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A paper written by Richard Askey

” Graphs as an aid to understanding special functions” R Askey 1989

Zeros of Jacobi polynomials P
(α,β)
n and P

(α+t,β)
n

Askey: Interlacing of zeros holds for 0 < t ≤ 1

Conjecture that interlacing holds for t = 2
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Interlacing of zeros of orthogonal polynomials from
different families

Zeros of Laguerre polynomials Lαn and Lα+t
n , α > −1

For what (continuous) values of t are the zeros interlacing?

R Askey 2004 Irsee

Look at three term recurrence relations linking classical orthogonal
polynomials from different sequences

Kerstin Jordaan, KD 2007

Zeros of Laguerre Lαn and Lα+t
n interlace for 0 < t ≤ 2, α > −1
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Interlacing of zeros of Jacobi polynomials with varying
parameters α, β

Kerstin Jordaan, Norbert Mbuyi, KD 2008

Zeros of Jacobi polynomials P
(α,β)
n and P

(α+t,β−k)
n interlace for all

0 < t, k ≤ 2

Similar results on interlacing of zeros of P
(α,β)
n and P

(α+t,β−k)
n−1
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”Stieltjes” interlacing of zeros of OP’s

Definition

Let p and q be two real polynomials with real, simple, distinct zeros, deg
(p) >deg (q). The zeros of p and q interlace if each zero of q lies between
two successive zeros of p and there is at most one zero of q between any
two successive zeros of p

Stieltjes proved that within an orthogonal sequence, the zeros of pn and
pn−k interlace for all k ≥ 1, provided pn and pn−k have no common zeros
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”Stieltjes” interlacing of zeros of OP’s, different
parameters

KD 2012 Stieltjes interlacing holds between the positive (negative) zeros
of ultraspherical Cλn and Cλ+t

n−2 for 0 ≤ t ≤ 2, λ > −1
2 .

Fix k ∈ 0, 1, 2, 3. If Cλn and Cλ+k
n−3 have no common zeros, the zeros of

Cλ+k
n−3 plus two (symmetric) identified points interlace with the zeros of Cλn

Fix k ∈ 0, 1, 2, 3. If Cλn and Cλ+k
n−3 have common zeros, these occur at the

two (symmetric) identified points

Since common zeros cannot occur at the largest zero of Cλn these ”extra”
points give good lower bounds for the largest zero of Cλn
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Stieltjes interlacing and continuous variation in
parameter(s)

2013 Martin Muldoon and KD
Laguerre polynomials

Graphs as an aid to understanding special functions Askey 1988

Common zeros of L
(α)
n and L

(α+t)
n−k as functions of t

If α ≥ 0, k a positive integer with 1 ≤ k ≤ n − 2, then for each t in the

interval 0 ≤ t ≤ 2k , excluding the values of t for which L
(α)
n and L

(α+t)
n−k

have a common zero, the zeros of these two polynomials interlace.

The interval 0 ≤ t ≤ 2k is largest possible such that interlacing holds for
all n.
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Asymptotic zero distribution of hypergemetric
polynomials, Peter Duren and KD 1988

P Borwein and W Chen 1995

Asymptotic zero distribution as n→∞

∫ 1

0
[tk(1− t)s fz(t)]ndt

where fz(t) is polynomial in t, analytic in z .

Euler integral representation of 2F1(−n, b; c ; z),Re(c) > Re(b) > 0∫ 1

0
tb−1(1− t)c−b−1(1− zt)ndt

Let b = n + 1, c = 2n + 2. As n→∞, zeros of 2F1(−n, n + 1; 2n + 2; z)
cluster on the arc of the circle |z − 1| = 1,Re(z) > 1

2
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Calculations of the zeros of 2F1(−n, n + 1; 2n + 2; z)

For each n ∈ N, zeros of 2F1(−n, n + 1; 2n + 2; z) lie on the circle

{z : |z − 1| = 1,Re(z) > 1
2}

For each n ∈ N and all b > −1
2 , zeros of 2F1(−n, b; 2b; z) lie on the circle

{z : |z − 1| = 1}

R Askey

2F1(−n, b; 2b; 1− e2iθ) = n!e inθ

(2b)n
C

(b)
n (cosθ)
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Ultraspherical polynomials C
(b)
n (x), b > −1

2

{C (b)
n }∞n=0 is orthogonal on (−1, 1), weight function (1− x2)b−

1
2 , b > −1

2

2F1(−n, b; 2b; 1− e2iθ) = n!e inθ

(2b)n
C

(b)
n (cosθ)

For b > −1
2 , zeros of C

(b)
n (x) lie in (−1, 1) ⇒ zeros of 2F1(−n, b; 2b; z) lie

on the circle {z : |z − 1| = 1}
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Another identity linking C
(λ)
n and 2F1(−n, b; 2b;−)

2F1(−n, b; 2b; z) = n!2−2nzn

(b+ 1
2
)n

C
(λ)
n (1− 2

z ) where λ = 1
2 − b − n

b > −1
2 ⇔ λ < 1− n

2F1(−n, b; 2b; 2
1−w ) = n!2−n(1−w)−n

(b+ 1
2
)n

C
(λ)
n (w)

For b > −1
2 , zeros of 2F1(−n, b; 2b; z) on circle |z − 1| = 1

For λ < 1− n, zeros of C
(λ)
n (w) satisfy | 2

1−w − 1| = 1

For λ < 1− n, zeros of C
(λ)
n lie on the imaginary axis
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Pseudo ultraspherical polynomials C̃
(λ)
n

Define: C(λ)n (x) := (−i)nC (λ)
n (ix)

For λ < 1− n all zeros of C(λ)n are real.

For λ < −n the (finite) sequence {C(λ)n }−bλ+1c
n=1 is orthogonal on the real

line with respect to the weight function (1 + x2)λ−
1
2

Askey 1988 ”An integral of Ramanujan and orthogonal polynomials” J.
Indian Math.Soc.

The (complex) orthogonality of Jacobi polynomials in the special case
α = β = λ− 1

2
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Zeros of Pseudo ultraspherical polynomials C(λ)
n

Martin Muldoon and KD 2013

Monotonicity properties of the real zeros

Identification of sub-intervals of the real line that contain all the zeros
(depends on n and λ)

Suppose λ ≤ −(2 +
√

2)n + 1
2 . The zeros of C(λ)n lie in [−1, 1]

Interlacing (yes and no) across different families as λ varies continuously
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Thank you Dick

The most enjoyable 3 of many Askey Moments
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