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Abstract

We show explicitly that all 2nd order superintegrable systems in 2 dimensions
are limiting cases of a single system: the generic 3-parameter potential on the
2-sphere, S9 in our listing.

Analogously we show that all of the quadratic symmetry algebras of these
systems are contractions of that of S9.

By contracting function space realizations of irreducible representations of the
S9 algebra (which give the structure equations for Racah/Wilson polynomials)
to the other superintegrable systems we obtain the full Askey scheme of
orthogonal hypergeometric polynomials.

Amazingly, all of these contractions of superintegrable systems with potential
are uniquely induced by Wigner Lie algebra contractions of so(3,C) and
e(2,C).

W. Miller (University of Minnesota) Contraction Askey Scheme Askey80th 2 / 56



Outline

1 Introduction

2 Lie algebra contractions

3 Representatives of Nondegenerate Systems

4 Representatives of Degenerate Systems

5 Contractions of Superintegrable Systems

6 Models of Superintegrable Systems

7 The S9 Difference Operator Model

8 Derivation of the Contraction Scheme

9 Discussion and Conclusions

W. Miller (University of Minnesota) Contraction Askey Scheme Askey80th 3 / 56



Introduction

Superintegrable Systems: HΨ = EΨ

A quantum superintegrable system is an integrable Hamiltonian system
on an n-dimensional Riemannian/pseudo-Riemannian manifold with
potential:

H = ∆n + V

that admits 2n − 1 algebraically independent partial differential operators
commuting with H, the maximum possible.

[H, Lj ] = 0, L2n−1 = H, n = 1, 2, · · · , 2n − 1.

Superintegrability captures the properties of quantum Hamiltonian
systems that allow the Schrödinger eigenvalue problem HΨ = EΨ to be
solved exactly, analytically and algebraically.
A system is of order K if the maximum order of the symmetry operators,
other than H, is K . For n = 2, K = 1, 2 all systems are known.
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Introduction

1st order systems

These are the (zero-potential) Laplace-Beltrami eigenvalue equations on
constant curvature spaces.

Simplest examples: Euclidean Helmholtz equation (P2
1 + P2

2 )Φ = −λ2Φ (or
the Klein-Gordon equation (P2

1 − P2
2 )Φ = −λ2Φ), and Laplace -Beltrami

eigenvalue equation on the 2-sphere (J2
1 + J2

2 + J2
3 )Ψ = −j(j + 1)Ψ.

Here the symmetry algebras close under commutation to form the Lie
algebras e(2,R), e(1, 1) or o(3,R).

One can find 2-variable differential operator models of the irreducible
representations of these Lie algebras in which the basis eigenfunctions are
the spherical harmonics (o(3,R)) or Bessel functions (e(2,R)).
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Introduction

Inönü and Wigner (1953)

It was exactly these systems which motivated the pioneering work of Inönü
and Wigner on Lie algebra contractions.

While, that paper introduced Lie algebra contractions in general, the
motivation and virtually all the examples were of symmetry groups of these
systems.

It was shown that o(3,R) contracts to e(2,R). In the physical space this is
accomplished by letting the radius of the sphere go to infinity, so that the
surface flattens out. Under this limit the Laplace-Beltrami eigenvalue equation
goes to the Helmholtz equation.
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Introduction

Lie algebra contractions

Let (A; [; ]A), (B; [; ]B) be two complex Lie algebras. We say B is a contraction

of A if for every � ∈ (0; 1] there exists a linear invertible map t� : B → A such
that for every X ,Y ∈ B,

lim
�→0

t
−1
� [t�X , t�Y ]A = [X ,Y ]B.

Thus, as � → 0 the 1-parameter family of basis transformations can become
nonsingular but the structure constants go to a finite limit.
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Introduction

Features of Wigner contractions (Wigner-Talman)

‘Saving’ a representation.
Simple models of irreducible representations.
Limit relations between special functions.
Expansion coefficients relating different special function bases.
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Lie algebra contractions

Contractions of e(2,C) and o(3,C)
The contractions of these Lie algebras have long since been classified. The
are 6 nontrivial contractions of e(2,C) and 4 of o(3,C).
Example: A Wigner-Inönü contraction of o(3,C). We use the classical
realization for o(3,C) acting on the 2-sphere, with basis
J1 = s2p3 − s3p2, J2 = s3p1 − s1p3, J3 = s1p2 − s2p1, commutation relations

[J2, J1] = J3, [J3, J2] = J1, [J1, J3] = J2,

and Hamiltonian H = J2
1 + J2

2 + J2
3 . Here s2

1 + s2
2 + s2

3 = 1.

