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Abstract. Rodrigues formulas for very well-poised basic hypergeometric series of any order
are given. Orthogonality relations are found for rational functions which generalize Rahman’s

10φ9 biorthogonal rational functions. A pair of orthogonal rational functions of type RII is
identified. Elliptic analogues of some of these results are also included.

1. Introduction

The Rodrigues formula plays an important role in the theory of classical orthogonal polyno-
mials [17], [22]. By a Rodrigues-type representation of a sequence of functions fn(x), we mean
representing fn as

fn(x) =
cn

g0(x)
Tngn(x), n = 0, 1, · · · ,(1.1)

where the cn’s are constants and T is a linear operator which does not depend on n.

In a recent paper [12] Ismail and Stanton showed that the Watson transformation of a
balanced terminating 4φ3 to a very well-poised 8φ7 is exactly the Rodrigues formula for the
Askey-Wilson polynomials. This prompted us to explore Rodrigues type formulas for the 10φ9
biorthogonal rational functions Rn and Sn of [14], and consider orthogonality relations for
higher order very well-poised series. Rahman and Suslov [15] have a Rodrigues type formula
for a 10φ9 function, but their formulas do not resemble the classical Rodrigues formula. Indeed
instead of Tn the Rahman-Suslov formulas involve TnTn−1 · · ·T1, where Tj is linear but depends
on j. In a recent paper [11], Ismail and Rahman gave a three term recurrence relation of type
RII for the Rahman functions.

In Theorem 3.4 we give a Rodrigues formula of the type (1.1) for a 2m+8W2m+7 function
(see Definition 3.3) which generalizes Rahman’s rational functions Rn and Sn. We then provide
a general orthogonality relation for a 2m+8W2m+7, Theorem 4.2, which generalizes Rahman’s
biorthogonality relation. A polynomial orthogonality for a 10W9 is given in Theorem 6.5. Our
analysis is completely analogous to polynomials orthogonal with respect to varying weights.
There is extensive literature in this area, a sample of which is in [19].

The paper is organized as follows. After preliminary material is introduced in §2, in §3 we
define the rational functions and give the Rodrigues formula. The orthogonality relation is es-
tablished in §4. The special case of 10φ9’s is considered in §6, where Rahman’s biorthogonality
results are reproven. Asymptotics are given in §7. The polynomial behavior of our rational
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functions are determined in §5. The elliptic generalizations of our main results are given in §8.
Section 9 establishes a three term recurrence relation for a system of polynomials {Un(x; t)}
we introduce in §6.

2. Preliminaries

We shall use the notation and terminology in [2], [7], and [9] for basic hypergeometric series.
In this section we collect the results to be used in the rest of the paper.

We shall use the inner product associated with the Chebyshev weight
(
1− x2

)−1/2
on (−1, 1),

namely

< f, g >:=

∫ 1

−1
f(x) g(x)

dx√
1− x2

.

The operator we iterate for the Rodrigues formulas is the Askey-Wilson operator Dq, (see
[9])

(Dqf)(x) = 2
f̆(q1/2z)− f̆(q−1/2z)

(q1/2 − q−1/2)(z − 1/z)

where x = (z + 1/z)/2 = cos θ, f(x) = f̆(z), z = eiθ. It must be noted that x = (z + 1/z)/2
makes z and 1/z interchangeable. However to specify which branch of the Riemann surface
we assume that |z| ≥ |1/z|. Indeed |z| = |1/z| if and only if x ∈ [−1, 1], in which case we put
x = cos θ for a unique θ ∈ [0, π] and z = eiθ. The operator Dq was first introduced in [3].

Observe that the definition of Dq requires f̆(z) to be defined for
∣∣q±1/2z∣∣ = 1 as well as for

|z| = 1. In particular Dq is well-defined on H1/2, where

Hν :=
{
f : f((z + 1/z)/2) is analytic for qν ≤ |z| ≤ q−ν

}
.

The key fact of Cooper [5] which we shall use is that the nth iterate of the Askey-Wilson
operator may be expanded via very well-poised series.

