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Classical orthogonal polynomials

The (very) classical orthogonal polynomials are those of Jacobi,
Laguerre and Hermite.

Their weight functions satisfy the
so-called Pearson equation

[σ(x)w(x)]′ = τ(x)w(x)

where σ is a polynomial of degree ≤ 2 and τ a polynomial of
degree 1 and boundary conditions σw(a) = 0 = σw(b).

w σ τ

Hermite e−x2
1 −2x

Laguerre xαe−x x −x + α + 1

Jacobi (1− x)α(1 + x)β 1− x2 −x(α + β + 2)− α + β
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Generalizations

If one replaces the derivative by a difference, q-difference, divided
difference (Askey-Wilson) operator then one gets all the orthogonal
polynomials in the Askey table.

(not the ASCII table!)

What about replacing the first derivative in the Pearson equation
by a second derivative?

Problem (A.P. Prudnikov, 1992)

Construct the orthogonal polynomials for the weight
ρν = 2xν/2Kν(2

√
x) on [0,∞) for ν ≥ 0, where Kν is the

modified Bessel function of the second kind, satisfying

x2y ′′(x) + xy ′(x)− (x2 + ν2)y(x) = 0.

Walter Van Assche Multiple orthogonal polynomials



Generalizations

If one replaces the derivative by a difference, q-difference, divided
difference (Askey-Wilson) operator then one gets all the orthogonal
polynomials in the Askey table. (not the ASCII table!)

What about replacing the first derivative in the Pearson equation
by a second derivative?

Problem (A.P. Prudnikov, 1992)

Construct the orthogonal polynomials for the weight
ρν = 2xν/2Kν(2

√
x) on [0,∞) for ν ≥ 0, where Kν is the

modified Bessel function of the second kind, satisfying

x2y ′′(x) + xy ′(x)− (x2 + ν2)y(x) = 0.

Walter Van Assche Multiple orthogonal polynomials



Generalizations

If one replaces the derivative by a difference, q-difference, divided
difference (Askey-Wilson) operator then one gets all the orthogonal
polynomials in the Askey table. (not the ASCII table!)

What about replacing the first derivative in the Pearson equation
by a second derivative?

Problem (A.P. Prudnikov, 1992)

Construct the orthogonal polynomials for the weight
ρν = 2xν/2Kν(2

√
x) on [0,∞) for ν ≥ 0, where Kν is the

modified Bessel function of the second kind, satisfying

x2y ′′(x) + xy ′(x)− (x2 + ν2)y(x) = 0.

Walter Van Assche Multiple orthogonal polynomials



Generalizations

If one replaces the derivative by a difference, q-difference, divided
difference (Askey-Wilson) operator then one gets all the orthogonal
polynomials in the Askey table. (not the ASCII table!)

What about replacing the first derivative in the Pearson equation
by a second derivative?

Problem (A.P. Prudnikov, 1992)

Construct the orthogonal polynomials for the weight
ρν = 2xν/2Kν(2

√
x) on [0,∞) for ν ≥ 0, where Kν is the

modified Bessel function of the second kind, satisfying

x2y ′′(x) + xy ′(x)− (x2 + ν2)y(x) = 0.

Walter Van Assche Multiple orthogonal polynomials



Multiple orthogonal polynomials

The problem statement is not natural. It is really a problem for a
system of first order differential equations

(x−νρν)
′ = −x−ν−1ρν+1

ρ′ν+1 = −ρν

and involves two weight functions on [0,∞)

ρν(x) = 2xν/2Kν(2
√

x), ρν+1(x) = 2x (ν+1)/2Kν+1(2
√

x).

The natural question is to ask for the multiple orthogonal
polynomials for the two weights (xαρν , x

αρν+1) on [0,∞), with
α > −1 and ν ≥ 0.
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Multiple orthogonal polynomials

Multiple orthogonal polynomials of type 2 satisfy∫ ∞

0
Pn,m(x)xkxαρν(x) dx = 0, k = 0, 1, . . . , n − 1,∫ ∞

0
Pn,m(x)xkxαρν+1(x) dx = 0, k = 0, 1, . . . ,m − 1,

where Pn,m is a monic polynomial of degree m + n.