Basis change : {J
�
1, J

�
2, J

�
3} = {�J1, �J2, J3}, o < � ≤ 1

coordinate implementation x =
s1

�
, y =

s2

�
, s3 ≈ 1, J = J3

New structure relations : [J �
2, J

�
1] = �2

J
�
3, [J

�
3, J

�
2] = J

�
1, [J

�
1, J

�
3] = J

�
2,

Let � → 0 : [J �
2, J

�
1] = 0, [J �

3, J
�
2] = J

�
1, [J

�
1, J

�
3] = J

�
2, get e(2,C)

W. Miller (University of Minnesota) Contraction Askey Scheme Askey80th 9 / 56



Lie algebra contractions

Wigner-Inonu contractions of e(2,C):

1 {J �, p�
1, p

�
2} = {J , �p1, �p2} : e(2,C),

coordinate implementation x � = x

� , y
� = y

� ,

2 {J �, p�
1, p

�
2} = {�J , p1, �p2} : Heisenberg algebra,

coordinate implementation x � = x , y � = y

� ,J
� = x �p�

2,
3 {J �, p�

1 + ip�
2, p�

1 − ip�
2} = {�J , �(p1 + ip2), p1 − ip2} : abelian algebra,

4 {J �, p�
1, p

�
2} = {�J , p1, p2} : abelian algebra,

5 {J �, p�
1 + ip�

2, p�
1 − ip�

2} = {J , �(p1 + ip2), p1 − ip2} : e(2,C),

coordinate implementation x � + iy � = x + iy , x � − iy � = x−iy

� ,
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Lie algebra contractions

The other natural contractions of e(2,C):

6 {J �, p�
1, p

�
2} = {J + p1

� , p1, p2} : e(2,C),

coordinate implementation x � = x , y � = y −
1
� ,

7 {J �, p�
1, p

�
2} = {J + p1+ip2

� , p1, p2} : e(2,C),

coordinate implementation x � = x + i

� , y
� = y −

1
� .
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Lie algebra contractions

Wigner-Inonu contractions of o(3,C):

1

{J
�
1,J

�
2,J

�
3} = {�J1, �J2, J3} : e(2,C),

coordinate implementation x = s1/�, y = s2/�, s3 ≈ 1,J = J3,
2

{J
�
1 + iJ

�
2, J

�
1 − iJ

�
2, J

�
3} = {J1 + iJ2, �(J1 − iJ2), �J3} : Heisenberg,

coordinate implementation s1 = cos φ
cosh ψ , s2 = sin φ

cosh ψ , s3 = sinh ψ
cosh ψ .

3

{J
�
1 + iJ

�
2, J

�
1 − iJ

�
2, J

�
3} = {J1 + iJ2, �(J1 − iJ2), J3} : e(2,C).

coordinate implementation s1 + is2 = �z, s1 − is2 = z̄, s3 ≈ 1,
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Lie algebra contractions

The other natural contraction of o(3,C):

5

{J
�
1 + iJ

�
2,J

�
1 − iJ

�
2,J

�
3} = {�(J1 + iJ2),

J1 − iJ2

�
,J3} : o(3,C),

coordinate implementation

s
�
1 =

�+ �−1

2
s1 + i

�− �−1

2
s2, s

�
2 = −i

�− �−1

2
s1 +

�+ �−1

2
s2, s

�
3 = s3.
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Lie algebra contractions

Free 2nd order superintegrable systems, (no potential,
K = 2)
We apply these ideas to 2nd order systems in 2D (2n − 1 = 3). The complex
spaces with Laplace-Beltrami operators admitting at least three 2nd order
symmetries were classified by Koenigs (1896). They are:

The two constant curvature spaces, 6 linearly independent 2nd order
symmetries and 3 1st order symmetries,
The four Darboux spaces, 4 2nd order symmetries and 1 1st order
symmetry,

ds
2 = 4x(dx

2 + dy
2), ds

2 =
x2 + 1

x2 (dx
2 + dy

2),

ds
2 =

ex + 1
e2x

(dx
2 + dy

2), ds
2 =

2 cos 2x + b

sin2 2x
(dx

2 + dy
2),

Eleven 4-parameter Koenigs spaces. Example

ds
2 = (

c1

x2 + y2 +
c2

x2 +
c3

y2 + c4)(dx
2 + dy

2).
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Lie algebra contractions

2nd order systems with potential, K = 2

The symmetry operators of each system close under commutation to
generate a quadratic algebra, and the irreducible representations of this
algebra determine the eigenvalues of H and their multiplicity
All the 2nd order superintegrable systems are limiting cases of a single
system: the generic 3-parameter potential on the 2-sphere, S9 in our
listing. Analogously all quadratic symmetry algebras of these systems
are contractions of S9.

S9 : H = ∆2 +
a1

s2
1
+

a2

s2
2
+

a3

s2
3
, s

2
1 + s

2
2 + s

2
3 = 1,

L1 = (s2∂s3 − s3∂s2)
2 +

a3s2
2

s2
3

+
a2s2

3
s2

2
, L2, L3,

H = L1 + L2 + L3 + a1 + a2 + a3
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Lie algebra contractions

3 types of 2nd order superintegrable systems:

1 Nondegenerate:

V (x) = a1V(1)(x) + a2V(2)(x) + a3V(3)(x) + a4

2 Degenerate:
V (x) = a1V(1)(x) + a2

3 Free:
V = a1, no potential
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Lie algebra contractions

Nondegenerate systems (2n − 1 = 3 generators)

The symmetry algebra generated by H, L1, L2 always closes under
commutation. Define 3rd order commutator R by R = [L1, L2]. Then

[Lj ,R] = A
(j)
1 L

2
1 + A

(j)
2 L

2
2 + A

(j)
3 H

2 + A
(j)
4 {L1, L2}+ A

(j)
5 HL1 + A

(j)
6 HL2

+A
(j)
7 L1 + A

(j)
8 L2 + A

(j)
9 H + A

(j)
10, {L1, L2} = L1L2 + L2L1,

R
2 = b1L

3
1 + b2L

3
2 + b3H

3 + b4{L
2
1, L2}+ b5{L1, L

2
2}+ b6L1L2L1 + b7L2L1L2

+b8H{L1, L2}+ b9HL
2
1 + b10HL

2
2 + b11H

2
L1 + b12H

2
L2 + b13L

2
1 + b14L

2
2 + b15{L1, L2}

+b16HL1 + b17HL2 + b18H
2 + b19L1 + b20L2 + b21H + b22,

This structure is an example of a quadratic algebra.
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Lie algebra contractions

Degenerate systems (2n − 1 = 3)

There are 4 generators: one 1st order X and 3 second order H, L1, L2.

