\partial_z-\overline{z}\partial_{\overline{z}})$ and thus

$$\partial_{\theta} L = \mathrm{i} \kappa L \sum_{i=0}^{m-1} \frac{z + \overline{z} \omega^{j}}{z - \overline{z} \omega^{j}} \tau_{\ell} \left(\sigma_{j} \right).$$

• Write $L = L_1 t + L_2 \overline{t}$, then

$$egin{aligned} \partial_{ heta} L_{1}\left(heta
ight) &= rac{m\kappa}{\sin m heta} e^{\mathrm{i} heta\left(m-2\ell
ight)} L_{2}\left(heta
ight) \,, \ \partial_{ heta} L_{2}\left(heta
ight) &= rac{m\kappa}{\sin m heta} e^{-\mathrm{i} heta\left(m-2\ell
ight)} L_{1}\left(heta
ight) \,. \end{aligned}$$

• Write $L = L_1 t + L_2 \overline{t}$, then

$$\begin{split} \partial_{\theta} \mathcal{L}_{1}\left(\theta\right) &= \frac{m\kappa}{\sin m\theta} \mathrm{e}^{\mathrm{i}\theta\left(m-2\ell\right)} \mathcal{L}_{2}\left(\theta\right), \\ \partial_{\theta} \mathcal{L}_{2}\left(\theta\right) &= \frac{m\kappa}{\sin m\theta} \mathrm{e}^{-\mathrm{i}\theta\left(m-2\ell\right)} \mathcal{L}_{1}\left(\theta\right). \end{split}$$

• Let $\delta:=\frac{1}{2}-\frac{\ell}{m}$, (note: $0<\delta<\frac{1}{2}$), $\widetilde{L_1}:=e^{-\mathrm{i}m\delta\theta}L_1$, $\widetilde{L_2}:=e^{\mathrm{i}m\delta\theta}L_2$, then

$$egin{aligned} \partial_{ heta}\widetilde{L}_{1}\left(heta
ight) &= -\mathrm{i}m\delta\widetilde{L}_{1}\left(heta
ight) + rac{m\kappa}{\sin m heta}\widetilde{L}_{2}\left(heta
ight), \ \partial_{ heta}\widetilde{L}_{2}\left(heta
ight) &= rac{m\kappa}{\sin m heta}\widetilde{L}_{1}\left(heta
ight) + \mathrm{i}m\delta\widetilde{L}_{2}\left(heta
ight). \end{aligned}$$

Now changing $\{t, \overline{t}\}$ to real coordinates $t=s_1+\mathrm{i} s_2$ we write

$$\widetilde{L}_1t+\widetilde{L}_2\overline{t}=\left(\widetilde{L}_1+\widetilde{L}_2
ight)s_1+\mathrm{i}\left(\widetilde{L}_1-\widetilde{L}_2
ight)s_2=:g_1s_1+g_2s_2$$

• Write $L = L_1 t + L_2 \overline{t}$, then

$$\begin{split} &\partial_{\theta} \mathcal{L}_{1}\left(\theta\right) = \frac{m\kappa}{\sin m\theta} e^{\mathrm{i}\theta\left(m-2\ell\right)} \mathcal{L}_{2}\left(\theta\right), \\ &\partial_{\theta} \mathcal{L}_{2}\left(\theta\right) = \frac{m\kappa}{\sin m\theta} e^{-\mathrm{i}\theta\left(m-2\ell\right)} \mathcal{L}_{1}\left(\theta\right). \end{split}$$

• Let $\delta:=\frac{1}{2}-\frac{\ell}{m}$, (note: $0<\delta<\frac{1}{2}$), $\widetilde{L_1}:=e^{-\mathrm{i}m\delta\theta}L_1$, $\widetilde{L_2}:=e^{\mathrm{i}m\delta\theta}L_2$, then

$$egin{aligned} \partial_{ heta}\widetilde{L}_{1}\left(heta
ight) &= -\mathrm{i}m\delta\widetilde{L}_{1}\left(heta
ight) + rac{m\kappa}{\sin m heta}\widetilde{L}_{2}\left(heta
ight), \ \partial_{ heta}\widetilde{L}_{2}\left(heta
ight) &= rac{m\kappa}{\sin m heta}\widetilde{L}_{1}\left(heta
ight) + \mathrm{i}m\delta\widetilde{L}_{2}\left(heta
ight). \end{aligned}$$

Now changing $\{t, \overline{t}\}$ to real coordinates $t = s_1 + is_2$ we write

$$\widetilde{L}_1 t + \widetilde{L}_2 \overline{t} = \left(\widetilde{L}_1 + \widetilde{L}_2\right) s_1 + \mathrm{i} \left(\widetilde{L}_1 - \widetilde{L}_2\right) s_2 =: g_1 s_1 + g_2 s_2$$

ullet By introducing the variables $\phi=m heta$ and

$$v = \sin^2 \frac{\phi}{2}$$

we can transform the equation to a hypergeometric form and solve it.

