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Abstract
Rodrigues formulas for very well-poised basic hypergeometric series of any order are given.

rthogonality relations are found for rational functions with an arbitrary number of parameters which
eneralize the Askey–Wilson polynomials and Rahman’s 10φ9 biorthogonal rational functions. A pair

of orthogonal rational functions of type RI I is identified. Elliptic analogues of some of these results are
also included.
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1. Introduction

The Askey–Wilson polynomials are classical orthogonal polynomials which depend on five
arameters. These polynomials lie at the top of the Askey scheme of classical orthogonal
olynomials, and have an expression as a balanced basic hypergeometric series. An alternative
epresentation is given by a very well-poised basic hypergeometric series. Although they
ave been generalized to polynomials in several variables, in one variable, the only known
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basic hypergeometric generalization is to a set of biorthogonal rational functions given by
Rahman [12], which has six parameters. An elliptic version due to Spiridonov [20] has seven
parameters.

This work started as an attempt to understand the Rahman biorthogonal rational functions,
here they live, and what is the correct level of generality. Our efforts led to a biorthogonal

ystem of very-well poised series with an arbitrary number of parameters. The orthogonality
elation, Theorem 4.2, contains the Askey–Wilson and Rahman results as special cases. We
lso give an elliptic version of Theorem 4.2 in Theorem 8.9.

The key idea is the realization that a general set of very well-poised basic hypergeometric
eries always have Rodrigues formulas. The Rodrigues formula plays an important role in the
heory of classical orthogonal polynomials [16,22]. By a Rodrigues-type representation of a
equence of functions fn(x), we mean representing fn as

fn(x) =
cn

g0(x)
T ngn(x), n = 0, 1, . . . , (1.1)

where the cn’s are constants and T is a linear operator which does not depend on n.
In [10] it is shown that Watson’s transformation of a balanced terminating 4φ3 to a very well-

oised 8φ7 is the Rodrigues formula for the Askey–Wilson polynomials. This transformation
gives two possible expressions of the Askey–Wilson polynomials. This motivated us to explore
Rodrigues type formulas for the 10φ9 biorthogonal rational functions Rn and Sn of [12], and
onsider orthogonality relations for higher order very well-poised series.

In Theorem 3.4 we give a Rodrigues formula of the type (1.1) for a 2m+8W2m+7 function
(see Definition 3.3) which generalizes Rahman’s rational functions Rn and Sn . We then provide
a general orthogonality relation for a 2m+8W2m+7, Theorem 4.2, which generalizes Rahman’s
biorthogonality relation. A polynomial orthogonality for a 10W9 is given in Theorem 6.5. Our
analysis is completely analogous to polynomials orthogonal with respect to varying weights.
There is extensive literature in this area, a sample of which is in [18].

Rahman and Suslov [14] have a Rodrigues type formula for a 10φ9 function, but their
formulas do not resemble the classical Rodrigues formula. Indeed instead of T n the Rahman–
Suslov formulas involve TnTn−1 · · · T1, where T j is linear but depends on j . In [9] Ismail and
Rahman gave a three term recurrence relation of type RI I for the Rahman functions.

The paper is organized as follows. After preliminary material is introduced in §2, in §3
we define the rational functions and give the Rodrigues formula. The orthogonality relation is
established in §4. The polynomial behaviour of our rational functions is determined in §5. The
special case of 10φ9’s is considered in §6, where Rahman’s biorthogonality results are reproven.
Asymptotics are given in §7. The elliptic generalizations of our main results are given in §8.
Section 9 establishes a three term recurrence relation for a system of polynomials {Un(x; t)}
we introduce in §6.

The recurrence relations for the biorthogonal rational functions in this work are of the
type RI I and are associated with RI I continued fractions introduced by Ismail and Masson
in [8]. Zhedanov [23] pointed out that they arise in a generalized eigenvalue problem and the
biorthogonality is between solutions to adjoint generalized eigenvalue problems.

2. Preliminaries

We shall use the notation and terminology in [1,6], and [7] for basic hypergeometric series.
In this section we collect the results to be used in the rest of the paper.
2
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We shall use the inner product associated with the Chebyshev weight (1−x2)−1/2 on (−1, 1),
amely

⟨ f, g⟩ :=

∫ 1

−1
f (x) g(x)

dx
√

1 − x2
.

The operator we iterate for the Rodrigues formulas is the Askey–Wilson operator Dq ,
(see [7])

(Dq f )(x) = 2
f̆ (q1/2z) − f̆ (q−1/2z)

(q1/2 − q−1/2)(z − 1/z)

here x = (z + 1/z)/2 = cos θ, f (x) = f̆ (z), z = eiθ . It must be noted that x = (z + 1/z)/2
akes z and 1/z interchangeable. However to specify which branch of the Riemann surface

we assume that |z| ≥ |1/z|. Indeed |z| = |1/z| if and only if x ∈ [−1, 1], in which case we
ut x = cos θ for a unique θ ∈ [0, π] and z = eiθ . The operator Dq was first introduced in [2].

Observe that the definition of Dq requires f̆ (z) to be defined for
⏐⏐q±1/2z

⏐⏐ = 1 as well as
or |z| = 1. In particular Dq is well-defined on H1/2, where

Hν :=
{

f : f ((z + 1/z)/2) is analytic for qν
≤ |z| ≤ q−ν

}
.

The key fact of Cooper [4, Prop. 1q] which we shall use is that the nth iterate of the
skey–Wilson operator may be expanded via very well-poised series.

roposition 2.1. The nth iterate of the Askey–Wilson operator Dq satisfies

Dn
q f (x) =

(−2/z)nq
1
2 (

n
2)

(q1/2 − q−1/2)n(1/z2; q)n

n∑
k=0

(q−n, z2q−n
; q)k

(qz2, q; q)k

1 − z2q−n+2k

1 − z2q−n
qnk f̆ (q (2k−n)/2z).

The right side of Proposition 2.1 is invariant under z → 1/z, this is reversing the finite
eries.

. Rodrigues formulas and very well-poised series

In this section we give in Theorem 3.4 a Rodrigues formula for the general very well-poised
asic hypergeometric series

2m+8W2m+7(q−nz2
; q−n, a1z, · · · , am+4z, q1−nz/b1, . . . , q1−nz/bm; q, Z1),

here

Z1 = q2−nb1 · · · bm/a1 · · · am+4.