[X , Lj ] = C
(j)
1 L1 + C

(j)
2 L2 + C

(j)
3 H + C

(j)
4 X

2 + C
(j)
5 , j = 1, 2,

[L1, L2] = E1{L1,X}+ E2{L2,X}+ E3HX + E4X
3 + E5X ,

Since 2n − 1 = 3 there must be an identity satisfied by the 4 generators. It is
of 4th order:

c1L
2
1 + c2L

2
2 + c3H

2 + c4{L1, L2}+ c5HL1 + c6HL2 + c7X
4 + c8{X

2, L1}+ c9{X
2, L2}

+c10HX
2 + c11XL1X + c12XL2X + c13L1 + c14L2 + c15H + c16X

2 + c17 = 0
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Lie algebra contractions

Stäckel Equivalence Classes

All such systems are known. There are 59 types, on a variety of manifolds,
but under the Stäckel transform, an invertible structure preserving mapping,
they divide into 12 equivalence classes with representatives on flat space and
the 2-sphere, 6 with nondegenerate 3-parameter potentials

{S9,E1,E2,E3�,E8,E10}

and 6 with degenerate 1-parameter potentials

{S3,E3,E4,E5,E6,E14}
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Representatives of Nondegenerate Systems

S9

H = J
2
1 + J

2
2 + J

2
3 +

a1

s2
1
+

a2

s2
2
+

a3

s2
3

where J3 = s1∂s2 − s2∂s1 and J2, J3 are obtained by cyclic permutations of indices.

Basis symmetries: (J3 = s2∂s1 − s1∂s2 , · · · )

L1 = J
2
1 +

a3s
2
2

s2
3

+
a2s

2
3

s2
2

, L2 = J
2
2 +

a1s
2
3

s2
1

+
a3s

2
1

s2
3

, L3 = J
2
3 +

a2s
2
1

s2
2

+
a1s

2
2

s2
1

,

Structure equations:

[Li ,R] = 4{Li , Lk}− 4{Li , Lj}− (8 + 16aj)Lj + (8 + 16ak )Lk + 8(aj − ak ),

R
2 =

8
3
{L1, L2, L3}− (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3+

52
3
({L1, L2}+{L2, L3}+{L3, L1})+

1
3
(16+176a1)L1+

1
3
(16+176a2)L2+

1
3
(16+176a3)L3

+
32
3
(a1 + a2 + a3) + 48(a1a2 + a2a3 + a3a1) + 64a1a2a3, R = [L1, L2].

Interesting 2 variable O.P.’s: Prorial-Karlin-MacGregor, (right triangle)
W. Miller (University of Minnesota) Contraction Askey Scheme Askey80th 20 / 56
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Representatives of Nondegenerate Systems

E1

H = ∂2
x + ∂2

y − ω2(x2 + y
2) +

b1

x2 +
b2

y2

Generators:

L1 = ∂2
x − ω2

x
2 +

b1

x2 , L2 = ∂2
y − ω2

y
2 +

b2

y2 , L3 = (x∂y − y∂x)
2 + y

2 b1

x2 + x
2 b2

y2

Structure relations:
[R, L1] = 8L

2
1 − 8HL1 − 16ω2

L3 + 8ω2,

[R, L3] = 8HL3 − 8{L1, L3}+ (16b1 + 8)H − 16(b1 + b2 + 1)L1,

R
2 +

8
3
{L1, L1, L3}−8H{L1, L3}+(16b1 +16b2 +

176
3

)L2
1 −16ω2

L
2
3 − (32b1 +

176
3

)HL1

+(16b1 + 12)H2 +
176

3
ω2

L3 + 16ω2(3b1 + 3b2 + 4b1b2 +
2
3
) = 0
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Representatives of Nondegenerate Systems

E2

H = ∂2
x + ∂2

y − ω2(4x
2 + y

2) + bx +
c

y2

Generators:

L1 = ∂2
x −4ω2

x
2+bx , L2 = ∂2

y −ω2
y

2+
c

y2 , L3 =
1
2
{(x∂y −y∂x), ∂y}+y

2(ω2
x− b

4
)+

cx

y2

Structure equations:

[L1,R] + 2bL2 − 16w
2
L3 = 0, [L3,R] + 2L

2
2 − 4L1L2 + 2bL3 + ω2(8c + 6) = 0,

R
2 = 4L1 L

2
2 + 16ω2

L
2
3 − 2b{L2, L3}+ (12 + 16c)ω2

L1 − 32w
2
L2 − b

2(c +
3
4
)

