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For a sequence of orthogonal polynomials you
would like to find

1. Orthogonality measure.

2. Raising and lowering operators. Rodrigues
formulas.

3. A second order Sturm-—Liouville type equa-
tion.

4. Connection relations.

5. Coefficients in the linearization of products

pm(2)pn(z) =) c(m,n, k)py(z).
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6. Generating functions Y, pn(x)Ant™, for suit-
able \p.

7. Poisson kernel > pn(x)pn(y)r™, pn are or-
thonormal.

8. Asymptotics as the degree — 0.

9. Plancherel—Rotach asymptotics if applica-
ble (unbounded support).
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The Askey—Wilson memoir:
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Notation: z = cos@ versus z = e,
f(z) =f((z4+1/2)/2).

Fore(x) =z, e(z)=((=z+1/z)/2.
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I tried to understand the Askey—Wilson opera-
tor and the Askey—Wilson integral. I want to
share some of the findings with you. Most of
the work is joint work.
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In 1893—1895 Rogers studied the ¢-Hermite
polynomials
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He proved the linearization formula
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Azor—Gillis—Victor and independently Godsil (1982)
proved that the number of perfect matchings
IS
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This means that the following integral is a g-
analogue of the number of perfect matchings
whose generating function is
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After some scaling we see that this =

Crossing number
(1) > q g -
Perfect Matchings

Ismail-Stanton—Viennot (1987).



Problem: The polynomial (1) is symmetric in

ni,Mo, - ,Nm. It IS

/IR w(x) 1;[1 ﬁnj (z|q)dz.
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Fact:
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You get 3¢5 transformations.



The Askey—Wilson operators: Null space is
nontrivial, no two-sided inverse. What about
one sided inverse. %fj’ f(y)dy = f(x). Ana-
logue of [7. Also we need an analogue of inte-
gration by parts. This is essentially computing
the adjoint of Dy.

We shall use the inner product (Chebyshev)
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We require f(z) to be defined for )qil/Qz‘ =1
as well as for |z| = 1. Thus Dy is defined on:

H, = {f : f((z4+1/2)/2) analytic in ¢” < |z| < q‘”}.

Theorem 1. For f, g € Hy/, we have
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Analyze Sturm-—Liouville equations. Brown—
Evans—Ismail. Later work with Christiansen,
Christainsen and Koelink, Brown—Chriatinsen.

One sided inverse:
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Define D1 by
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This defines a map from Lo[(1 — z2)1/2, —1, 1]
into Lo[(1 —22)~1/2 —1 1]. Indeed it has the
representation
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Moreover DD, 1 = identity.

g(cosf)sinédeb.



One can diagonalize this integral operator. Sim-
ilarly for g-ultraspherical polynomials, Ismail—
Zhang, and the continuous ¢g-Jacobi polyno-
mials, Ismail-Rahman—Zhang. The kernel for
the full Askey—Wilson is also known, Ismail—
Rahman. This led to a g-analogue od the ex-
ponential function.



Taylor Series.

The Askey—Wilson basis is {(ae’,ae=": ¢)p}.
Also
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Theorem 2. Let f be a polynomial, then
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When f(z) = (be®?, be=; q),, we get the g-Pfaff—
Saalschutz theorem.



Can we build the theory of g-series this way?

Extension to non polynomial cases. This is an
interpolation problem.

A classic is to reconstruct an entire function
from its values a1_: the integers. Not always
possible because % =0atz==41,42,--.

The entire function is unique if logM(f,r) =
cr[l14+0(1)],c < w. Gelfond and his school con-
sidered interpolation at ¢, |q| < 1. Our inter-
polation points are

1
2, 1= (g™ + ¢ /2 /a).

There is an expansion theorem when M(f,r)
has certain growth condition (Ismail-Stanton).



S. Cooper 1996 proved by induction
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Application 1: Apply this to
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you get the g5 summation theorem. The Ro-
drigues formula is

f(cosO) =

w(x;alq)pn(x;alq)
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Appiication 2: The Rodrigues formula for the

Askey—Wilson polynomials gives the g¢7 to 4203
transformation (Watson).

Expansions in the Askey—Wilson polynomials.
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If Dqf acts nicely on f we can find the coeffi-
cients using the Rodrigues formula.
Theorem 3. (Ismail-Stanton 2013) We have
the following expansion
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The Andrews formula (2012) is the case p = 4

in Theorem 3 with the parameter identification
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In this case the 3¢o can be summed by the
q-Pfaff—Saalschutz theorem.



Fields and Wimp (1961).
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This version is due to Verma 1972. Lagrange
inversion (Gessel—Stanton).

The following general expansion follows from
g-Dixon’s theorem (4¢3)
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Moments of the Askey—Wilson weight func-
tions. Used by Corteel-Stanley—Stanton—Williams.

The Stieltjes electrostatic equilibrium leads to
system is

+1 a+1 2
B+1 Py
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= 0,

for 1 < j7 < n. Stieltjes used y = H?:l(fﬂ — ;)
and

> 2 y'(z))
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He turned this system to

(1-22)y" + (B—a—z(a+B+2)y + Iy =0,

at x = x1, - ,xn. By choosing A this becomes
valid for all . Thus the equilibrium points are
at the zeros of a Jacobi polynomial Péo"ﬁ)(:c).



For the XXZ model the Bethe Ansatz equa-
tions are (1 <k <n),

Change the system of equations to

2N sin (A + sm)
21;[1 sin (A, — syn)
no o sin (A + Aj 4 1) sin (A — A; + 1)
jkj=1 SN (Ag +Xj —n)sin (A, =X —n)
for 1 <k <n, where sy’'s are 2N complex num-
bers. Notation:
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Notation t = (t1,to, -+ ,ton).
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where r(x) is a polynomial of degree < N — 2.

Dy (w(z; ¢1/?t)Dq) y(z) = r(x)y(z),

N(z; t)D2y + ®(z; t) AqDqy = r(x)y.

T he solution of the Bethe Ansatz equations is
at the zeros of the polynomial solutions.

Joint work with Lin and Roan.