The first application of Proposition 2.1 uses

f̆ (z; a, b) =

m∏
i=1

(bi z, bi/z; q)∞
(ai z, ai/z; q)∞

,

where a = (a1, . . . , am) and b = (b1, . . . , bm). Note that

f̆ (qk−n/2z; qn/2a, qn/2b) = f̆ (z; a, b)
m∏ (ai z; q)k(ai/z; q)n−k

(b z; q) (b /z; q)
.

i=1 i k i n−k

3
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Proposition 3.1. The functions

rn(x; a, b) =
(−2/z)nq

1
2 (

n
2)

(q1/2 − q−1/2)n(1/z2; q)n

m∏
i=1

(ai/z; q)n

(bi/z; q)n

× 2m+4W2m+3(q−nz2
; q−n, a1z, . . . , am z, q1−nz/b1, . . . , q1−nz/bm; q, Z2),

here

Z2 =
b1 . . . bm

a1 . . . am
qn

atisfy the Rodrigues formula

rn(x; a, b) =
1

f̆ (z; a, b)
Dn

q ( f̆ (z; qn/2a, qn/2b)).

roof. First we use Proposition 2.1

Dn
q ( f̆ (z; qn/2a,qn/2b)) =

(−2/z)nq
1
2 (

n
2)

(q1/2 − q−1/2)n(1/z2; q)n

×

n∑
k=0

(q−n, z2q−n
; q)k

(qz2, q; q)k

1 − z2q−n+2k

1 − z2q−n
qnk f̆ (zqk−n/2

; qn/2a, qn/2b).

his is

Dn
q ( f̆ (z; qn/2a, qn/2b)) =

(−2/z)nq
1
2 (

n
2)

(q1/2 − q−1/2)n(1/z2; q)n

×

n∑
k=0

(q−n, z2q−n
; q)k

(qz2, q; q)k

1 − z2q−n+2k

1 − z2q−n
qnk

m∏
i=1

(ai z; q)k(ai/z; q)n−k

(bi z; q)k(bi/z; q)n−k
f̆ (z; a, b),

hich, when rewritten as a basic hypergeometric series, is what we need to prove,

Dn
q ( f̆ (z; qn/2a, qn/2b)) = f̆ (z; a, b)rn(x; a, b). □

The next application of Proposition 2.1 incorporates an Askey–Wilson weight into ğ.

efinition 3.2. Let

ğ(z; a, b) =
2i(z2, q/z2

; q)∞
∏m

i=1(bi z, bi/z; q)∞
z
∏m+4

i=1 (ai z, ai/z; q)∞
,

where a = (a1, . . . , am+4) and b = (b1, . . . , bm).

Note that ğ(z; a, b) involves theta products, θ (a) := (a, q/a; q)∞, which satisfy θ (aq p) =

(−a)−pq−(p
2)θ (a), for all p ∈ Z, see Section 8. Here

(p
2

)
= p(p − 1)/2 for all p ∈ Z.

Observe that

ğ(qk−n/2z; qn/2a, qn/2b) = ğ(z; a, b)

∏m+4
i=1 (ai z; q)k (ai /z; q)n−k∏m
i=1(bi z; q)k (bi /z; q)n−k

z2n−4k (−1)nq−(2k−n
2 )qn/2−k .

efinition 3.3. For a non-negative integer n define

pn(x; a, b) =
(2z)nq−

1
2 (

n+1
2 )

(q1/2 − q−1/2)n(1/z2; q)n

∏m+4
i=1 (ai/z; q)n∏m
i=1(bi/z; q)n

−n 2 −n 1−n 1−n

× 2m+8W2m+7(q z ; q , a1z, . . . , am+4z, q z/b1, . . . , q z/bm; q, Z1),

4
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where

Z1 =
b1 . . . bm

a1 . . . am+4
q2−n.

The next result for m = 0 generalizes the 8W7 version of the Rodrigues formula for
skey–Wilson polynomials, see [10].

heorem 3.4. The functions pn(x; a, b) satisfy the Rodrigues formula

pn(x; a, b) =
1

ğ(z; a, b)
Dn

q (ğ(z; qn/2a, qn/2b)).

roof. We follow the proof of Proposition 3.1 with ğ replacing f̆ . The above functional
quation for ğ inserts the factors

z2n−4k(−1)nq−(2k−n
2 )qn/2−k

m+4∏
i=m+1

(ai z; q)k(ai/z; q)n−k

nto the k-sum of the proof of Proposition 3.1. Using

m+4∏
i=m+1

(ai z; q)k(ai/z; q)n−k =

m+4∏
i=m+1

(ai/z; q)n
(ai z; q)k

(q1−nz/ai ; q)k

1

ak
i (−z)−kq (n−1)k−(k

2)

e do obtain Theorem 3.4 because the exponents of q are

1
2

(
n
2

)
+ nk −

(
2k − n

2

)
− 4(n − 1)k + 4

(
k
2

)
+ n/2 − k

= −
1
2

(
n + 1

2

)
+ (2 − n)k.

□

It must be noted that ğ(z; a, b) is not symmetric in z → 1/z but is antisymmetric. Moreover
f h(z) satisfies h(1/z) = −h(z) the so does the quotient

h(q1/2z) − h(q−1/2z)
z − 1/z

.

nd its iterates. This implies that the functions pn(x; a, b) are symmetric in z and 1/z, hence
hey are functions of x .

. Orthogonality of very-well poised series

In this section we use Theorem 3.4 and q-integration by parts to give an orthogonality
elation for pn(x; a, b) in Theorem 4.2. When m = 0 Theorem 4.2 is the orthogonality relation
or Askey–Wilson polynomials.

To derive orthogonality from a Rodrigues formula we need an appropriate integration by
arts formula. Brown, Evans and Ismail proved the following analogue of q-integration by
arts in [3, (1.12)].
5
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Theorem 4.1. The Askey–Wilson operator Dq satisfies

⟨Dq f, g⟩ =
π

√
q

1 − q

[
f
(

1
2

(
q1/2

+ q−1/2)) g(1) − f
(

−
1
2

(
q1/2

+ q−1/2)) g(−1)
]

− < f,
√

1 − x2 Dq

(
g(x)

(
1 − x2)−1/2

)
>,

or f , g ∈ H1/2.

Let

h(x, a) =

∞∏
k=0

(1 − 2axqk
+ a2q2k) = (aeiθ , ae−iθ

; q)∞, x = cos θ,

nd

w(x; a, b) =
h(2x2

− 1, 1)
√

1 − x2

∏m
i=1 h(x, bi )∏m+4
i=1 h(x, ai )

.

If m = 0, w(x; a,∅) is the Askey–Wilson weight function.