Here, the algebra generators are H, L1, L3, R = [L1, L3]
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Representatives of Nondegenerate Systems

E3�

H = ∂2
x + ∂2

y − ω2(x2 + y
2) + c1x + c2y = L1 + L2

Generators:

L1 = ∂2
x − ω2

x
2 + c1x , L2 = ∂2

y − ω2
y

2 + c2y , L3 = ∂xy − ω2
xy +

c2x + c1y

2

Structure relations:

[L1,R] = 4ω2
L3 − c1c2, [L3,R] = −2ω2

L1 + 2ω2
L2 +

1
2
(c2

1 − c
2
2),

R
2 = 4ω2(L2

3 − L1L2)− 2c1c2L3 + c
2
2L1 + c

2
1L2 + 4ω4

The algebra generators are H, L1, L3, R = [L1, L3].
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Representatives of Nondegenerate Systems

E10

H = ∂2
x + ∂2

y + αz̄ + β(z − 3
2

z̄
2) + γ(zz̄ − 1

2
z̄

3)

Generators:
L1 = (∂x − i∂y )

2 + γz̄
2 + 2βz̄,

L2 = 2i{x∂y −y∂x , ∂x − i∂y}+(∂x + i∂y )
2−4βzz̄−γzz̄

2−2βz̄
3− 3

4
γz̄

4+γz
2+αz̄

2+2αz

Structure equations:

[R, L1] + 32γL1 + 32β2 = 0, [R, L2]− 96L
2
1 − 64βH + 128αL1 − 32γL2 − 32α2,

R
2 = 64L

3
1−64γH

2−128αL
2
1+128βHL1+32γ{L1, L2}−128αβH+64α2

L1+64β2
L2−256γ2.

Here R = [L1, L2], z = x + iy , z̄ = x − iy ,
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Representatives of Nondegenerate Systems

E8

H = ∂2
x + ∂2

y +
c1z

z̄3 +
c2

z̄2 + c3zz̄

Generators:

L1 = (∂x − i∂y )
2 − c1

z̄2 + c3z̄
2, L2 = (x∂y − y∂x)

2 + c1
z

2

z̄2 + c2
z

z̄

Structure relations:

[R, L1] = 8L
2
1 + 32c1c3, [R, L2] = −8{L1, L2}+ 8c2H − 16L1,

R
2 = −16

3
{L

2
1, L2}−

16
3

L1L2L1−
176

3
L

2
1+16c1H

2+16c2L1H−64c1c3L2+16c3(
4
3

c1−c
2
2).

Here, R = [L1, L2], z = x + iy , z̄ = x − iy ,
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Representatives of Degenerate Systems

Relations between nondegenerate/degenerate
systems

Every 1-parameter potential can be obtained from some 3-parameter
potential by parameter restriction.
It is not simply a restriction, however, because the structure of the
symmetry algebra changes.
A formally skew-adjoint 1st order symmetry appears and this induces a
new 2nd order symmetry.
Thus the restricted potential has a strictly larger symmetry algebra than is
initially apparent.
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Representatives of Degenerate Systems

S3 (Higgs oscillator)

H = J
2
1 + J

2
2 + J

2
3 +

a

s2
3

The system is the same as S9 with a1 = a2 = 0, a3 = a with the former L2 replaced by

L2 =
1
2
(J1J2 + J2J1)−

as1s2

s2
3

and
X = J3 = s2∂s3 − s3∂s2 .

Structure relations:

[L1,X ] = 2L2, [L2,X ] = −X
2 − 2L1 + H − a, [L1, L2] = −(L1X + XL1)− (

1
2
+ 2a)X ,

1
3

�
X

2
L1 + XL1X + L1X

2
�
+ L

2
1 + L

2
2 −HL1 + (a +

11
12

)X 2 − 1
6

H + (a − 2
3
)L1 −

5a

6
= 0.

Interesting 2-variable O.P.’s: Koschmieder, Zerneke, (disk)
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Representatives of Degenerate Systems

E3 (Harmonic oscillator)

H = ∂2
x + ∂2

y − ω2(x2 + y
2)

Basis symmetries:

L1 = ∂2
x − ω2

x
2, L3 = ∂xy − ω2

xy , X = x∂y − y∂x .

Also we set L2 = ∂2
y − ω2

y
2 = H − L1.

Structure equations:

[L1,X ] = 2L3, [L3,X ] = H − 2L1, [L1, L3] = 2ω2
X ,

L
2
1 + L

2
3 − L1H − ω2

X
2 + ω2 = 0
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Representatives of Degenerate Systems

E4

H = ∂2
x + ∂2

y + a(x + iy)

Basis Symmetries: (with M = x∂y − y∂x )

L1 = ∂2
x + ax , L2 =

i

2
{M,X}− a

4
(x + iy)2, X = ∂x + i∂y

Structure equations:

[L1,X ] = a, [L2,X ] = X
2, [L1, L2] = X

3 + HX − {L1,X} ,

X
4 − 2

�
L1,X

2
�
+ 2HX

2 + H
2 + 4aL2 = 0
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Representatives of Degenerate Systems

E5

H = ∂2
x + ∂2

y + ax

Basis symmetries: (where M = x∂y − y∂x )

