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For a sequence of orthogonal polynomials you

would like to find

1. Orthogonality measure.

2. Raising and lowering operators. Rodrigues

formulas.

3. A second order Sturm–Liouville type equa-

tion.

4. Connection relations.

5. Coefficients in the linearization of products

pm(x)pn(x) =
∑
k

c(m,n, k)pk(x).



6. Generating functions
∑
n pn(x)λntn, for suit-

able λn.

7. Poisson kernel
∑
pn(x)pn(y)rn, pn are or-

thonormal.

8. Asymptotics as the degree →∞.

9. Plancherel–Rotach asymptotics if applica-

ble (unbounded support).

Notation:

(a; q)n =
n−1∏
j=0

(1− aqj), n = 0,1, · · · ,or∞,

(a1, a2, · · · , am; q)n =
m∏
k=1

(ak; q)n



The Askey–Wilson memoir:

w(cos θ; a)dx =
(e2iθ, e−2iθ; q)∞∏4

j=1(ajeiθ, aje−iθ; q)∞
dθ.

Notation: x = cos θ versus z = eiθ.

f̆(z) = f((z + 1/z)/2).

For e(x) = x, ĕ(z) = (z + 1/z)/2.

(Dqf)(x) =
f̆(q1/2z)− f̆(q−1/2z)

(q1/2 − q−1/2)(z − 1/z)/2
.

For example

DqTn(x) =
qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x).



I tried to understand the Askey–Wilson opera-

tor and the Askey–Wilson integral. I want to

share some of the findings with you. Most of

the work is joint work.∫ π
0

(e2iθ, e−2iθ; q)∞∏4
j=1(ajeiθ, aje−iθ; q)∞

dθ

=
2π(a1a2a3a4; q)∞

(q; q)∞
∏

1≤j<k≤4(ajak; q)∞
.

In 1893–1895 Rogers studied the q-Hermite

polynomials

∞∑
n=0

Hn(cos θ|q)
tn

(q; q)n
=

1

(teiθ, te−iθ; q)∞
.

He proved the linearization formula

Hm(x|q)Hn(x|q)

=
m∧n∑
k=0

(q; q)m(q; q)n
(q; q)k(q; q)m−k(q; q)n−k

Hm+n−2k(x|q)





Azor–Gillis–Victor and independently Godsil (1982)

proved that the number of perfect matchings

is

2−
∑
j nj/2

√
π

∫
R
e−x

2
m∏
j=1

Hnj(x)dx.

This means that the following integral is a q-

analogue of the number of perfect matchings

whose generating function is∫ π
0

(e2iθ, e−2iθ; q)∞∏m
j=1(ajeiθ, aje−iθ; q)∞

dθ.

the coefficient of
∏m
j=1 a

nj
j /(q; q)nj is

∫ π
0

(e2iθ, e−2iθ; q)∞
m∏
j=1

Hnj(cos θ|q))dθ.

After some scaling we see that this =∑
Perfect Matchings

qcrossing number.(1)

Ismail–Stanton–Viennot (1987).



Problem: The polynomial (1) is symmetric in

n1, n2, · · · , nm. It is∫
R
w(x)

m∏
j=1

H̃nj(x|q)dx.

Fact:

(q; q)∞
2π

∫ π
0

(e2iθ, e−2iθ; q)∞∏5
j=1(ajeiθ, aje−iθ; q)∞

dθ

=
(a1a2a3a5, a2a3a4a5, a1a4; q)∞∏

1≤j<k≤5(ajak; q)∞

×3φ2

(
a2a3, a2a5, a3a5
a1a2a3a5, a2a3a4a5

∣∣∣∣∣ q, a1a4

)
.

You get 3φ2 transformations.



The Askey–Wilson operators: Null space is

nontrivial, no two-sided inverse. What about

one sided inverse. d
dx

∫ x
a f(y)dy = f(x). Ana-

logue of
∫ x
a . Also we need an analogue of inte-

gration by parts. This is essentially computing

the adjoint of Dq.

We shall use the inner product (Chebyshev)

〈f, g〉 :=
∫ 1

−1
f(x) g(x)

dx√
1− x2

.