Theorem 4.2. Assume that |a j | < 1, 1 ≤ j ≤ m +4, the a j ’s are real or appear in conjugate
airs. Then for any polynomial π (x) of degree at most n − 1,∫ 1

−1
pn(x, a, b)π (x)w(x; a, b)dx = 0.

roof. Note that w(x; a, b) = ğ(z; a, b). We first assume that |a j q−n/2
| < 1 for 1 ≤ j ≤ m+4.

se Theorems 3.4 and 4.1 n times. Each boundary term in the formula for q-integration by
arts is 0 because of the presence of the factor

√
1 − x2. The action of Dq on products of factors

f the type 1/h(x, a) produces products of factors of the type 1/h(x, q−1/2a). The analyticity
assumptions in Theorem 4.1 are satisfied since ğ(z; a, b) = 0 if z = q j/2 for any integer j . The
restriction |a j q−n/2

| < 1 can be removed by analytic continuation since 1/h(x, a) is analytic
in a in the open unit disc and for all x ∈ [−1, 1]. □

5. Polynomial nature of pn(x; a, b)

From Definition 3.3 it would appear that

qn(x; a, b) :=

m∏
j=1

(b j z, b j/z; q)n pn(x; a, b)

as poles at the zeros of (1/z2
; q)n . However these singularities are removable. The main result

f this section is Corollary 5.7 which establishes the polynomial character of qn(x; a, b).
We shall use the Rodrigues formula to give an inductive proof of this fact. First we

eformulate the Rodrigues formula as a recursive procedure.

roposition 5.1. For any positive integer n we have

qn(x; a, b) =
1

Dq (ğ(z; q1/2a, qn−1/2b)qn−1(x; q1/2a, q1/2b)).

ğ(z; a, qnb)

6
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Proof. The case n = 1 is the case n = 1 of Theorem 3.4. The inductive step follows from

pn+1(x; a, b) =
1

ğ(z; a, b)
Dn+1

q

[
ğ(z; q (n+1)/2a, q (n+1)/2b)

]
=

1
ğ(z; a, b)

Dq
[
ğ(z; q1/2a, q1/2b)pn(x; q1/2a, q1/2b)

]
=

1
ğ(z; a, b)

Dq
[
ğ(z; q1/2a, qn+1/2b)qn(x; q1/2a, q1/2b)

]
.

ultiplying both sides by
∏m

j=1(b j z, b j/z; q)n+1 gives the desired result for n + 1. □

In Theorems 5.3 and 5.6 we find the leading term of qn(x; a, b) and the next lemma enables
s to do this.

We denote the coefficient of zm in a Laurent polynomial c(z) by [zm]c(z).

emma 5.2. Let c(z) be a Laurent polynomial with degrees bounded between −m − 2 and
+ 2, and let f̆ (z) be a symmetric Laurent polynomial of degree k. Then

c(z) f̆ (q1/2z) − c(1/z) f̆ (q−1/2z)
z − 1/z

is a symmetric Laurent polynomial of degree m + 1 + k, with leading coefficient

(qk/2[zm+2]c(z) − q−k/2[z−m−2]c(z))[zk] f̆ (z).

roof. The poles at z = 1 and z = −1 are cancelled by zeros of the numerator (since
f̆ (±q1/2) = f̆ (±q−1/2) by the symmetry of f̆ ), and thus the result is a Laurent polynomial,
he symmetry of which follows from the symmetry of f̆ . The claim about the leading coefficient
ollows by dividing by zm+1+k and taking the limit z → ∞. □

heorem 5.3. For any a, b, qn(x; a, b) is a polynomial in x of degree at most (m + 1)n. The
nequality on the degree is strict if and only if

b1 · · · bm = qn−1+sa1 · · · am+4,

for some 0 ≤ s ≤ n − 1.

Proof. First it is useful to note that

c(z) =
ğ(zq1/2

; aq1/2, bqn−1/2)
ğ(z; a, bqn)

,

mplies that

c(1/z) =
ğ(zq−1/2

; aq1/2, bqn−1/2)
ğ(z; a, bqn)

.

A straightforward induction using Proposition 5.1 and Lemma 5.2 with

c(z) = −
q−1/2

z2

m∏
i=1

(1 − bi qn−1/z)
m+4∏
j=1

(1 − a j z),

f̆ (z) = q (x; q1/2a, q1/2b), k = (n − 1)(m + 1)
n−1

7
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2n(−1)n(m−1)

(q1/2 − q−1/2)n
qm(n

2)
n−1∏
s=0

(a1 · · · am+4qn−1+s
− b1 · · · bm),

nd the result follows. □

If one experiments with the special cases when the degree bound is not attained, one finds
hat for otherwise generic parameters such that

b1 · · · bm = qn−1+sa1 · · · am+4

or some 0 ≤ s ≤ n − 1, qn(x; a, b) has degree nm + s. Unfortunately, the above inductive
rgument does not suffice to give this stronger bound, though it does allow one to reduce to the
ase s = 0. To resolve this case, we need a stronger version of Proposition 5.1. This requires
n operator identity satisfied by the Askey–Wilson operator, which we now state.

emma 5.4. Let

φ̆n(z; a) = (az, a/z; q)n.

or any parameter v, the Askey–Wilson operator satisfies the operator identity in x

Dl+m
q =

1

φ̆m(z; q−m/2v)
Dl

q φ̆l+m(z; q−(l+m)/2v)Dm
q

1

φ̆l(z; q−l/2v)
.

roof. We verify that both sides give the same result when applied to φ̆s(z; q−l/2v). We use

Dq φ̆n(z; a) =
2a(1 − qn)

q − 1
φ̆n−1(z; aq1/2), Dq

1

φ̆n(z; a)
=

2a(1 − qn)
1 − q

1

φ̆n+1(z; aq−1/2)
,

and

φ̆l(z; q−l/2v)φ̆s(z; q l/2v) = φ̆s+l(z; q−l/2v),
φ̆l+m(z; q−(l+m)/2v)

φ̆l+m+s(z; q−(l+m)/2v)
=

1

φ̆s(z; q (l+m)/2v)
φ̆s+l(z; qm/2v)φ̆m(z; q−m/2v) = φ̆s+l+m(z; q−m/2v).

After treating the cases s ≥ l and s < l separately one completes the proof. □

Remark 5.5. Apply Lemma 5.4 to a function f . Comparing coefficients of f (q j−(l+m)/2) on
both sides of Proposition 2.1 gives a special case of Jackson’s 8φ7 summation, [6, (II.22)].

This allows us to prove the following result, from which the claim about qn(x; a, b) follows
immediately.