L1 = ∂xy +
1
2

ay , L2 =
1
2
{M,X}− 1

4
ay

2, X = ∂y

Structure equations:

[L1, L2] = 2X
3 − HX , [L1,X ] = −a

2
, [L2,X ] = L1,

X
4 − HX

2 + L
2
1 + aL2 = 0
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Representatives of Degenerate Systems

E6

H = ∂2
x + ∂2

y +
a

x2

Basis symmetries: (M = x∂y − y∂x )

L1 =
1
2
{M, ∂x}−

ay

x2 , L2 = M
2 +

ay
2

x2 , X = ∂y

Structure equations:

[L1, L2] = {X , L2}+ (2a +
1
2
)X , [L1,X ] = H − X

2, [L2,X ] = 2L1,

L
2
1 +

1
4
{L2,X

2}+ 1
2

XL2X − L2H + (a +
3
4
)X 2 = 0
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Representatives of Degenerate Systems

E14

H = ∂2
x + ∂2

y +
b

z
2

Basis symmetries: (with M = x∂y − y∂x , z = x + iy , z = x − iy ,)

X = ∂x − i∂y , L1 =
i

2
{M,X}+ b

z
, L2 = M

2 +
bz

z

Structure equations:

[L1, L2] = −{X , L2}−
1
2

X , [X , L1] = −X
2, [X , L2] = 2L1,

L
2
1 + XL2X − bH − 1

4
X

2 = 0
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Contractions of Superintegrable Systems

Contractions of nondegenerate systems. 1

Suppose we have a nondegenerate superintegrable system with generators
H, L1, L2, R = [L1, L2] and the usual structure equations, defining a quadratic
algebra Q. If we make a change of basis to new generators H̃, L̃1, L̃2 and
parameters ã1, ã2, ã3 such that




L̃1

L̃2

H̃



 =




A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

0 0 A3,3








L1

L2

H



+




B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3








a1

a2

a3



 ,




ã1

ã2

ã3



 =




C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3








a1

a2

a3





for some 3 × 3 constant matrices A = (Ai,j),B,C such that det A · det C �= 0,
we will have the same system with new structure equations of the same form
for R̃ = [L̃1, L̃2], [L̃j , R̃], R̃2, but with transformed structure constants.
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Contractions of Superintegrable Systems

Contractions of nondegenerate systems. 2

Choose a continuous 1-parameter family of basis transformation matrices
A(�),B(�),C(�, 0 < � ≤ 1 such that A(1) = C(1) is the identity matrix,
B(1) = 0 and det A(�) �= 0, det C(�) �= 0.
Now suppose as � → 0 the basis change becomes singular, (i.e., the
limits of A,B,C either do not exist or, if they exist do not satisfy
det A(0) det C(0) �= 0) but the structure equations involving
A(�),B(�),C(�), go to a limit, defining a new quadratic algebra Q�.
We call Q� a contraction of Q in analogy with Lie algebra contractions.

There is a similar definition of a contraction of a degenerate superintegrable
system.

W. Miller (University of Minnesota) Contraction Askey Scheme Askey80th 34 / 56



Contractions of Superintegrable Systems

Contractions of nondegenerate systems. 2

Choose a continuous 1-parameter family of basis transformation matrices
A(�),B(�),C(�, 0 < � ≤ 1 such that A(1) = C(1) is the identity matrix,
B(1) = 0 and det A(�) �= 0, det C(�) �= 0.
Now suppose as � → 0 the basis change becomes singular, (i.e., the
limits of A,B,C either do not exist or, if they exist do not satisfy
det A(0) det C(0) �= 0) but the structure equations involving
A(�),B(�),C(�), go to a limit, defining a new quadratic algebra Q�.
We call Q� a contraction of Q in analogy with Lie algebra contractions.

There is a similar definition of a contraction of a degenerate superintegrable
system.

W. Miller (University of Minnesota) Contraction Askey Scheme Askey80th 34 / 56



Contractions of Superintegrable Systems

Contractions of nondegenerate systems. 2

Choose a continuous 1-parameter family of basis transformation matrices
A(�),B(�),C(�, 0 < � ≤ 1 such that A(1) = C(1) is the identity matrix,
B(1) = 0 and det A(�) �= 0, det C(�) �= 0.
Now suppose as � → 0 the basis change becomes singular, (i.e., the
limits of A,B,C either do not exist or, if they exist do not satisfy
det A(0) det C(0) �= 0) but the structure equations involving
A(�),B(�),C(�), go to a limit, defining a new quadratic algebra Q�.
We call Q� a contraction of Q in analogy with Lie algebra contractions.

There is a similar definition of a contraction of a degenerate superintegrable
system.

W. Miller (University of Minnesota) Contraction Askey Scheme Askey80th 34 / 56



Contractions of Superintegrable Systems

Free triplets

We say that the 2D system without potential,

H0 = ∆2

and with 3 algebraically independent second-order symmetries is a 2nd order
free triplet. The possible spaces admitting free triplets are just those classified
by Koenigs.

Note that every nondegenerate or degenerate superintegrable system defines
a free triplet, simply by setting the parameters aj = 0 in the potential.
Similarly, this free triplet defines a free quadratic algebra, i.e., a quadratic
algebra with all aj = 0.