Type 1 multiple orthogonal polynomials are the pair (An,m,Bn,m),
with deg An,m = n and deg Bn,m = m, satisfying∫ ∞

0
[An,m(x)ρν(x)+Bn,m(x)ρν+1(x)]xαxk dx = 0, k = 0, 1, . . . , n+m.

and we often write

Qn,m(x) = An,m(x)ρν(x) + Bn,m(x)ρν+1(x).
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MOPS for modified Bessel functions Kν

Theorem (VA + Yakubovich, 2000; Ben Cheikh and Douak, 2000)

The type 1 multiple orthogonal polynomials for the weights
(xαρν , x

αρν+1), where

ρν(x) = 2xν/2Kν(2
√

x), x ∈ [0,∞)

are given by

xαQn,n−1(x) =
d2n

dx2n
[x2n+αρν(x)], xαQn,n(x) =

d2n+1

dx2n+1
[x2n+α+1ρν(x)],

and the type 2 multiple orthogonal polynomials are

Pn,n(x) = An,n(x)Bn,n−1(x)− An,n−1(x)Bn,n(x)

Pn+1,n(x) = An+1,n(x)Bn,n(x)− An,n(x)Bn+1,n(x)
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Properties

Let
p2n(x) = Pn,n(x), p2n+1(x) = Pn+1,n(x),

then

pn(x) = (−1)n(α + 1)n(α + ν + 1)n 1F2

(
−n

α + 1, α + ν + 1
; x

)

Recurrence relation

xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x) + dnpn−2(x)

with

bn = (n + α + 1)(3n + α + 2ν)− (α + 1)(ν − 1),

cn = n(n + α)(n + α + ν)(3n + 2α + ν),

dn = n(n − 1)(n + α)(n + α− 1)(n + α + ν)(n + α + ν − 1).
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Properties

One has

d

dx
pα
n (x) = npα+1

n−1 (x),
d

dx
xαqα

n (x) = xα−1qα−1
n+1 (x).

Differential equation: if y(x) = pn(x), then

x2y ′′′(x)+x(2α+ν+3)y ′′(x)+[(α+1)(α+ν+1)−x ]y ′(x)+ny(x) = 0.
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Modified Bessel function of the first kind

What about the modified Bessel function Iν(x)?

It has no moments, but we can introduce an exponential factor
and consider

ων(x) = xν/2Iν(2
√

x)e−c x , x ∈ [0,∞),

with c > 0 and ν ≥ 0. Then

xω′ν(x) = (ν − cx)ων(x) + ων+1(x)

ω′ν+1(x) = ων(x)− cων+1(x).

The weight ων is known as the non-central χ2 distribution when
2ν is a positive integer.
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MOPS for modified Bessel functions Iν

Theorem (Douak 1999; Coussement + VA 2003)

q2n(x) = Qn,n(x), q2n+1(x) = Qn+1,n(x), p2n(x) = Pn,n(x), p2n+1(x) = Pn+1,n(x)

The type 1 multiple orthogonal polynomials for the weights
(ων , ων+1) are given by

qn(x) =
n+1∑
k=0

(
n + 1

k

)
(−c)kx (ν+k)/2Iν+k(2

√
x)e−cx ,

The type 2 multiple orthogonal polynomials are

pn(x) =
(−1)n

c2n

n∑
k=0

(
n

k

)
ckk!Lν

k(cx),

where Lν
k are the Laguerre polynomials.
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Properties

The type 2 multiple orthogonal polynomials satisfy the recurrence
relation

xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x) + dnpn−2(x),

with

bn =
(ν + 2n + 1)c + 1

c2
,

cn =
n((ν + n)c + 2)

c3
,

dn =
n(n − 1)

c4
.
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Distribution of zeros

For the multiple orthogonal polynomials related to the modified
Bessel functions Kν we have for n/N → t > 0

lim
n,N→∞

bn

N2
= 3t2, lim

n,N→∞

cn

N4
= 3t4, lim

n,N→∞

dn

N6
= t6.