Theorem 5.6. Let f (z) be a symmetric Laurent polynomial of degree k, and define

hn(z; a, b) =
1

ğ(z; a, qnb)
Dn

q (ğ(z; qn/2a, qn/2b) f (z)).

hen hn(z; a, b) is a symmetric Laurent polynomial of degree at most (m + 1)n + k. Moreover,
f for some s with 0 ≤ s ≤ n − 1,
8
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b1b2 · · · bm = qn−1+s+ka1a2 · · · am+4.

then hn(z; a, b) has degree at most mn + s + k.

Proof. If s ̸= 0, the claim follows by the argument of the previous induction. Proposition 5.1
holds with qn(x; a, b) replaced by hn(z; a, b). Thus the leading term of hn(z; a, b) is a nonzero
multiple of a1 · · · am+4qn+1

−b1 · · · bm times the leading term of hn−1(z; q1/2a, q1/2b). If a and
satisfy the hypothesized restriction with parameters n and s, then q1/2a and q1/2b satisfy the

ame relation with parameters n − 1 and s − 1. Thus by induction hn−1(z; q1/2a, q1/2b) has
egree at most m(n − 1) + s − 1 + k. Lemma 5.2 implies hn(z; a, b) has degree at most

m(n − 1) + s − 1 + k + m + 1 = mn + s + k.

It remains only to establish the s = 0 case, namely to show that if

b1b2 · · · bm = qn−1+ka1a2 · · · am+4,

hen hn(z; a, b) has degree at most mn + k.
We shall use Lemma 5.4 to derive another recurrence for hn(z; a, b)

hn+1(z; a, b) =
1

ğ(z; (qna1, a′), qn+1b)
×Dq (ğ(z; (qn+1/2a1, q1/2a′), qn+1/2b)hn(z; (q−1/2a1, q1/2a′), q1/2b)),

(5.1)

here a = (a1, a′) = (a1, a2, . . . , am+4). It must be noted that (5.1) is a raising operator relation
or hn .

To prove (5.1) apply Lemma 5.4 with (l, m) = (1, n) and v = qn/2a1 to give the operator
dentity

1
ğ(z; a, qn+1b)

Dn+1
q ğ(z; qn/2+1/2a, qn/2+1/2b)

=

(
1

ğ(z; (qna1, a), qn+1b)
Dq ğ(z; (qn+1/2a1, q1/2a), qn+1/2b)

)
(

1
ğ(z; (q−1/2a1, q1/2a), qn+1/2b)

Dn
q ğ(z; (qn/2−1/2a1, qn/2+1/2a), qn/2+1/2b)

)
.

Suppose by induction that hn(z; A, B) has degree mn + k whenever

B1 B2 · · · Bm = qn−1+k A1 A2 · · · Am+4.

uppose that

b1b2 · · · bm = qn−1+ka1a2 · · · am+4.

olds. We must show that hn+1(z; a, b) has degree at most m(n + 1) + k.
We now use Lemma 5.2 with

c(z) = −
q−1/2

z2 (1 − a1qnz)
m+4∏
i=2

(1 − ai z)
m∏

j=1

(1 − b j qn/z)

f̆ (z) = hn(z; (q−1/2a1, q1/2a′), q1/2b)

o conclude that hn+1(z; a, b) has degree at most m+1 more than hn(z; (q−1/2a1, q1/2a′), q1/2b).
oreover the leading term of hn+1(z; a, b) is a multiple of b1 . . . bm − qn+ka1 · · · am+4, which

−1/2 1/2 ′ 1/2
s zero. So the degree of hn+1(z; a, b) is at most m more than hn(z; (q a1, q a ), q b).

9
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We see that (A, B) = ((q−1/2a1, q1/2a′), q1/2b) satisfies the hypothesized relation for n. So by
nduction the degree of hn(z; (q−1/2a1, q1/2a′), q1/2b) is at most mn + k, and the degree of

hn+1(z; a, b) has degree at most mn + k + m = m(n + 1) + k. □

orollary 5.7. If b1b2 · · · bm = qn−1+sa1a2 · · · am+4 for some s, 0 ≤ s ≤ n−1, then qn(x; a, b)
s a polynomial in x of degree at most mn + s.

. Rahman’s biorthogonal 10φ9’s

In this section we derive Rodrigues formulas and the biorthogonality relation [12, §3] for
ahman’s very-well poised 10φ9’s from Theorems 3.4 and 4.2. We also give a polynomial
rthogonality in Theorem 6.5.

Rahman’s [12] biorthogonal rational functions which depend upon five parameters t =

t1, t2, t3, t4, t5). The functions are denoted by Rn and Sn and given by

Rn(x; t | q) = 10W9(t2
1 t2t3t4t5/q; t1t3t4t5, t1t2t4t5, t1t2t3t5, t1z, t1/z, t1t2t3t4qn−1, q−n

; q; q),

Sn(x; t | q) = 10W9(t1/t5; q/t2t5, q/t3t5, q/t4t5, t1z, t1/z, t1t2t3t4qn−1, q−n
; q; q).

First we rewrite Rahman’s functions as another 10W9 function, our pn(x; a, b). Bailey’s
0φ9 transformation [6, (III.28)] is

10φ9

(
A, q A1/2, −q A1/2, B, C, D, E, F, λAqn+1/E F, q−n

A1/2, −A1/2, q A/B, q A/C, q A/D, q A/E, q A/F, E Fq−n/λ, Aqn+1

⏐⏐⏐⏐ q, q
)

=
(q A, q A/E F, qλ/E, qλ/F; q)n

(q A/E, q A/F, qλ/E F, qλ; q)n

×10φ9

(
λ, qλ1/2, −qλ1/2, λB/A, λC/A, λD/A, E, F, λAqn+1/E F, q−n

λ1/2, −λ1/2, q A/B, q A/C, q A/D, qλ/E, qλ/F, E Fq−n/A, λqn+1

⏐⏐⏐⏐ q, q
)

,

(6.1)

here λ = q A2/BC D.

roposition 6.1. The Rahman functions are given by

Rn(x; t | q) =cn pn(x; a, b1), a = (t1, t2, t3, t4, t5q1−n), b1 = t1t2t3t4t5 = T,

cn =

(
q − 1

2

)n

q
1
2 (

n
2)

(t1T ; q)n

(t1t2, t1t3, t1t4, q1−nt1t5; q)n
tn
1

Sn(x; t | q) =dn(x)pn(x; a, b1), a = (t1, t2, t3, t4, t5q−n), b1 = t1t2t3t4t5/q = T/q,

dn(x) =

(
q − 1

2

)n

q
1
2 (

n
2)

(T z/q, T/qz; q)n

(q−nzt5, q−nt5/z; q)n

(q−nt5/t1; q)n

(t1t2, t1t3, t1t4, T/qt1; q)n
tn
1 .

roof. Both assertions follow from two applications of (6.1).
It must be noted that one of the parameters in a in Proposition 6.1 depends on n.
For Rn use A = t2

1 t2t3t4t5/q, B = t1/z, C = t1t3t4t5, D = t1t2t3t5 followed by A = t1t2t4z/q,
B = qn−1t1t2t3t4, C = 1/t3t5, D = t1t2t4t5.