In general, a free triplet canot be obtained as a restriction of a superintegrable
system and its associated algebra does not close to a free quadratic algebra.
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Contractions of Superintegrable Systems

Closure Theorems

Theorem
With the single exception of the free nondegenerate quadratic algebra E0, a

free triplet extends to a superintegrable system if and only if it generates a

free quadratic algebra Q̃.

Theorem
A superintegrable system, degenerate or nondegenerate, with quadratic

algebra Q, is uniquely determined by its free quadratic algebra.Q̃.

Remark: These theorems are constructive. Given a free quadratic algebra Q̃

one can compute the potential V and the symmetries of the quadratic algebra
Q. The exceptional algebra is the flat space system

E0 : L1 = (∂x + i∂y )
2, L2 = (∂x + i∂y )(x∂y − y∂x), H = ∂2

x + ∂2
y ,
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Contractions of Superintegrable Systems

Lie algebra contractions ⇒ quadratic algebra
contractions

Theorem
Every Lie algebra contraction of A = e(2,C) or A = o(3,C) induces uniquely a

contraction of a free quadratic algebra Q̃ based on A, which in turn induces

uniquely a contraction of the quadratic algebra Q with potential. This is true

for both classical and quantum algebras.
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Contractions of Superintegrable Systems

Contraction interplay

Figure:
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Contractions of Superintegrable Systems

Example: S̃9 → Ẽ1

Use so(3,C) contraction: {J �
1,J

�
2,J

�
3} = {�J1, �J2, J3} = {p�

1, p
�
2, J

�
3}.

L
�
1 = J

2
3 = L1

L
�
2 = �2

J
2
1 = p

�
1

2
= �2

L2

H
� = �2

H = �2(J 2
1 + J

2
2 + J

2
3 ) = p

�
1

2
+ p

�
2

2
.

The primed symmetries are a basis for Ẽ1.

It follows from the closure theorems that under this Lie algebra contraction,
the 4-dimensional solution space for the potentials V of S9 will deform
continuously into the 4-dimensional solution space for the potentials V � of E1.
Thus the target space of solutions V � is uniquely determined. However, there
is still the freedom of choosing bases for these two spaces.
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Contractions of Superintegrable Systems

Example: S9 → E1

In terms of coordintes φ,ψ on the sphere where s1 = cos φ
cosh ψ , s2 = sin φ

cosh ψ ,
s3 = sinh ψ

cosh ψ , the S9 potential is

V =
a1 cosh2 ψ

cos2 φ
+

a2 cosh2 ψ

sin2 φ
+

a3 cosh2 ψ

sinh2 ψ
+ a4,

where we have made a choice of basis. For E1 and using polar coordinates
y1 = R, y2 = φ� where x = eR cosφ�, y = eR sinφ�, the general potential is

V
� = b1e

2R +
b2e−2R

cos2 φ
+

b3e−2R

sin2 φ
+ b4.

The Lie algebra contraction from the sphere to flat space is expressed as
ψ ≈

1
2 ln( 1

� )− R, φ = φ�. In the limit the 4 dimensional space of potentials
must go to the 4 dimensional vector space of potentials V �.
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Contractions of Superintegrable Systems

Example: S9 → E1. 2

However our chosen basis functions for the S9 potential,

cosh2 ψ

cos2 φ
,

cosh2 ψ

sin2 φ
,

cosh2 ψ

sinh2 ψ
, 1

will not go to a new basis in the limit; 2 basis functions become unbounded
and 2 go to a constant. There are many ways to choose an � dependent basis
so that the limit can be taken. One of the simplest choices is

V
(1)(�) =

1
4�

(
cosh2 ψ

sinh2 ψ
− 1) → e

2R ,

V
(2)(�) = �

cosh2 ψ

cos2 φ
→

e−2R

cos2 φ
, V

(3)(�) = �
cosh2 ψ

sin2 φ
→

e−2R

sin2 φ
, V

(4)(�) = 1 → 1.
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Contractions of Superintegrable Systems

Hypergeometric polynomials

4F3

�
a1, a2, a3, a4
b1, b2, b3

; x

�
=

∞�

k=0

(a1)k (a2)k (a3)k (a4)k

(b1)k (b2)k (b3)k k !
x

k

(a)0 = 1, (a)k = a(a + 1)(a + 2) · · · (a + k − 1) if n ≥ 1.

Here k ! = (1)k . If a1 = −n for n a nonnegative integer then the sum is finite
with n + 1 terms.

Wilson polynomials (of order n in t2):

Φn(α,β, γ, δ; t) = 4F3

�
−n, α+ β + γ + δ + n − 1, α− t , α+ t

α+ β, α+ γ, α+ δ
; 1

�

Racah polynomials: If α+ β = −m for m a nonegative integer then only finite
set Φ0,Φ1, · · · ,Φm
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Contractions of Superintegrable Systems

The Askey Scheme. 1

The irreducible representations of S9 have a realization in terms of difference
operators in 1 variable, exactly the structure algebra for the Wilson and Racah
polynomials! By contracting these representations to obtain the
representations of the quadratic symmetry algebras of the other
superintegrable systems we obtain the full Askey scheme of orthogonal
hypergeometric polynomials. This relationship ties the structure equations
directly to physical phenomena.
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Contractions of Superintegrable Systems

The Askey Scheme. 2

The Askey Scheme organizes the theory of hypergeometric orthogonal
polynomials of one variable by exhibiting the relations such that each of these
polynomials can be obtained as a sequence of pointwise limits from either the
Racah polynomials in the finite dimensional case or the Wilson polynomials in
the infinite dimensional case.

lim
τ→∞

Φn(τ) = Φ�
n
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Contractions of Superintegrable Systems

The Askey Scheme. 3

Figure:
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What are models?
A representation of a quadratic algebra Q is a homomorphism of Q into
the associative algebra of linear operators on some vector space:
products go to products, commutators to commutators, etc.
A model M is a faithful representation of Q in which the vector space is a
space of polynomials in one complex variable and the action is via
differential/difference operators acting on that space. We study classes of
irreducible representations realized by these models.