We find a fundamental solution in terms of

$$\begin{split} f_1\left(\kappa,\delta;v\right) &:= v^{\kappa/2} \left(1-v\right)^{-\kappa/2} \ _2F_1\left(\frac{\delta,-\delta}{\frac{1}{2}+\kappa};v\right), \\ f_2\left(\kappa,\delta;v\right) &:= \frac{\delta}{\frac{1}{2}+\kappa} v^{(\kappa+1)/2} \left(1-v\right)^{(1-\kappa)/2} \ _2F_1\left(\frac{1+\delta,1-\delta}{\frac{3}{2}+\kappa};v\right), \end{split}$$

indeed (in the real coordinate system)

$$L(\phi) = \begin{bmatrix} f_1(\kappa, \delta; v) & f_2(\kappa, \delta; v) \\ -f_2(-\kappa, \delta; v) & f_1(-\kappa, \delta; v) \end{bmatrix} \times \begin{bmatrix} \cos \delta \phi & -\sin \delta \phi \\ \sin \delta \phi & \cos \delta \phi \end{bmatrix}$$

for $0<\phi=m\theta<\pi$, extended to the whole circle by $L\left(zw\right)=L\left(z\right) au_{\ell}\left(w\right)$ for $w\in\mathit{I}_{2}\left(m\right)$. The Wronskian $\det L\left(\phi\right)=1$.

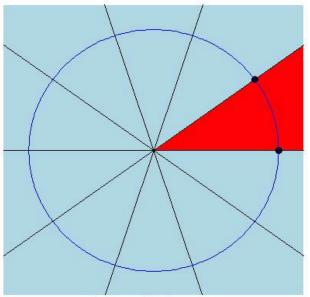
The next task is to determine the constant matrix M so that

$$K(z) = L(z)^* ML(z)$$

satisfies $\langle \mathcal{D}p,q\rangle_{\mathcal{G}}=\left\langle p,\left(\frac{z}{2}-\overline{\mathcal{D}}\right)q\right\rangle_{\mathcal{G}}.$ In addition to the differential equation, to make the integration by parts argument work it is required that

$$\lim_{z \to z_{0}, z \in \mathcal{C}} \left(K\left(z\right) - \tau_{\ell}\left(\sigma\right)K\left(z\right)\tau_{\ell}\left(\sigma\right)\right) = 0,$$

where $\mathcal C$ is the fundamental chamber $(0<\theta<\frac{\pi}{m})$, σ corresponds to one of the walls (that is, the line fixed by σ) and $z_0\neq 0$ is a boundary point of $\mathcal C$ with $z_0\sigma=z_0$. Here the walls are $\theta=0$ fixed by σ_0 and $\theta=\frac{\pi}{m}$ fixed by σ_1 .



Fundamental chamber, m = 5

• The condition for $\theta=0$ is satisfied if M is diagonal (fairly straightforward). For the wall $\theta=\frac{\pi}{m}$ we analyze the functions f_1 and f_2 as $v\to 1_-$ (basic facts about ${}_2F_1$ -series). Let

$$H(\kappa,\delta) := \frac{\Gamma\left(\frac{1}{2} + \kappa\right)^2}{\Gamma\left(\frac{1}{2} + \kappa + \delta\right)\Gamma\left(\frac{1}{2} + \kappa - \delta\right)},$$

then

$$f_{1}(\kappa, \delta; v) = H(\kappa, \delta) f_{1}(-\kappa, \delta; 1 - v) + \frac{\sin \pi \delta}{\cos \pi \kappa} f_{2}(\kappa, \delta; 1 - v)$$

$$f_{2}(\kappa, \delta; v) = \frac{\sin \pi \delta}{\cos \pi \kappa} f_{1}(\kappa, \delta; 1 - v) - H(\kappa, \delta) f_{2}(-\kappa, \delta; 1 - v).$$

• The condition for $\theta=0$ is satisfied if M is diagonal (fairly straightforward). For the wall $\theta=\frac{\pi}{m}$ we analyze the functions f_1 and f_2 as $v\to 1_-$ (basic facts about ${}_2F_1$ -series). Let

$$H(\kappa,\delta) := rac{\Gamma\left(rac{1}{2} + \kappa
ight)^2}{\Gamma\left(rac{1}{2} + \kappa + \delta
ight)\Gamma\left(rac{1}{2} + \kappa - \delta
ight)},$$

then

$$f_{1}(\kappa, \delta; v) = H(\kappa, \delta) f_{1}(-\kappa, \delta; 1 - v) + \frac{\sin \pi \delta}{\cos \pi \kappa} f_{2}(\kappa, \delta; 1 - v)$$

$$f_{2}(\kappa, \delta; v) = \frac{\sin \pi \delta}{\cos \pi \kappa} f_{1}(\kappa, \delta; 1 - v) - H(\kappa, \delta) f_{2}(-\kappa, \delta; 1 - v).$$

• We find that the solution (unique up to multiplication by a scalar)

$$L(\phi)^* \begin{bmatrix} H(-\kappa,\delta) & 0 \\ 0 & H(\kappa,\delta) \end{bmatrix} L(\phi)$$

satisfies both boundary conditions.

Observe

$$H(\kappa, \delta) H(-\kappa, \delta) = \frac{\cos \pi (\kappa + \delta) \cos \pi (\kappa - \delta)}{\cos^2 \pi \kappa}$$
$$= \frac{\sin \pi (\frac{\ell}{m} + \kappa) \sin \pi (\frac{\ell}{m} - \kappa)}{\cos^2 \pi \kappa}$$

the condition for K to be positive-definite is $-\frac{\ell}{m} < \kappa < \frac{\ell}{m}$. The normalizing constant (so that $\langle t, t \rangle_G = 2$) is found to be $\frac{\cos \pi \kappa}{2\pi \cos \pi \delta}$. Note that K is integrable for a larger interval $-\frac{1}{2} < \kappa < \frac{1}{2}$.

The details are in arXiv:1306.6599 (C.D. Vector polynomials and a matrix weight associated to dihedral groups).