For Sn use A = t1/t5, B = t1/z, C = q/t2t5, D = q/t3t5 followed by A = t1t2t3z/q ,
B = q/t4t5, C = qn−1/t1t2t3t4, D = t1t2t3t5/q. □
Thus we have Rodrigues formulas for the Rahman functions.

10
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Theorem 6.2. The Rahman functions have the Rodrigues formulas

c−1
n Rn(x; t | q) =

1
ğ(z; a, b1)

Dn
q (ğ(z; qn/2a, qn/2b1)),

a =(t1, t2, t3, t4, t5q1−n), b1 = t1t2t3t4t5

d−1
n (x)Sn(x; t | q) =

1
ğ(z; a, b1)

Dn
q (ğ(z; qn/2a, qn/2b1)),

a =(t1, t2, t3, t4, t5q−n), b1 = t1t2t3t4t5/q

We next show that Rahman’s biorthogonality follows from Theorem 4.2.

heorem 6.3. If n ̸= m, T = t1t2t3t4t5, then∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Rn(x; t | q)Sm(x; t | q)dx = 0,

olds for |t j | < 1, 1 ≤ j < 5, and max{|t5q−m
|, |t5q−n

|} < 1.

roof. First assume that n > m. Then from Theorem 4.2 and Proposition 6.1 we have

0 =

∫ 1

−1
w(x; (t1, t2, t3, t4, t5q1−n), T )Rn(x; t | q)π (x)dx

=

∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Rn(x; t | q)

π (x)
(q1−nt5z, q1−nt5/z; q)n−1

dx

or any polynomial π (x) of degree at most n − 1. By Corollary 5.7 with m = 1 and s = 0, we
an choose π (x) to be a multiple of

pm(x; (t1, t2, t3, t4, q−m t5), T/q)(T z/q, T/qz; q)m(q1−nt5z, q1−nt5/z; q)n−1−m

hich by Proposition 6.1 is a multiple of

Sm(x; t | q)(q1−nt5z, q1−nt5/z; q)n−1.

Next suppose that n < m. From Theorem 4.2 and Proposition 6.1 we have

0 =

∫ 1

−1
w(x; (t1, t2, t3, t4, t5q−m), T/q)Sm(x; t | q)

(q−m zt5, q−m t5/z; q)m

(T z/q, T/qz; q)m
π (x)dx

=

∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Sm(x; t | q)

π (x)
(T z, T/z; q)m−1

dx

for any polynomial π (x) of degree at most m −1. This time use Corollary 5.7 with m = 1 and
s = 0, and choose π (x) to be a multiple of

pn(x; (t1, t2, t3, t4, q1−nt5), T )(T z, T/z; q)n(T zqn, T qn/z; q)m−1−n

which by Proposition 6.1 is a multiple of

Rn(x; t | q)(T z, T/z; q)m−1,

and the proof is complete. □

Rahman [13] gave the orthogonality relation when the parameters are not necessarily small,
and in general the orthogonality relation has a discrete part. One can derive such a relation
using contour integration instead of integration on [−1, 1].
11
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One may ask for a polynomial orthogonality relation for a 10W9. We provide one for
olynomials in x of degree n (see Theorem 6.5).

efinition 6.4. Let

Un(x; t | q) =zn (T zqn−1
; q)n

(1/z2; q)n

5∏
i=1

(ti/z; q)n

×10W9(q−nz2
; t1z, t2z, t3z, t4z, t5z, zq2−2n/T, q−n

; q; q)

Note that Definition 6.4 is equivalent to

Un(x; t | q) = αn pn(x; t, qn−1T )(T zqn−1, T qn−1/z; q)n, T = t1t2t3t4t5,

here αn is a non-zero constant. Thus Corollary 5.7 with m = 1 and s = 0 shows that
n(x; t | q) is a polynomial in x of degree n.

heorem 6.5. Assume that |t j | < 1, 1 ≤ j ≤ 5, the t j ’s are real or appear in conjugate
airs. Then the polynomials Un(x; t | q) of degree n satisfy the orthogonality relation∫ 1

−1
Un(x; t | q)Um(x; t | q)

w(x; t, T )∏2n−2
k=0 (1 − 2T xqk + T 2q2k)

dx = 0, n > m.

roof. This follows directly from Theorem 4.2 using

w(x; t, T qn−1) =
w(x; t, T )

(T z, T/z; q)n−1
, αn pn(x; t, qn−1T ) =

Un(x; t | q)
(T qn−1z, T qn−1/z; q)n

.

his completes the proof. □

The polynomials Un are symmetric in the parameters ti . If t5 = 0 (and thus T = 0)
heorem 6.5 is the orthogonality relation for Askey–Wilson polynomials. We note that t5 = 0
oes give the Askey–Wilson polynomials with the symmetric normalization

Un(x; (t1, t2, t3, t4, 0), 0) = pn(x; t|q).

A three-term relation for Un , generalizing the Askey–Wilson three-term recurrence, is given
n §9.

. Asymptotics

In this section we give in Theorem 7.2 the large n asymptotics of the polynomials
n(x; t, T ). Although these polynomials are not, strictly speaking, orthogonal polynomials, we

how that orthogonal polynomial techniques can lead one to guess an orthogonality relation
uch as Theorem 6.5.

The following theorem relates the asymptotics of orthonormal polynomials to the weight
unction, see [22, Chapter 12].

heorem 7.1. Assume that {pn(x)} are orthonormal with respect to a weight function w on
−1, 1] and that

∫ 1
−1 | ln f (cos θ )|dθ < ∞, f (x) = w(x)

√
1 − x2. Let

D(z) = exp
[

1
∫ π

ln f (cos θ )
1 + ze−iθ

iθ
dθ

]
, |z| < 1.
4 −π 1 − ze
12
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Then

lim
n→∞

z−n pn(x) =
1

√
2π D(1/z)

,

here x ∈ C \ [−1, 1] and x = (z + 1/z)/2, |z| > 1. Moreover the radial limit exists,
imr→1− D(reiθ ) = D(eiθ ) and w(cos θ ) = |D(eiθ )|2/ sin θ .