What are model contractions?
Suppose a quadratic algebra Q contracts to a algebra Q� via a
continuous family of transformations indexed by �. If we have a model M

of Q we can try to “save" this representation by passing through a
continuous family of models M(�) of Q(�) to obtain a model M � of Q�.
We will show that as a byproduct of contractions to systems from S9 for
which we save representations in the limit, we obtain the Askey Scheme
for hypergeometric orthogonal polynomials.
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Models of Superintegrable Systems

Model interplay

Figure:
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The S9 Difference Operator Model

The S9 difference operator model. 1

L2 fn,m = (−4t
2 −

1

2
+ B

2
1 + B

2
3 )fn,m,

L3 fn,m = (−4τ∗τ − 2[B1 + 1][B2 + 1] +
1

2
)fn,m,

H = L1 + L2 + L3 +
3

4
− (B2

1 + B
2
2 + B

2
3 ) = −4(m + 1)(B1 + B2 + B3 + m + 1) − 2(B1B2 + B1B3 + B2B3) +

3

4
− (B2

1 + B
2
2 + B

2
3 ).

Here n = 0, 1, · · · , m if m is a nonnegative integer and n = 0, 1, · · · otherwise. Also

a
j
=

1

4
− B

2
j
, α = −(B1 + B3 + 1)/2 − m, β = (B1 + B3 + 1)/2, γ = (B1 − B3 + 1)/2, δ = (B1 + B3 − 1)/2 + B2 + m + 2,

E
A

F (t) = F (t + A), τ =
1

2t

(E1/2 − E
−1/2), τ∗ =

1

2t

�
(α + t)(β + t)(γ + t)(δ + t)E1/2 − (α − t)(β − t)(γ − t)(δ − t)E−1/2

�
,

wn(t
2) = (α + β)n(α + γ)n(α + δ)n4F3

�
−n, α + β + γ + δ + n − 1, α − t, α + t

α + β, α + γ, α + δ
; 1

�

= (α + β)n(α + γ)n(α + δ)nΦ
(α,β,γ,δ)
n

(t2), Φn ≡ fn,m,

τ∗τΦn = n(n + α + β + γ + δ − 1)Φn,

where (a)n is the Pochhammer symbol and 4F3(1) is a hypergeometric function of unit argument. The polynomial wn(t
2) is symmetric in α, β, γ, δ. For

the finite dimensional representations the spectrum of t
2 is {(α + k)2, k = 0, 1, · · · , m} and the orthogonal basis eigenfunctions are Racah

polynomials. In the infinite dimensional case they are Wilson polynomials.
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The S9 difference operator model. 1

L2 fn,m = (−4t
2 −

1

2
+ B

2
1 + B

2
3 )fn,m,

L3 fn,m = (−4τ∗τ − 2[B1 + 1][B2 + 1] +
1

2
)fn,m,

H = L1 + L2 + L3 +
3

4
− (B2

1 + B
2
2 + B

2
3 ) = −4(m + 1)(B1 + B2 + B3 + m + 1) − 2(B1B2 + B1B3 + B2B3) +

3

4
− (B2

1 + B
2
2 + B

2
3 ).

Here n = 0, 1, · · · , m if m is a nonnegative integer and n = 0, 1, · · · otherwise. Also

a
j
=

1

4
− B

2
j
, α = −(B1 + B3 + 1)/2 − m, β = (B1 + B3 + 1)/2, γ = (B1 − B3 + 1)/2, δ = (B1 + B3 − 1)/2 + B2 + m + 2,

E
A

F (t) = F (t + A), τ =
1

2t

(E1/2 − E
−1/2), τ∗ =

1

2t

�
(α + t)(β + t)(γ + t)(δ + t)E1/2 − (α − t)(β − t)(γ − t)(δ − t)E−1/2

�
,

wn(t
2) = (α + β)n(α + γ)n(α + δ)n4F3

�
−n, α + β + γ + δ + n − 1, α − t, α + t

α + β, α + γ, α + δ
; 1

�

= (α + β)n(α + γ)n(α + δ)nΦ
(α,β,γ,δ)
n

(t2), Φn ≡ fn,m,

τ∗τΦn = n(n + α + β + γ + δ − 1)Φn,

where (a)n is the Pochhammer symbol and 4F3(1) is a hypergeometric function of unit argument. The polynomial wn(t
2) is symmetric in α, β, γ, δ. For

the finite dimensional representations the spectrum of t
2 is {(α + k)2, k = 0, 1, · · · , m} and the orthogonal basis eigenfunctions are Racah

polynomials. In the infinite dimensional case they are Wilson polynomials.
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The S9 Difference Operator Model