Proposition 2.1. The nth iterate of the Askey-Wilson operator Dq satisfies

Dnq f(x) =
(−2/z)nq

1
2(n2)

(q1/2 − q−1/2)n(1/z2; q)n

n∑
k=0

(q−n, z2q−n; q)k
(qz2, q; q)k

1− z2q−n+2k

1− z2q−n
qnkf̆(q(2k−n)/2z).

The right side of Proposition 2.1 is invariant under z → 1/z, this is reversing the finite
series.

3. Rodrigues formulas and very well-poised series

In this section we give in Theorem 3.4 a Rodrigues formula for the general very well-poised
basic hypergeometric series

2m+8W2m+7(q
−nz2; q−n, a1z, · · · , am+4z, q

1−nz/b1, · · · , q1−nz/bm; q, Z),

where
Z = q2−nb1 · · · bm/a1 · · · am+4.

The first application of Proposition 2.1 uses

f̆(z; a,b) =
m∏
i=1

(biz, bi/z; q)∞
(aiz, ai/z; q)∞

,
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where a = (a1, . . . , am) and b = (b1, . . . , bm). Note that

f̆(qk−n/2z; qn/2a, qn/2b) = f̆(z; a,b)

m∏
i=1

(aiz; q)k(ai/z; q)n−k
(biz; q)k(bi/z; q)n−k

.

Proposition 3.1. The functions

rn(x; a,b) =
(−2/z)nq

1
2(n2)

(q1/2 − q−1/2)n(1/z2; q)n

m∏
i=1

(ai/z; q)n
(bi/z; q)n

× 2m+4W2m+3(q
−nz2; q−n, a1z, · · · , amz, q1−nz/b1, · · · , q1−nz/bm; q, Z),

where

Z =
b1 . . . bm
a1 . . . am

qn

satisfy the Rodrigues formula

rn(x; a,b) =
1

f̆(z; a,b)
Dnq (f̆(z; qn/2a, qn/2b)).

The next application incorporates an Askey-Wilson weight into ğ.

Definition 3.2. Let

ğ(z; a,b) =
2i(z2, q/z2; q)∞

∏m
i=1(biz, bi/z; q)∞

z
∏m+4
i=1 (aiz, ai/z; q)∞

,

where a = (a1, . . . , am+4) and b = (b1, . . . , bm).

Note that

ğ(qk−n/2z; qn/2a, qn/2b) = ğ(z; a,b)

∏m+4
i=1 (aiz; q)k(ai/z; q)n−k∏m
i=1(biz; q)k(bi/z; q)n−k

z2n−4k(−1)nq−(2k−n
2 )qn/2−k.

Definition 3.3. For a non-negative integer n define

pn(x; a,b) =
(2z)nq−

1
2(n+1

2 )

(q1/2 − q−1/2)n(1/z2; q)n

∏m+4
i=1 (ai/z; q)n∏m
i=1(bi/z; q)n

× 2m+8W2m+7(q
−nz2; q−n, a1z, · · · , am+4z, q

1−nz/b1, · · · , q1−nz/bm; q, Z),

where

Z =
b1 . . . bm
a1 . . . am+4

q2−n.

Theorem 3.4. The functions pn(x; a,b) satisfy the Rodrigues formula

pn(x; a,b) =
1

ğ(z; a,b)
Dnq (ğ(z; qn/2a, qn/2b)).

4. Orthogonality of very-well poised series

In this section we use Theorem 3.4 and q-integration by parts to give an orthogonality
relation for pn(x; a,b) in Theorem 4.2. When m = 0 Theorem 4.2 is the orthogonality relation
for Askey-Wilson polynomials.

To derive orthogonality from a Rodrigues formula we need an appropriate integration by
parts formula. Brown, Evans and Ismail proved the following analogue of q-integration by
parts in [4].
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Theorem 4.1. The Askey–Wilson operator Dq satisfies

< Dq f, g >=
π
√
q

1− q

[
f

(
1

2

(
q1/2 + q−1/2

))
g(1)− f

(
−1

2

(
q1/2 + q−1/2

))
g(−1)

]
− < f,

√
1− x2Dq

(
g(x)

(
1− x2

)−1/2)
>,

for f , g ∈ H1/2.

