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The Rogers–Ramanujan identities, first
proved by Rogers in 1894, are the pair of
q-series identities

∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=
∞∏
n=1

1

(1− q5n−1)(1− q5n−4)

and
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qn
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(1− q) · · · (1− qn)
=
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n=1

1

(1− q5n−2)(1− q5n−3)



Schur and MacMahon independently observed
that the Rogers–Ramanujan identities have a
combinatorial interpretation in terms of
integer partitions.

A partition λ = (λ1, λ2, . . . ) is a weakly decreasing sequence of
nonnegative integers, such that only finitely many λi > 0.

If |λ| := λ1 + λ2 + · · · = n we say that λ is a partition of n.

For example, there are 7 partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1),

(2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)



(First) Rogers–Ramanujan identity.

The number of partitions of n such that consecutive parts differ by at least
2 is equinumerous to the number of partitions of n such that parts are
congruent to ±1 modulo 5.

For example, for n = 9 both sets of partitions have cardinality of 5:

(9), (8, 1), (7, 2), (6, 3), (5, 3, 1)

(9), (6, 13), (42, 1), (4, 15), (19)

(Second) Rogers–Ramanujan identity.

The number of partitions of n such that consecutive parts differ by at least
2 and such that no 1s occur is equinumerous to the number of partitions of
n such that parts are congruent to ±2 modulo 5.
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Gordon generalised the combinatorial version
of the Rogers–Ramanujan identities to

Gordon’s partition theorem.

The number of partitions λ = (λ1, λ2, . . . ) of n such that

λj − λj+m ≥ 2

and such that at most i − 1 1s occur is equinumerous to the number
of partitions of n such that parts are not congruent to 0,±i modulo
2m + 3.

For m = 1 and i = 2 this is the first Rogers–Ramanujan identity and for
m = 1 and i = 1 this is the second Rogers–Ramanujan identity.



Andrews discovered the q-series analogue of Gordon’s
partition theorem.

For n ∈ N0 ∪ {∞} let

(q)n = (q; q)n = (1− q)(1− q2) · · · (1− qn)

and define the “theta function”

θ(z ; q) = (z ; q)∞(q/z ; q)∞ =
1

(q)∞

∑
n∈Z

(−z)nq(n
2)

The Andrews–Gordon identities.

For 1 ≤ i ≤ m + 1

∑
r1≥···≥rm≥0

qr
2
1 +···+r2

m+ri+···+rm

(q)r1−r2 · · · (q)rm−1−rm(q)rm
=

(q2m+3; q2m+3)∞
(q)∞

θ(qi ; q2m+3)



In the 1980s Lepowsky and Milne observed that the Rogers–Ramanujan
and Andrews–Gordon q-series arise in the representation theory of affine
Kac–Moody algebras.

Let A
(1)
1 be the affine Kac–Moody algebra with Cartan matrix and

Dynkin diagram

α0 α1

C =

(
2 −2
−2 2

)
If V (Λ) is the integrable highest weight module of A

(1)
1 of highest weight

Λ = (2m − i + 2)Λ0 + (i − 1)Λ1 and φ the homomorphism (principal
specialisation)

φ : C[[e−α0 , e−α1 ]]→ C[[q]]

e−αi 7→ q

then

(q; q2)∞ φ
(
e−ΛcharV (Λ)

)
=

(q2m+3; q2m+3)∞
(q)∞

θ(qi ; q2m+3)



The previous observation resulted in a new,
representation theoretic derivation of the
Rogers–Ramanujan identities by Lepowsky
and Wilson. A complicating factor in their
proof is the occurrence of the unwanted
infinite product in

(q; q2)∞ φ
(
e−ΛcharV (Λ)

)
and to this day it is not clear how to extend their approach to obtain

Rogers–Ramanujan identities for A
(1)
n .



Fortunately, there is another Kac–Moody algebra that realises the
Rogers–Ramanujan and Andrews–Gordon q-series.

Let A
(2)
2 be the twisted affine Kac–Moody algebra with Cartan matrix

and Dynkin diagram

α0 α1
C =

(
2 −4
−1 2

)

If V (Λ) is the integrable highest weight module of A
(2)
2 of highest weight

Λ = (2m − 2i + 2)Λ0 + (i − 1)Λ1 and φ the specialisation

φ : C[[e−α0 , e−α1 ]]→ C[[q]]

e−α0 7→ −1, e−α1 7→ q

then

φ
(
e−ΛcharV (Λ)

)
=

(q2m+3; q2m+3)∞
(q)∞

θ(qi ; q2m+3)



It is this second interpretation of the Rogers–Ramaujan and

Andrews–Gordon q-series that we will extend to A
(2)
2n :