We require f̆(z) to be defined for
∣∣∣q±1/2z

∣∣∣ = 1

as well as for |z| = 1. Thus Dq is defined on:

Hν :=
{
f : f((z + 1/z)/2) analytic in qν ≤ |z| ≤ q−ν

}
.

Theorem 1. For f , g ∈ H1/2 we have

〈Dq f, g〉 =
π
√
q

1− q
[f((q1/2 + q−1/2)/2)g(1)

−f(−(q1/2 + q−1/2)/2)g(−1)]

−
〈
f,

√
1− x2Dq(g(x)(1− x2)−1/2)

〉
.



Analyze Sturm–Liouville equations. Brown–

Evans–Ismail. Later work with Christiansen,

Christainsen and Koelink, Brown–Chriatinsen.

One sided inverse:

DqTn(x) =
qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x).

Define D−1
q by

D−1
q

∞∑
n=0

fnUn(x) =
∞∑
n=1

fn−1
q1/2 − q−1/2

qn/2 − q−n/2
Tn(x).

This defines a map from L2[(1− x2)1/2,−1,1]

into L2[(1 − x2)−1/2,−1,1]. Indeed it has the

representation

(D−1
q g)(cos θ)

=
1− q
4π
√
q

∫ π
−π

ϑ′4((θ + φ)/2,
√
q)

ϑ4((θ + φ)/2,
√
q)
g(cos θ) sin θ dθ.

Moreover DqD−1
q = identity.



One can diagonalize this integral operator. Sim-

ilarly for q-ultraspherical polynomials, Ismail–

Zhang, and the continuous q-Jacobi polyno-

mials, Ismail–Rahman–Zhang. The kernel for

the full Askey–Wilson is also known, Ismail–

Rahman. This led to a q-analogue od the ex-

ponential function.



Taylor Series.

The Askey–Wilson basis is {(aeiθ, ae−iθ; q)n}.
Also

Dq(aeiθ, ae−iθ; q)n

= −
2a(1− qn)

1− q
(aq1/2eiθ, aq1/2e−iθ; q)n−1.

Theorem 2. Let f be a polynomial, then

f(x) =
n∑

k=0

fk(aeiθ, ae−iθ; q)k,

where

fk =
(q − 1)k

(2a)k(q; q)k
q−k(k−1)/4

(
Dkqf

)
(xk)

with

xk :=
1

2
(aqk/2 + q−k/2/a).

When f(x) = (beiθ, be−iθ; q)n we get the q-Pfaff–

Saalschütz theorem.



Can we build the theory of q-series this way?

Extension to non polynomial cases. This is an

interpolation problem.

A classic is to reconstruct an entire function

from its values at the integers. Not always

possible because sin(πz)
πz = 0 at z = ±1,±2, · · · .

The entire function is unique if logM(f, r) =

cr[1+o(1)], c < π. Gelfond and his school con-

sidered interpolation at q−n, |q| < 1. Our inter-

polation points are

xk :=
1

2
(aqk/2 + q−k/2/a).

There is an expansion theorem when M(f, r)

has certain growth condition (Ismail–Stanton).



S. Cooper 1996 proved by induction

Dnq f(x) =
(2z)nqn(3−n)/4

(q − 1)n

×
n∑

k=0

[
n
k

]
q

qk(n−k)z−2kf̆(qk−n/2z)(
qn−2k+1z−2; q

)
k

(
z2q2k+1−n; q

)
n−k

.

Application 1: Apply this to

f(cos θ) =
(αeiθ, αe−iθ; q)∞
(βeiθ, βe−iθ; q)∞

you get the 6φ5 summation theorem. The Ro-
drigues formula is

w(x; a | q) pn(x; a | q)

= (
q − 1

2
)nqn(n−1)/4Dnq

[
w(x; qn/2a | q)

]
.

Appiication 2: The Rodrigues formula for the
Askey–Wilson polynomials gives the 8φ7 to 4φ3
transformation (Watson).

Expansions in the Askey–Wilson polynomials.

f(x) =
∞∑
n=0

fn pn(x; a).



If Dqf acts nicely on f we can find the coeffi-

cients using the Rodrigues formula.