Let

h(x, a) =
∞∏
k=0

(1− 2axqk + a2q2k) = (aeiθ, ae−iθ; q)∞, x = cos θ,

and

w(x; a,b) =
h(2x2 − 1, 1)√

1− x2

∏m
i=1 h(x, bi)∏m+4
i=1 h(x, ai)

.

If m = 0, w(x; a,∅) is the Askey-Wilson weight function.

Theorem 4.2. For any polynomial π(x) of degree at most n− 1,∫ 1

−1
pn(x,a,b)π(x)w(x; a,b)dx = 0.

Proof. Note that w(x; a,b) = ğ(z; a,b). Use Theorem 3.4 and Theorem 4.1 n times. Each
boundary term in the formula for q-integration by parts is 0 because of the presence of the
factor

√
1− x2. The analyticity assumptions in Theorem 4.1 are satisfied since ğ(z; a,b) = 0

if z = qj/2 for any integer j. �

5. Polynomial nature of pn(x; a,b)

From Definition 3.3 it would appear that

qn(x; a,b) :=

m∏
j=1

(bjz, bj/z; q)npn(x; a,b)

has poles at the zeros of (1/z2; q)n. However these singularities are removable. The main result
of this section is Corollary 5.7 which establishes the polynomial character of qn(x; a,b).

We shall use the Rodrigues formula to give an inductive proof of this fact. First we refor-
mulate the Rodrigues formula as a recursive procedure.

Proposition 5.1. For any positive integer n we have

qn(x; a,b) =
1

ğ(z; a, qnb)
Dq(ğ(z; q1/2a, qn−1/2b)qn−1(x; q1/2a, q1/2b)).

Proof. The case n = 1 is the case n = 1 of Theorem 3.4. The inductive step follows from

pn+1(x; a,b) =
1

ğ(z; a,b)
Dn+1
q

[
ğ(z; q(n+1)/2a, q(n+1)/2b)

]
=

1

ğ(z; a,b)
Dq
[
ğ(z; q1/2a, q1/2b)pn(x; q1/2a, q1/2b)

]
=

1

ğ(z; a,b)
Dq
[
ğ(z; q1/2a, qn+1/2b)qn(x; q1/2a, q1/2b)

]
.

Multiplying both sides by
∏m
j=1(bjz, bj/z; q)n+1 gives the desired result for n+ 1. �
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In Theorems 5.3 and 5.6 we find the leading term of qn(x; a,b) and the next lemma enables
us to do this.

We denote the coefficient of zm in a Laurent polynomial c(z) by [zm]c(z).

Lemma 5.2. Let c(z) be a Laurent polynomial with degrees bounded between −m−2 and m+2,

and let f̆(z) be a symmetric Laurent polynomial of degree k. Then

c(z)f̆(q1/2z)− c(1/z)f̆(q−1/2z)

z − 1/z

is a symmetric Laurent polynomial of degree m+ 1 + k, with leading coefficient

(qk/2[zm+2]c(z)− q−k/2[z−m−2]c(z))[zk]f̆(z).

Proof. The poles at z = 1 and z = −1 are cancelled by zeros of the numerator (since f̆(±q1/2) =

f̆(±q−1/2) by the symmetry of f̆), and thus the result is a Laurent polynomial, the symmetry

of which follows from the symmetry of f̆ . The claim about the leading coefficient follows by
dividing by zm+1+k and taking the limit z →∞. �

Theorem 5.3. For any a, b, qn(x; a,b) is a polynomial in x of degree at most (m+ 1)n. The
inequality on the degree is strict if and only

b1 · · · bm = qn−1+sa1 · · · am+4,

for some 0 ≤ s ≤ n− 1.