Theorem (E+J Coussement + VA, 2008)

The asymptotic distribution of the (scaled) zeros of pn is given by

lim
n→∞

1

n

n∑
j=1

f
(xj ,n

n2

)
=

4

27

∫ 27/4

0
f (x)h(4x/27) dx ,

for every f ∈ C ([0, 4
27 ]) and

h(y) =
3
√

3

4π

(1 +
√

1− y)1/3 − (1−
√

1− y)1/3

y2/3
, y ∈ [0, 1].
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Tools looking for an application

We now have found multiple orthogonal polynomials for two
weights involving modified Bessel functions

xα
(
xν/2Kν(2

√
x), x (ν+1)/2Kν+1(2

√
x)
)

and
e−cx

(
xν/2Iν(2

√
x), x (ν+1)/2Iν+1(2

√
x)
)
.

Are they useful ?
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Non-intersecting squared Bessel paths

Let {X1(t), . . . ,Xd(t) : t ≥ 0} be d independent Brownian
motions, then

R(t) =
√

X 2
1 (t) + X 2

2 (t) + · · ·+ X 2
d (t), t ≥ 0

is the Bessel process: distance of the d dimensional Brownian
motion in Rd to the origin.

R2(t) has a non-central χ2 distribution with d degrees of freedom.

Consider n squared Bessel processes R2
1 (t), . . . ,R2

n(t) such that

R2
1 (0) = R2

2 (0) = · · · = R2
n(0) = a > 0,

R2
1 (1) = R2

2 (1) = · · · = R2
n(1) = 0

The paths do not intersect

Walter Van Assche Multiple orthogonal polynomials



Non-intersecting squared Bessel paths

Let {X1(t), . . . ,Xd(t) : t ≥ 0} be d independent Brownian
motions, then

R(t) =
√

X 2
1 (t) + X 2

2 (t) + · · ·+ X 2
d (t), t ≥ 0

is the Bessel process: distance of the d dimensional Brownian
motion in Rd to the origin.

R2(t) has a non-central χ2 distribution with d degrees of freedom.

Consider n squared Bessel processes R2
1 (t), . . . ,R2

n(t) such that

R2
1 (0) = R2

2 (0) = · · · = R2
n(0) = a > 0,

R2
1 (1) = R2

2 (1) = · · · = R2
n(1) = 0

The paths do not intersect

Walter Van Assche Multiple orthogonal polynomials



Non-intersecting squared Bessel paths

Let {X1(t), . . . ,Xd(t) : t ≥ 0} be d independent Brownian
motions, then

R(t) =
√

X 2
1 (t) + X 2

2 (t) + · · ·+ X 2
d (t), t ≥ 0

is the Bessel process: distance of the d dimensional Brownian
motion in Rd to the origin.

R2(t) has a non-central χ2 distribution with d degrees of freedom.

Consider n squared Bessel processes R2
1 (t), . . . ,R2

n(t) such that

R2
1 (0) = R2

2 (0) = · · · = R2
n(0) = a > 0,

R2
1 (1) = R2

2 (1) = · · · = R2
n(1) = 0

The paths do not intersect

Walter Van Assche Multiple orthogonal polynomials



Non-Intersecting Squared Bessel Processes 227

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

t

x
x

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

t

A

B

Fig. 1. Numerical simulation of 50 rescaled non-intersecting BESQ2 with a = 1 (top) and a = 5 (bottom).
Bold line is the boundary of the domain described in Theorem 2.4

From the definition of p+(t) and q(t) as branch points of the Riemann surface for
(2.22) it may be shown that x = p+(t), x = q(t) are solutions of the algebraic equation