The S9 difference operator model. 2

The action of L2 and L3 on an L3 eigenbasis is

L2fn,m = −4K (n + 1, n)fn+1,m − 4K (n, n)fn,m − 4K (n − 1, n)fn−1,m + (B2
1 + B

2
3 − 1

2
)fn,m,

L3fn,m = −(4n
2 + 4n[B1 + B2 + 1] + 2[B1 + 1][B2 + 1]− 1

2
)fn,m,

K (n + 1, n) = (B1 + B2 + n + 1)(n − m)(−B3 − m + n)(B2 + n + 1)
(B1 + B2 + 2n + 1)(B1 + B2 + 2n + 2)

,

K (n − 1, n) = n(B1 + n)(B1 + B2 + B3 + m + n + 1)(B1 + B2 + m + n + 1)
(B1 + B2 + 2n)(B1 + B2 + 2n + 1)

,

K (n, n) = [
B1 + B2 + 2m + 1

2
]2 − K (n + 1, n)− K (n − 1, n),
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Derivation of the Contraction Scheme

Example: S9 → E1. 1
Quantum system limit:

HS9 = J
2
1 + J

2
2 + J

2
3 +

a1

s2
1
+

a2

s2
2
+

a3

s2
3

where J3 = s1∂s2 − s2∂s1 and J2, J3 are obtained by cyclic permutations of the
indices 1, 2, 3.

HE1 = ∂2
x + ∂2

y − ω2(x2 + y
2) +

b1

x2 +
b2

y2

In S9 we contract about the north pole of the unit sphere. Set

s1 =
√
�x , s2 =

√
�y , s3 =

�
1 − s2

1 − s2
2 ≈ 1 −

�

2
(x2 + y

2),

a
�
1 = b2 = a1, a

�
2 = b1 = a2, a

�
3 = −ω2 = �2

a3,

in HS9 to get �(HS9 − a3) → HE1 as � → 0.
Quadratic algebra contraction:

L
�
1 = �L1, L

�
2 = �L2, L

�
3 = L3, H

� = �(H − a3)

R
� = �R, a

�
1 = b2 = a1, a

�
2 = b1 = a2, a

�
3 = −ω2 = �2

a3.
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Derivation of the Contraction Scheme

Example: S9 → E1. 2

Saving a representation: We set

t = −x + B3/2 + (B1 + 1)/2 + m, B3 =
ω
�
→ ∞ =⇒

f
�
n,m = 3F2

�
−n, B1 + B2 + n + 1, −x

−m, B2 + 1 ; 1
�

= Qn(x ;B2,B1,m)

where the Qn are Hahn polynomials. We have the model

L
�
2f

�
n,m = 2ω(2x−2m−B1−1)f �n,m = −4K

�(n+1, n)f �n+1,m−4K
�(n, n)f �n,m−4K

�(n−1, n)f �n−1,n,

L
�
3f

�
n,m = −

�
4n

2 + 4n[B1 + B2 + 1] + 2[B1 + 1][B2 + 1]− 1
2

�
f
�
n,m =

�
−4(x − m)(x + B2 + 1)E1

x + 4x(x − m − B1 − 1)E−1
x + 8x

2 + 4x(B1 + B2 − 2m)

−4m(B2 + 1)− 2(B2 + 1)(B1 + 1) + 1
2

�
f
�
n,m,

H
� = L

�
1 + L

�
2 = −2ω(2m + 2 + B1 + B2).

Here the K
� are the appropriate limits of the K as B3 → ∞.
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Figure: The Askey scheme and contractions of superintegrable systems



Figure: The Askey contraction scheme



Discussion and Conclusions

Wrap-up. 1

Free quadratic algebras uniquely determine associated superintegrable
systems with potential.
A contraction of a free quadratic algebra to another uniquely determines
a contraction of the associated superintegrable systems.
For a 2D superintegrable systems on a constant curvature space these
contractions can be induced by Lie algebra contractions of the underlying
Lie symmetry algebra.
Every 2D superintegrable system is obtained either as a sequence of
contractions from S9 or is Stäckel equivalent to a system that is so
obtained.
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Discussion and Conclusions

Wrap-up. 2

Taking contractions step-by-step from the S9 model we can recover the
Askey Scheme. However, the contraction method is more general. It
applies to all special functions that arise from the quantum systems via
separation of variables, not just polynomials of hypergeometric type, and
it extends to higher dimensions.
The special functions arising from the models can be described as the
coefficients in the expansion of one separable eigenbasis for the original
quantum system in terms of another separable eigenbasis.
The functions in the Askey Scheme are just those hypergeometric
polynomials that arise as the expansion coefficients relating two
separable eigenbases that are both of hypergeometric type. Thus, there
are some contractions which do not fit in the Askey scheme since the
physical system fails to have such a pair of separable eigenbases.
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Discussion and Conclusions

Wrap-up. 3

Even though 2nd order 2D nondegenerate superintegrable systems
admit no group symmetry, their structure is determined completely by the
underlying symmetry of constant curvature spaces.
To extend the method to Askey-Wilson polynomials we would need to find
appropriate q-quantum mechanical systems with q-symmetry algebras
and we have not yet been able to do so.
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