Proof. A straightforward induction using Proposition 5.1 and Lemma 5.2 with

c(z) = −q
−1/2

z2

m∏
i=1

(1− biqn−1/z)
m+4∏
j=1

(1− ajz), f̆(z) = qn−1(q
1/2a, q1/2b), k = (n− 1)(m+ 1)

shows that qn(x; a,b) has degree ≤ (m+ 1)n, with leading coefficient

2(m+1)nqm(n2)
n−1∏
s=0

(a1 · · · am+4q
n−1+s − b1 · · · bm),

and the result follows. �

If one experiments with the special cases when the degree bound is not attained, one finds
that for otherwise generic parameters such that

b1 · · · bm = qn−1+sa1 · · · am+4

for some 0 ≤ s ≤ n − 1, qn(x; a,b) has degree nm + s. Unfortunately, the above inductive
argument does not suffice to give this stronger bound, though it does allow one to reduce to the
case s = 0. To resolve this case, we need a stronger version of Proposition 5.1. This requires
an operator identity satisfied by the Askey-Wilson operator, which we now state.

Lemma 5.4. Let

φ̆n(z; a) = (az, a/z; q)n.

The Askey-Wilson operator satisfies the operator identity

Dl+mq =
1

φ̆m(z; q−m/2v)
Dlqφ̆l+m(z; q−(l+m)/2v)Dmq

1

φ̆l(z; q−l/2v)
.
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Proof. We verify that both sides give the same result when applied to φ̆s(z; q
l/2v). We use

Dqφ̆n(z; a) =
2a(1− qn)

q − 1
φ̆n−1(z; aq

1/2), Dq
1

φ̆n(z; a)
=

2a(1− qn)

1− q
1

φ̆n+1(z; aq−1/2)
,

and

φ̆l(z; q
−l/2v)φ̆s(z; q

l/2v) = φ̆s+l(z; q
−l/2v),

φ̆l+m(z; q−(l+m)/2v)

φ̆l+m+s(z; q−(l+m)/2v)
=

1

φ̆s(z; q(l+m)/2v)

φ̆s+l(z; q
m/2v)φ̆m(z; q−m/2v) = φ̆s+l+m(z; q−m/2v).

This completes the proof. �

Remark 5.5. Apply Lemma 5.4 to a function f . Comparing coefficients of f(qj−(l+m)/2) on
both sides of Proposition 2.1 gives a special case of Jackson’s 8φ7 summation, [7, (II.22].

This allows us to prove the following result, from which the claim about qn(x; a,b) follows
immediately.

Theorem 5.6. Let f(z) be a symmetric Laurent polynomial of degree k, and define

hn(z; a,b) =
1

ğ(z; a, qnb)
Dnq (ğ(z; qn/2a, qn/2b)f(z)).

Then hn(z; a,b) is a symmetric Laurent polynomial of degree at most (m+ 1)n+k. Moreover,
if for some s with 0 ≤ s ≤ n− 1,

b1b2 · · · bm = qn−1+s+ka1a2 · · · am+4.

then hn(z; a,b) has degree at most mn+ s+ k.

Proof. If s 6= 0, the claim follows by the argument of the previous induction. Proposition 5.1
holds with qn(x; a,b) replaced by hn(z; a,b). Thus the leading term of hn(z; a,b) is a nonzero

multiple of a1 · · · am+4q
n+1− b1 · · · bm times the leading term of hn−1(z; q

1/2a, q1/2b). If a and

b satisfy the hypothesized restriction with parameters n and s, then q1/2a and q1/2b satisfy
the same relation with parameters n − 1 and s − 1. Thus by induction hn−1(z; q

1/2a, q1/2b)
has degree at most m(n− 1) + s− 1 + k. Lemma 5.2 implies hn(z; a,b) has degree at most

m(n− 1) + s− 1 + k +m+ 1 = mn+ s+ k.

It remains only to establish the s = 0 case, namely to show that if

b1b2 · · · bm = qn−1+ka1a2 · · · am+4,

then hn(z; a,b) has degree at most mn+ k.