4ax3 + x2(t2 − 20at (1 − t)− 8a2(1 − t)2)− 4x(1 − t)(t − a(1 − t))3 = 0. (2.26)
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Kuijlaars, Mart́ınez-Finkelshtein, Wielonsky, 2009

Let x1, x2, . . . , xn be the points on the vertical line at time t, then
these points form a determinantal point process:

Pn,t(x1, x2, . . . , xn) =
1

Zn,t
det
(
Kn(xi , xj)

)
i ,j=1,...,n

with

Kn(x , y) =
n−1∑
j=0

pj(2nax)qj(2nay),

where qj are the type 1 and pj are the type 2 multiple orthogonal
polynomials for the modified Bessel functions (Iν , Iν+1), where
ν = d

2 − 1.

E

(
n∏

i=1

(z − xj)

)
= (2an)−npn(2anz).

The points (x1, . . . , xn) have for n →∞ the same asymptotic
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Products of random matrices

Akeman, Kieburg, Wei, J. Phys. A: Math. Theor. 46 (2013).

Let X1 and X2 be independent complex matrices of size n with
independent and identically distributed normal random variables
aj ,k + ibj ,k , (Ginibre random matrix) then the density is, up to a
normalization constant

exp[−Tr (X ∗
j Xj)], j = 1, 2

The squared singular values of X1 (the eigenvalues of X ∗
1 X1) follow

a determinantal process in terms of Laguerre polynomials
(Wishart-Laguerre ensemble).

We are interested in the squared singular values of the product
X2X1, i.e, the eigenvalues of X ∗

1 X ∗
2 X2X1.
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Products of random matrices

Theorem (Lun Zhang, 2013)

The squared singular values of X2X1 form a determinantal process
with kernel

Kn(x , y) =
n−1∑
j=0

pj(n
2x)qj(n

2x)

where qj are the type 1 and pj the type 2 multiple orthogonal
polynomials for the weights (K0(2

√
x),K1(2

√
x)).

Furthermore

E
(
z − X ∗

1 X ∗
2 X2X1

)
= n−2npn(n

2z)

and the squared singular values are asymptotically distributed as
the zeros of pn(n

2z).
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Longer products: Kuijlaars and Zhang, 2013

The squared singular values of XMXM−1 · · ·X1 also form a
determinantal process with multiple orthogonal polynomials, but
now for the M weights (w0(x),w1(x), . . . ,wM−1), where

wk(x) = GM,0
0,M

(
−

0, 0, . . . , 0, k

∣∣∣∣ x) ,

with GM,0
0,M a Meijer G-function

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x)
=

1

2πi

∫
γ

∏m
j=1 Γ(bj + u)

∏n
j=1 Γ(1− aj − u)∏q

j=m+1 Γ(1− bj − u)
∏p

j=n+1 Γ(aj + u)
z−u du.

(see, e.g., R. Beals and J. Szmigielski, Meijer G-functions: a gentle

introduction, Notices AMS 60 (2013), 866–872.)
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Products of rectangular matrices

Let YM = XMXM−1 · · ·X1, where Xj is a Nj ×Nj−1 random matrix
with independent (complex) Gaussian entries and suppose

N0 = min{N0,N1, . . . NM}, νj = Nj − N0.

Then the squared singular values of YM form a determinantal
process with multiple orthogonal polynomials for the M weights
(w0,w1, . . . ,wM−1), where

wk(x) = GM,0
0,M

(
−

νM , νM−1, . . . , ν2, ν1 + k

∣∣∣∣ x) .

If M = 1 then w0(x) = xν1e−x on [0,∞): Laguerre polynomials
If M = 2 then

w0(x) = 2x (ν1+ν2)/2Kν1−ν2(2
√

x), w1(x) = 2x (ν1+ν2+1)/2Kν1−ν2+1(2
√

x)

multiple orthogonal polynomials with respect to modified Bessel
functions of the second kind.
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