It must be noted that Theorem 7.1 contains information only on the absolutely continuous
omponent of the orthogonality measure and gives no information on the discrete part.

When we do not know the weight function w but do know asymptotics of pn(x), Theo-
em 7.1 will provide a good candidate for the weight function.

First we transform Un(x; t, T ) using (6.1) with A = q−nz2, B = t1z, C = t2z, and D = t3z.
he resulting expression may be written as

Un(x; t, T ) =
zn(q, t1t2, t1t3, t2t3, t4t5, qnt1t2t3/z, T qn−1/z; q)n

(t1t1t3/qz; q)2n

×

n∑
k=0

(t1/z, t2/z, t3/z, t1t2t3/qz, qn−1T/t4, qn−1T/t5; q)n−k

(q, t1t2, t1t3, t2t3, qnt1t2t3/z, T qn−1/z; q)n−k

t1t2t3 − zq1−2n+2k

t1t2t3 − zq1−2n

×
(t4z, t5z; q)k

(q, t4t5; q)k
(qz)−2k .

Therefore for |z| > 1 we have the limiting relation

lim
n→∞

z−n Un(x; t) = (t4t5; q)∞
3∏

j=1

(t j/z; q)∞ 2φ1(t4z, t5z; t4t5; q, 1/z2)

pplying the q-analogue of Gauss’s theorem [6] we establish the following theorem.

heorem 7.2. The large n asymptotics of Un for |z| > 1 is given by

lim
n→∞

z−n Un(x; t) =

∏5
j=1(t j/z; q)∞
(1/z2; q)∞

.

If the Un’s were orthogonal polynomials Theorem 7.1 would give

D(z) =
(1/z2

; q)∞∏5
j=1(t j/z; q)∞

one would expect the weight function to be

(e2iθ , e−2iθ
; q)∞

sin θ
∏5

j=1(t j eiθ , t j e−iθ ; q)∞
, θ ∈ [0, π]. (7.1)

This agrees with Theorem 6.5 except for the part of the weight function which depends on
n. In fact the weight function in Theorem 6.5 is exactly analogous to the problem of varying
weights in orthogonal polynomials, see for example [18]. If we let n → ∞ in the weight
function in Theorem 6.5 we indeed get the quantity in (7.1). So the asymptotics seems to give
the n independent part of the weight function.

8. Elliptic analogues

In this section we give elliptic analogues of the main results of the previous sections. An
elliptic version of the iterated Askey–Wilson operator is given in Proposition 8.1. An elliptic
13
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analogue of the polynomials qn(x; a, b) is given in Definition 8.4, and their orthogonality
elation is Theorem 8.9.

The operator identity, Lemma 5.4, satisfied by the Askey–Wilson operator, is a limiting
ase of an identity satisfied by a family of elliptic difference operators. We recall the elliptic
nalogue of the infinite q-shifted factorials, the elliptic Gamma function of [17]

Γp,q (z) =

∏
j,k≥0

1 − p j+1qk+1/z
1 − p j qk z

,

which satisfies the recurrence

Γp,q (qz) = θp(z)Γp,q (z),

where

θp(z) =

∏
j≥0

(1 − p j+1/z)(1 − p j z).

This function, in turn, satisfies the following quasiperiodicity property:

θp(pz) = −z−1θp(z),

aking θp(exp(2π
√

−1z)) a theta function for the lattice ⟨1, log(p)/2π
√

−1⟩. We also define
nite elliptic shifted factorial by

θp(z; q)m =
Γp,q (qm z)
Γp,q (z)

=

∏
0≤ j<m

θp(q j z).

The analogue of a polynomial of degree n in the elliptic context is a “symmetric theta
unction” of degree n, a holomorphic function f such that f (1/z) = f (z) and f (pz) =

(pz2)−n f (z). As with polynomials, these form a vector space of dimension n + 1.
The most natural analogue of the Askey–Wilson operator is the operator Dq;p which acts

y

(Dq;p f )(z) =
f (q1/2z)
θp(z2)

+
f (q−1/2z)
θp(1/z2)

,

hich manifestly preserves the space of functions invariant under z ↦→ 1/z. This is not quite a
direct analogue, in so far as the limit as p → 0 is not quite the same operator (the coefficients
differ by powers of z), but is more convenient for dealing with questions of orthogonality. The
key point is that this operator is formally self-adjoint with respect to the density

∆(z; p, q) =
(p; p)∞(q; q)∞

2
1

Γp,q (z2)Γp,q (1/z2)
dz

2π
√

−1z
,

he fixed part of the density of the elliptic beta integral [19]. To be precise, if f and g are
nvariant under z ↦→ 1/z, then the integral∫

S1
(Dq;p f )(z)g(z)∆(z)

is, by symmetry, equal to

2
∫

f (q1/2z)g(z)θp(z2)−1∆(z).

S1

14
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The change of variables z ↦→ q−1/2/z makes this equal to

2
∫

|z|=q−1/2
f (z)g(q1/2z)θp(z2)−1∆(z).

Moving the contour back to the unit circle and symmetrizing gives∫
S1

f (z)(Dq;pg)(z)∆(z),

assuming that there are no poles for 1 ≤ |z| ≤ q−1/2. (The possibility of poles is why we refer
to this as “formal” self-adjointness above.)

Unlike the Askey–Wilson operator, however, the powers of this operator are not well-
behaved; if we try to square the operator, we find that the two contributions to the constant term
are quasiperiodic, but with different multipliers, and thus the sum is not even a (meromorphic)
theta functions. However, in [15, §9], the second author introduced a family of multivariate
operators satisfying an analogue of Lemma 5.4; in the univariate case, this is the operator
identity

Dl+m (q; p) =
Γp,q (q−m/2vz)Γp,q (q−m/2v/z)

Γp,q (qm/2vz)Γp,q (qm/2v/z)
Dl (q; p)

Γp,q (q(l+m)/2vz)Γp,q (q(l+m)/2v/z)

Γp,q (q−(l+m)/2vz)Γp,q (q−(l+m)/2v/z)

×Dm (q; p)
Γp,q (q−l/2vz)Γp,q (q−l/2v/z)

Γp,q (ql/2vz)Γp,q (ql/2v/z)
,

where D1(q; p) = Dq;p. The above identity is not explicitly stated in [15].
From this, it is straightforward to deduce the analogue of Proposition 2.1. Indeed, when

m = 1, the simple fact that the right-hand side is independent of v means that the residue at
= q1/2z must be 0, but this gives a first-order recurrence for the coefficients of Dl(q; p). The

eading coefficient is also straightforward to compute.

roposition 8.1. The operator Dn(q; p) has the expansion

(Dn(q; p) f )(z) =

∑
0≤ j≤n

(−1) j q− j( j−1)/2z2 j θp(qn−2 j z2)
θp(q− j z2; q)n+1

θp(q; q)n

θp(q; q) jθp(q; q)n− j
f (qn/2− j z)

As remarked after Lemma 5.4, this expression turns the operator identity into a (Zariski
ense) special case of the Frenkel–Turaev summation [5], the elliptic analogue of Jackson
ummation.