We shall use Lemma 5.4 to derive another recurrence for hn(z; a,b)

hn+1(z; a,b) =
1

ğ(z; (qna1,a′), qn+1b)

×Dq(ğ(z; (qn+1/2a1, q
1/2a′), qn+1/2b)hn(z; (q−1/2a1, q

1/2a′), q1/2b)),

(5.1)

where a = (a1,a
′)
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To prove (5.1) apply Lemma 5.4 with (l,m) = (1, n) and v = qn/2a1 to give the operator
identity

1

ğ(z; a, qn+1b)
Dn+1
q ğ(z; qn/2+1/2a, qn/2+1/2b)

=

(
1

ğ(z; (qna1,a), qn+1b)
Dq ğ(z; (qn+1/2a1, q

1/2a), qn+1/2b)

)
(

1

ğ(z; (q−1/2a1, q1/2a), qn+1/2b)
Dnq ğ(z; (qn/2−1/2a1, q

n/2+1/2a), qn/2+1/2b)

)
.

Suppose by induction that hn(z; A,B) has degree mn+ k whenever

B1B2 · · ·Bm = qn−1+kA1A2 · · ·Am+4.

Suppose that

b1b2 · · · bm = qn−1+ka1a2 · · · am+4.

holds. We must show that hn+1(z; a,b) has degree at most m(n+ 1) + k.

We now use Lemma 5.2 with

c(z) = −q
−1/2

z2
(1− a1qnz)

m+4∏
i=2

(1− aiz)
m∏
j=1

(1− bjqn/z)

f̆(z) = hn(z; (q−1/2a1, q
1/2a′), q1/2b)

to conclude that hn+1(z; a,b) has degree at mostm+1 more than hn(z; (q−1/2a1, q
1/2a′), q1/2b).

Moreover the leading term of hn+1(z; a,b) is a multiple of b1 . . . bm − qn+ka1 · · · am+4, which

is zero. So the degree of hn+1(z; a,b) is at most m more than hn(z; (q−1/2a1, q
1/2a′), q1/2b).

We see that (A,B) = ((q−1/2a1, q
1/2a′), q1/2b) satisfies the hypothesized relation for n. So

by induction the degree of hn(z; (q−1/2a1, q
1/2a′), q1/2b) is at most mn+ k, and the degree of

hn+1(z; a,b) has degree at most mn+ k +m = m(n+ 1) + k. �

Corollary 5.7. If b1b2 · · · bm = qn−1+sa1a2 · · · am+4 for some s, 0 ≤ s ≤ n−1, then qn(x; a,b)
is a polynomial in x of degree at most mn+ s.

6. Rahman’s biorthogonal 10φ9’s

In this section we derive Rodrigues formulas and the biorthogonality relation [14, §3] for
Rahman’s very-well poised 10φ9’s from Theorem 3.4 and Theorem 4.2. We also give a poly-
nomial orthogonality in Theorem 6.5.

Rahman’s [14] biorthogonal rational functions which depend upon five parameters t =
(t1, t2, t3, t4, t5). The functions are denoted by Rn and Sn and given by

Rn(x; t | q) = 10W9(t
2
1t2t3t4t5/q; t1t3t4t5, t1t2t4t5, t1t2t3t5, t1z, t1/z, t1t2t3t4q

n−1, q−n; q; q),

Sn(x; t | q) = 10W9(t1/t5; q/t2t5, q/t3t5, q/t4t5, t1z, t1/z, t1t2t3t4q
n−1, q−n; q; q).
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First we rewrite Rahman’s functions as another 10W9 function, our pn(x; a,b). Bailey’s 10φ9
transformation [7, (III.28)] is

10φ9

(
A, qA1/2, −qA1/2, B, C, D, E, F, λAqn+1/EF, q−n

A1/2,−A1/2, qA/B, qA/C, qA/D, qA/E, qA/F,EFq−n/λ,Aqn+1

∣∣∣∣ q, q)
=

(qA, qA/EF, qλ/E, qλ/F ; q)n
(qA/E, qA/F, qλ/EF, qλ; q)n

×10φ9

(
λ, qλ1/2, −qλ1/2, λB/A, λC/A, λD/A, E, F, λAqn+1/EF, q−n

λ1/2,−λ1/2, qA/B, qA/C, qA/D, qλ/E, qλ/F,EFq−n/A, λqn+1

∣∣∣∣ q, q) ,
(6.1)

where λ = qA2/BCD.

