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The Rogers—Ramanujan identities, first
proved by Rogers in 1894, are the pair of
g-series identities

and
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Schur and MacMahon independently observed
that the Rogers—Ramanujan identities have a
combinatorial interpretation in terms of
integer partitions.

A partition A = (A1, A2, ...) is a weakly decreasing sequence of
nonnegative integers, such that only finitely many \; > 0.

If |[A] := A1 + Ao + - -+ = n we say that \ is a partition of n.
For example, there are 7 partitions of 5:
(3, (41), (32, (B,11),

(2,2,1), (2,1,1,1), (1,1,1,1,1)



(First) Rogers—Ramanujan identity.
The number of partitions of n such that consecutive parts differ by at least
2 is equinumerous to the number of partitions of n such that parts are

congruent to =1 modulo 5.

For example, for n = 9 both sets of partitions have cardinality of 5:
9), 1), (7.2), (6,3), (53.1)

(9, (6.1°), (4%1), (471°). (1°)
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(Second) Rogers—Ramanujan identity.

The number of partitions of n such that consecutive parts differ by at least
2 and such that no 1s occur is equinumerous to the number of partitions of
n such that parts are congruent to +2 modulo 5.




Gordon generalised the combinatorial version
of the Rogers—Ramanujan identities to

Gordon’s partition theorem.

The number of partitions A = (A1, A2, ...) of n such that
Aj = Ajym = 2

and such that at most / — 1 1s occur is equinumerous to the number
of partitions of n such that parts are not congruent to 0, +/ modulo
2m+ 3.

v

For m =1 and i = 2 this is the first Rogers—Ramanujan identity and for
m =1 and / = 1 this is the second Rogers—Ramanujan identity.



Andrews discovered the g-series analogue of Gordon's
partition theorem. E-,-

For n € No U {oo} let
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and define the “theta function”
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In the 1980s Lepowsky and Milne observed that the Rogers—Ramanujan
and Andrews—Gordon g-series arise in the representation theory of affine
Kac—Moody algebras.

Let A(ll) be the affine Kac—Moody algebra with Cartan matrix and

Dynkin diagram
C = ( ; _§> o)e
- Qo 7

If V(A) is the integrable highest weight module of A(ll) of highest weight
A= (2m—i+2)No+ (i —1)A; and ¢ the homomorphism (principal
specialisation)
¢ Clle™, "] = Cllqll
e Y g
then

2m+3; q

(@)oo

(6: ¢*) s ¢(echarV(A)) = (g %)



The previous observation resulted in a new,
representation theoretic derivation of the
Rogers—Ramanujan identities by Lepowsky
and Wilson. A complicating factor in their
proof is the occurrence of the unwanted
infinite product in

(9: ¢°)oc ¢(e Achar V(A))

and to this day it is not clear how to extend their approach to obtain

Rogers—Ramanujan identities for Agl).



Fortunately, there is another Kac—Moody algebra that realises the
Rogers—Ramanujan and Andrews—Gordon g-series.

Let Ag) be the twisted affine Kac—Moody algebra with Cartan matrix
and Dynkin diagram

2 —4
C= (—1 2) Qg Qi

If V(A) is the integrable highest weight module of Af) of highest weight
A= (2m—2i+2)Ag + (i — 1)A1 and ¢ the specialisation

¢ :Clle™*,e"]] = C[[q]]
e N -1, e Mg

then



It is this second interpretation of the Rogers—Ramaujan and
Andrews—Gordon g-series that we will extend to Agzn):

Qo O Qp



It is this second interpretation of the Rogers—Ramaujan and
Andrews—Gordon g-series that we will extend to Agzn):

Qo O Qp

Generalising the specialisation ¢ to arbitrary rank by
e~ —-1 and e Y —q (1<i<n)

we have
p(eMch V(N)) = W@ [To(a >+ q")
R !
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where Kk =2X\g+2n+1, A\g > A1 > --- > A\, and
A= 2)\n/\O + (An—l - )\n)/\l R ()\O - /\I)An



But what is the corresponding sum side?



But what is the corresponding sum side?

Stembridge noted that the sum side of the
Rogers—Ramanujan identities and the i = m+ 1 and
i =1 cases of the Andrews—Gordon identities can be
written in a compact form using the Hall-Littlewood
symmetric functions Py(xi, X2, .. .; q).

For A a partition, let m; = m;(\) be the multiplicity of parts of size /.

For example, if A\ = (4,4,3,2,1,1,1) then m; =3, my=m3 =1, my =2
and m; =0 for j > 5.

It is easy to see that m; = A} — A\j_; where X is the conjugate of A.

N =




For A a partition, define the power sum symmetric function
Px = Hizl Px; by
pr(Xl,Xz,...) :X{+X2r+"'

The power sums may be used to define a g-analogue of the Hall scalar
product on the ring of symmetric function A:

i”’"m,-!
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i>1

Then the Hall-Littlewood symmetric functions P, are the unique
symmetric functions such that

PACxi ) = ma(x) + > unu(@)m ()
pn<A

and
(Px,Pu)q =0 for A p

Here < refers to the dominance order on partitions and m, is the
monomial symmetric function.



For example,
P@2,1)(x: ) = m1)(x) + (1 — q)(q + 2)m(1,1,1)(x)
so that
P(2,1)(X1,X27X3; q) = X12X2 + X22X1 + X12X3 + X32X1 + X22X3 + X§X2
+ (1= q)(q + 2)x1x0x3
The principal specialisation formula for Hall-Littlewood polynomials gives

q"M(q),
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AL A (@) =10 br(q)

where
() =3 (-1 and by(g) = [J(@)m
i>1 i>1
For example
aqlq
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1
Pon(L g, ...iq)= =9 —ql+2q+3¢2+--)
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If we interpret (r1, ra,...,rm) as a partition \’ of length at most m, so
that r; — lig1 = )\: — )‘:'—&-1 = m;j, then
e

_ \)\|P 2 .
=q oa(1,9,9%,...:9)
(q)nfrz e (q)rm—lfrm(q)rm

and
qrf+~~~+r3n+r1+~~+rm

(q)nfrz o (q)r,,,_17r,,,(q)rm

=@M Pu(1,9,4%...:9)

Therefore

(Two of the) Andrews—Gordon identities. For o = 0,1,
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We are now ready for our main theorem.
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AS,) Rogers-Ramanujan and Andrews—Gordon identities.
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Agi) RR and AG identities (continued).
For k =2m+2n+1
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The proof of the theorem is long and technical. The key step is to prove
that the unspecialised characters

e McharV(A) for A= mA, and A =2mA,

of A(;,) can be expressed in terms of the Hall-Littlewood polynomials.

Through specialisation the Agi) Rogers—Ramanujan and Andrews—Gordon
identities then follow.



Congratulations Dick