Note that just as for n = 1, Dn(q; p) is formally self-adjoint with respect to the density
(z; p, q).

heorem 8.2. Let f be a symmetric theta function of degree k, and let a be a sequence of
ength 2m + 4 satisfying

q (m+1)(n−1)+ka1 · · · a2m+4 = pm+1.

hen
1∏

1≤i≤2m+4 Γp,q (ai z)Γp,q (ai/z)
Dn(q; p)

∏
1≤i≤2m+4

Γp,q (qn/2ai z)Γp,q (qn/2ai/z) f (z)

is a symmetric theta function of degree mn + k.

Proof. As before, this reduces easily to the case n = 1. In that case, we verify that the resulting

function has the correct symmetry and quasi-periodicity, so the only obstruction to being a theta

15
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function is the potential poles coming from zeros of θp(z2). By symmetry, however, the function
ust have even order at such points, and thus the apparent simple poles are in fact removable

ingularities as required. □

emark 8.3. To relate this to Theorem 5.6, note that the elliptic Gamma function satisfies the
eflection principle Γp,q (x)Γp,q (pq/x) = 1, and thus we can write a ratio of elliptic Gamma
unctions as a product. Moreover, we can shift one of the parameters by a factor of p at the cost
f introducing some powers of q and z to the coefficients of the operator (as Γp,q (px)/Γp,q (x)
s quasiperiodic under q-shifts!).

Applying the operator when k = 0 in Theorem 8.2 to 1 gives a symmetric theta function of
egree mn.

efinition 8.4. Let

qn(z; a; p) =
1∏

1≤i≤2m+4 Γp,q (ai z)Γp,q (ai/z)
Dn(q; p)

∏
1≤i≤2m+4

Γp,q (qn/2ai z)Γp,q (qn/2ai/z)(1)

Note that Proposition 8.1 implies that qn(z; a; p) has an expression as a “very-well-poised
alanced” elliptic hypergeometric series.

If we take m = −1, then we find that the operator decreases the degree. Since theta functions
f negative degree do not exist, we obtain the following result.

orollary 8.5. If f (z) is a symmetric theta function of degree n − 1, then for any a,

Dn(q; p)
[

f (z)
θq (az)θq (a/z)

]
= 0.

Together with self-adjointness of Dn(q; p), Corollary 8.5 allows us to prove orthogonality
results. The simplest interesting case is a Rodrigues formula for the biorthogonal functions of
Spiridonov and Spiridonov–Zhedanov, which are now defined.

Definition 8.6. For parameters satisfying t0t1t2t3u0u1 = pq , let

fn(z; t0, t1, t2, t3; u0, u1)

=

3∏
j=0

1
Γp,q (t j z, t j/z)

1
Γp,q (u0z)Γp,q (u0/z)Γp,q (pu1q1−nz)Γp,q (pu1q1−n/z)

×Dn(q; p)H (z),

here

H (z) = Γp,q (q−n/2u0z)Γp,q (q−n/2u0/z)Γp,q ((pu1q1−n/2)z)Γp,q ((pu1q1−n/2)/z)

×

3∏
j=0

Γp,q (qn/2t j z)Γp,q (qn/2t j/z).
(8.1)

Also, define a family of densities by

∆(z; a) :=

∏
Γp,q (ai z)Γp,q (ai/z)∆(z).
1≤i≤2m+4

16
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Lemma 8.7. The function

θp((pq/u0)z; q)nθp((pq/u0)/z; q)n fn(z; t0, t1, t2, t3; u0, u1)

s a symmetric theta function of degree n, so that fn(z; t0, t1, t2, t3; u0, u1) is a symmetric elliptic
unction. Next, suppose |t0|, |t1|, |t2|, |t3|, |q−nu0|, |q1−nu1| < 1. Then for any symmetric elliptic
unction g such that

θp((pq/u1)z; q)n−1θp((pq/u1)/z; q)n−1g(z)

s holomorphic,∫
S1

fn(z; t0, t1, t2, t3; u0, u1)g(z)∆(z; t0, t1, t2, t3, u0, u1) = 0.

n particular, fn(z; t0, t1, t2, t3; u0, u1) is proportional to the elliptic biorthogonal function
of [20].

Proof. We have

θp((pq/u0)z; q)nθp((pq/u0)/z; q)n fn(z; t0, t1, t2, t3; u0, u1) = qn(z; t0, t1, t2, t3, q−nu0, q1−n pu1; p),

which is indeed a symmetric theta function of degree n. We can also write∫
S1

fn(z; t0, t1, t2, t3; u0, u1)g(z)∆(z; t0, t1, t2, t3, u0, u1)

=

∫
S1

[Dn(q; p)H (z)]
Γp,q (u1z)Γp,q (u1/z)

Γp,q ((pu1/qn−1)z)Γp,q ((pu1/qn−1)/z)
g(z)∆(z),

here H (z) is given by (8.1).
The conditions on the parameters ensure that the residue terms in the formal self-adjointness

o not appear (i.e., the integrand has no poles between the shifted contour and the unit circle),
o the integrand is

∆(z)Dn(q; p)
Γp,q (u1z)Γp,q (u1/z)

Γp,q ((pu1/qn−1)z)Γp,q ((pu1/qn−1)/z)
g(z).

ay be rewritten as

∆(z)Dn(q; p)
Γp,q (u1z)Γp,q (u1/z)

Γp,q (pu1z)Γp,q (pu1/z)
θp((pq/u1)z; q)n−1θp((pq/u1)/z; q)n−1g(z).

ecause
Γp,q (u1z)Γp,q (u1/z)

Γp,q (pu1z)Γp,q (pu1/z)
=

1
θq (u1z)θq (u1/z)

,

he integrand vanishes by Corollary 8.5. □

We note that the work [21] contains discrete orthogonality for a family of biorthogonal
ational functions.

emark 8.8. The constant can be recovered from the fact that when z = t0, only one of the
+ 1 terms in the Rodrigues formula is nonzero, so that

fn(t0; t0, t1, t2, t3; u0, u1) =
θp(t0t1, t0t2, t0t3, 1/t0u1; q)n

.