α0 α1 αn

Generalising the specialisation φ to arbitrary rank by

e−α0 7→ −1 and e−αi 7→ q (1 ≤ i ≤ n)

we have

φ
(
e−Λ chV (Λ)

)
=

(qκ; qκ)n∞
(q)n∞

n∏
i=1

θ
(
qλ0−λi+i ; qκ

)
×

∏
1≤i<j≤n

θ
(
qλi−λj−i+j , qλi+λj−i−j+2n+1; qκ

)
,

where κ = 2λ0 + 2n + 1, λ0 ≥ λ1 ≥ · · · ≥ λn and

Λ = 2λnΛ0 + (λn−1 − λn)Λ1 + · · ·+ (λ0 − λ1)Λn
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But what is the corresponding sum side?

Stembridge noted that the sum side of the
Rogers–Ramanujan identities and the i = m + 1 and
i = 1 cases of the Andrews–Gordon identities can be
written in a compact form using the Hall–Littlewood
symmetric functions Pλ(x1, x2, . . . ; q).

For λ a partition, let mi = mi (λ) be the multiplicity of parts of size i .

For example, if λ = (4, 4, 3, 2, 1, 1, 1) then m1 = 3, m2 = m3 = 1, m4 = 2
and mi = 0 for i ≥ 5.

It is easy to see that mi = λ′i − λ′i+1 where λ′ is the conjugate of λ.

λ′ =
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For λ a partition, define the power sum symmetric function
pλ =

∏
i≥1 pλi by

pr (x1, x2, . . . ) = x r1 + x r2 + · · ·

The power sums may be used to define a q-analogue of the Hall scalar
product on the ring of symmetric function Λ:

〈pλ, pµ〉q = δλµ
∏
i≥1

imimi !

1− qλi

Then the Hall–Littlewood symmetric functions Pλ are the unique
symmetric functions such that

Pλ(x ; q) = mλ(x) +
∑
µ<λ

uλµ(q)mµ(x)

and
〈Pλ,Pµ〉q = 0 for λ 6= µ

Here < refers to the dominance order on partitions and mλ is the
monomial symmetric function.



For example,

P(2,1)(x ; q) = m(2,1)(x) + (1− q)(q + 2)m(1,1,1)(x)

so that

P(2,1)(x1, x2, x3; q) = x2
1 x2 + x2

2 x1 + x2
1 x3 + x2

3 x1 + x2
2 x3 + x2

3 x2

+ (1− q)(q + 2)x1x2x3

The principal specialisation formula for Hall–Littlewood polynomials gives

Pλ(1, q, . . . , qn−1; q) =
qn(λ)(q)n

(q)n−l(λ)bλ(q)

where
n(λ) =

∑
i≥1

(i − 1)λi and bλ(q) =
∏
i≥1

(q)mi

For example

P(2,1)(1, q, q2; q) =
q(q)3

(q)3
1

= q(1 + q)(1 + q + q2)

P(2,1)(1, q, q2, . . . ; q) =
q

(q)2
1

=
q

(1− q)2
= q(1 + 2q + 3q2 + · · · )



If we interpret (r1, r2, . . . , rm) as a partition λ′ of length at most m, so
that ri − ri+1 = λ′i − λ′i+1 = mi , then

qr
2
1 +···+r2

m

(q)r1−r2 · · · (q)rm−1−rm(q)rm
= q|λ|P2λ(1, q, q2, . . . ; q)

and
qr

2
1 +···+r2

m+r1+···+rm

(q)r1−r2 · · · (q)rm−1−rm(q)rm
= q2|λ|P2λ(1, q, q2, . . . ; q)

Therefore

(Two of the) Andrews–Gordon identities. For σ = 0, 1,

∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q2, . . . ; q) =
(q2m+3; q2m+3)∞

(q)∞
θ
(
q(1−σ)m+1; q2m+3

)



We are now ready for our main theorem.

A
(2)
2n Rogers–Ramanujan and Andrews–Gordon identities.

For κ = 2m + 2n + 1

∑
λ

λ1≤m

q|λ|P2λ
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θ
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1≤i<j≤m

θ
(
qj−i , qi+j+1; qκ

)
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A
(2)
2n RR and AG identities (continued).

For κ = 2m + 2n + 1
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The proof of the theorem is long and technical. The key step is to prove
that the unspecialised characters

e−ΛcharV (Λ) for Λ = mΛn and Λ = 2mΛ0

of A
(2)
2n can be expressed in terms of the Hall–Littlewood polynomials.

Through specialisation the A
(2)
2n Rogers–Ramanujan and Andrews–Gordon

identities then follow.



Congratulations Dick