Theorem 3. (Ismail–Stanton 2013) We have

the following expansion

p+1φp

(
a1, · · · , ap−1, t4e

iθ, t4e
−iθ

t1t4, t2t4, t3t4, b1, · · · , bp−3

∣∣∣∣∣ q, ζ
)

=
∞∑
k=0

pk(cos θ; t|q)
(a1, · · · , ap−1; q)k

(t1t4, t2t4, t3t4, b1, · · · , bp−3; q)k

×
(−t4ζ)kq(

k
2)

(q, t1t2t3t4qk−1; q)k

×p−1φp−2

(
qka1, · · · , qkap−1

qkb1, · · · , qkbp−3, t1t2t3t4q
2k

∣∣∣∣∣ q, ζ
)
.

The Andrews formula (2012) is the case p = 4

in Theorem 3 with the parameter identification

a1 = q−N , a2 = ρ1, a3 = ρ2, b1 = ρ1ρ2q
−N/a, ζ = q.

In this case the 3φ2 can be summed by the

q-Pfaff–Saalschütz theorem.



Fields and Wimp (1961).

∞∑
m=0

ambm
(zw)m

m!

=
∞∑
n=0

(−w)n

n! (γ + n)n

 ∞∑
r=0

bn+rw
r

r! (γ + 2n+ 1)r


×

 n∑
s=0

(−n)s(n+ γ)s
s!

asz
s

 .
This version is due to Verma 1972. Lagrange

inversion (Gessel–Stanton).

The following general expansion follows from

q-Dixon’s theorem (4φ3)

∞∑
n=0

AnBn
(t4z, t4/z; q)n

(q; q)n
ζn

=
∞∑
k=0

(−ζ)kq(
k
2)

(q, Cqk−1; q)k

 ∞∑
n=0

Bn+kζ
n

(q, Cq2k; q)n


×

 k∑
j=0

(q−k, Cqk−1; q)j
(q; q)j

Aj(t4z, t4/z; q)jq
j

 .



Moments of the Askey–Wilson weight func-

tions. Used by Corteel–Stanley–Stanton–Williams.

The Stieltjes electrostatic equilibrium leads to

system is

β + 1

1 + xj
−
α+ 1

1− xj
+

∑
1≤k≤n, k 6=j

2

xj − xk
= 0,

for 1 ≤ j ≤ n. Stieltjes used y =
∏n
j=1(x − xj)

and ∑
1≤k≤n, k 6=j

2

xj − xk
=
y′′(xj)

y′(xj)
.

He turned this system to

(1− x2)y′′+ (β − α− x(α+ β + 2))y′+ λny = 0,

at x = x1, · · · , xn. By choosing λ this becomes

valid for all x. Thus the equilibrium points are

at the zeros of a Jacobi polynomial P (α,β)
n (x).



For the XXZ model the Bethe Ansatz equa-

tions are (1 ≤ k ≤ n),sin
(
λk + 1

2η
)

sin
(
λk − 1

2η
)
2N

=
n∏

j 6=k,j=1

sin
(
λk + λj + η

)
sin

(
λk − λj + η

)
sin

(
λk + λj − η

)
sin

(
λk − λj − η

) .

Change the system of equations to

2N∏
`=1

sin (λk + s`η)

sin (λk − s`η)

=
n∏

j 6=k,j=1

sin
(
λk + λj + η

)
sin

(
λk − λj + η

)
sin

(
λk + λj − η

)
sin

(
λk − λj − η

) ,
for 1 ≤ k ≤ n, where s`’s are 2N complex num-

bers. Notation:

q = e2iη, θ = 2λ, tj = q−sj .



w(cos θ; t1, · · · , t2N)

:=
(eiNθ, e−iNθ; qN/2)∞

sin(Nθ/2)
2N∏
j=1

(tjeiθ, tje−iθ; q)∞

.

Notation t = (t1, t2, · · · , t2N).

1

w(x; t)
Dq

(
w(x; q1/2t)Dq

)
y(x) = r(x)y(x),

where r(x) is a polynomial of degree ≤ N − 2.

Π(z; t)D2
qy + Φ(z; t)AqDqy = r(x)y.

The solution of the Bethe Ansatz equations is

at the zeros of the polynomial solutions.

Joint work with Lin and Roan.