θp(pqt0/u0; q)n

17
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Essentially the same argument gives the following more general orthogonality result. When
= 1, this recovers the above orthogonality (for the numerator of fn , to be precise).

heorem 8.9. Let q (m+1)(n−1) ∏
0≤i<2m+4 ai = pm , so that the function

qn(z; pa0, a1, . . . , a2m+3; p)

is a symmetric theta function of degree mn, and suppose |a0|, . . . , |a2m+3| < 1. Then for any
symmetric theta function g of degree n − 1,∫

S1
qn(z; pa0, a1, . . . , a2m+3; p)g(z)∆(z; a0, . . . , a2m+3) = 0.

Note that since the function
θq (bz)θq (b/z)
θq (az)θq (a/z)

is periodic in q , it follows from Proposition 8.1 that the operator

a−nθq (q−n/2az)θq (q−n/2a/z)Dn(q; p)
[

1
θq (az)θq (a/z)

]
s independent of a.

In fact, the same theta functions satisfy a number of different orthogonality relations, arising
rom the fact that

an
0 qn(z; pa0, a1, . . . , a2m+3; p) = an

1 qn(z; a0, pa1, . . . , a2m+3; p),

hich in turn follows immediately from the above observation that

a−nθq (q−n/2az)θq (q−n/2a/z)Dn(q; p)
[

1
θq (az)θq (a/z)

]
s independent of a. It seems likely that these orthogonality relations determine qn (indeed, it
hould typically be enough to take the first m such relations), though to prove this in general
equires the computation of a fairly complicated determinant. The orthogonality relations
mpose linear conditions on qn , so for qn to be uniquely determined requires that the restriction

of these equations to some complement of ⟨qn⟩ has a minor of full rank.
We also have the following analogue of Theorem 6.5.

Corollary 8.10. Let Un(z; t1, t2, t3, t4, t5; p) := qn(z; t1, t2, t3, t4, t5, p2q2−2n/t1t2t3t4t5). Then
or m < n, and |t j | < 1 for all j, 1 ≤ j ≤ 6, we have∫

S1
Un(z)Um(z)θp(az, a/z; q)n−1−m∆(z; t1, t2, t3, t4, t5, pq2−2n/t1t2t3t4t5) = 0.

emark 8.11. Note here that the density depends on m in a crucial way, via the factor
p(az, a/z; q)n−1−m as part of the density. Of course, in the limit p → 0, one may as well take
= 0, and thus recover Theorem 6.5.

. A recursion relation

Ismail and Masson [8] proved that RI I rational functions are biorthogonal. They also proved
hat the biorthogonality implies that {Un(z)} satisfies a three term recurrence relation. We now
roceed to determine the coefficients in the recurrence relation.
18
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Proposition 9.1. The polynomial Un(x) = Un(xn; t|q) satisfies the following 3-term recurrence
elation

Un+1 − An+1(1 − q2n−2T z)(1 − q2n−2T/z)(1 − q2n−3T z)(1 − q2n−3T/z)Un−1

− (Bn(1 − t1/z)(1 − t1z) + Cn) Un = 0,
(9.1)

here

An =

4∏
i=1

5∏
j=i+1

(1 − ti t j qn−2)(1 − qn−1)(−q8)/
5∏

i=1

(1 − e5qn−2/ti )
N
D

, where

N =(q10
− e4

5q8n
+ e2

5(q3n+5
− q5n+5) − e4q2n+8

+ e2
5e4(q6n+3

− q5n+3) + e5e3q3n+6

+ e3
5e1q6n+2

− e2
5e2q5n+4

+ e5e1(q3n+7
− q2n+7))

D =(q18
− e4

5q8n
+ e2

5(q3n+10
− q5n+8) − e4q2n+14

+ e2
5e4(q6n+5

− q5n+6)

+ e5e3q3n+11
+ e3

5e1q6n+4
− e2

5e2q5n+7
+ e5e1(q3n+12

− q2n+13));

Cn =

5∏
j=2

(1 − qnt1t j )
(1 − q2n−1t2t3t4t5)(1 − q2nt2t3t4t5)

t1(1 − qn−1t2t3t4t5)

− An+1
(1 − t2

1 t2t3t4t5q2n−2)(1 − t2
1 t2t3t4t5q2n−3)(1 − t2t3t4t5qn−2)t1∏5

j=2(1 − qn−1t1t j )
.

Bn =
(

(1 − t1t2qn)
5∏

j=3

(1 − qnt2t j )
(1 − q2n−1t1t3t4t5)(1 − q2nt1t3t4t5)

(1 − qn−1t1t3t4t5)t2

− An+1
(1 − t1t2

2 t3t4t5q2n−2)(1 − t1t2
2 t3t4t5q2n−3)(1 − t1t3t4t5qn−2)t2∏5

j=3(1 − qn−1t2t j )(1 − t1t2qn−1)
− Cn

)
/(1 − t1/t2)(1 − t1t2).

nd e j is the elementary symmetric function of t1, t2, t3, t4, t5 of degree j .

This was found inspection, and was verified using computer algebraic techniques by
hristoph Koutschan [11]. We do not know a human only proof.

It must be noted that Eq. (9.1) when written in x, x = (z + 1/z)/2 is of the form of a
ecurrence relation of an RI I fraction, [8, (3.1)]. In the notation of §3 of [8], the interpolation
oints are

an+1 = [T q2n−2
+ q2−2n/T ]/2, bn+1 = [T q2n−3

+ q3−2n/T ]/2.

he interpolation points are also manifested in the orthogonality relation in Theorem 6.5.
oreover Un(x; t|q) can be evaluated at these special points. To see this use the symmetry

f Un in z and 1/z to put 1/z = T q2n−2 in 6.4. Indeed we have

Un(xn; t|q) =
q2n(n−1)

T n

5∏
j=1

(T qn−1/t j ; q)n, xn =
1
2

[T q2n−2
+ q2−2n/T ].

imilarly we may just set z = T q2n−3 in 6.4 and the 8W7 is now a sum of two terms, so we
can find a closed form expression for U (y ; t|q), where y = [T q2n−3

+ q3−2n/T ]/2.
n n n

19
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