Proposition 6.1. The Rahman functions are given by

Rn(x; t | q) =cnpn(x; a, b1), a = (t1, t2, t3, t4, t5q
1−n), b1 = t1t2t3t4t5 = T,

cn =

(
q − 1

2

)n
q

1
2(n2)

(t1T ; q)n
(t1t2, t1t3, t1t4, q1−nt1t5; q)n

tn1

Sn(x; t | q) =dnpn(x; a, b1), a = (t1, t2, t3, t4, t5q
−n), b1 = t1t2t3t4t5/q = T/q,

dn =

(
q − 1

2

)n
q

1
2(n2)

(Tz/q, T/qz; q)n
(q−nzt5, q−nt5/z; q)n

(q−nt5/t1; q)n
(t1t2, t1t3, t1t4, T/qt1; q)n

tn1 .

Proof. Both assertions follow from two applications of (6.1).

For Rn use A = t21t2t3t4t5/q, B = t1/z, C = t1t3t4t5, D = t1t2t3t5 followed by A = t1t2t4z/q,
B = qn−1t1t2t3t4, C = 1/t3t5, D = t1t2t4t5.

For Sn use A = t1/t5, B = t1/z, C = q/t2t5, D = q/t3t5 followed by A = t1t2t3z/q,
B = q/t4t5, C = qn−1/t1t2t3t4, D = t1t2t3t5/q. �

Thus we have Rodrigues formulas for the Rahman functions.

Theorem 6.2. The Rahman functions have the Rodrigues formulas

c−1n Rn(x; t | q) =
1

ğ(z; a,b)
Dnq (ğ(z; qn/2a, qn/2b)),

a =(t1, t2, t3, t4, t5q
1−n), b1 = t1t2t3t4t5

d−1n Sn(x; t | q) =
1

ğ(z; a,b)
Dnq (ğ(z; qn/2a, qn/2b)),

a =(t1, t2, t3, t4, t5q
−n), b1 = t1t2t3t4t5/q

We next show that Rahman’s biorthogonality follows from Theorem 4.2.

Theorem 6.3. If n 6= m, T = t1t2t3t4t5, then∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Rn(x; t | q)Sm(x; t | q)dx = 0.

Proof. First assume that n > m. Then from Theorem 4.2 and Proposition 6.1 we have

0 =

∫ 1

−1
w(x; (t1, t2, t3, t4, t5q

1−n), T )Rn(x; t | q)π(x)dx

=

∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Rn(x; t | q) π(x)

(q1−nt5z, q1−nt5/z; q)n−1
dx
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for any polynomial π(x) of degree at most n− 1. By Corollary 5.7 with m = 1 and s = 0, we
can choose π(x) to be a multiple of

pm(x; (t1, t2, t3, t4, q
−nt5), T/q)(Tz/q, T/qz; q)m(q1−nt5z, q

1−nt5/z; q)n−1−m

which by Proposition 6.1 is a multiple of

Sm(x; t | q)(q1−nt5z, q1−nt5/z; q)n−1.

Next suppose that n < m. From Theorem 4.2 and Proposition 6.1 we have

0 =

∫ 1

−1
w(x; (t1, t2, t3, t4, t5q

−m), T/q)Sm(x; t | q)(q−mzt5, q
−mt5/z; q)m

(Tz/q, T/qz; q)m
π(x)dx

=

∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Sm(x; t | q) π(x)

(Tz, T/z; q)m−1
dx

for any polynomial π(x) of degree at most m− 1. This time use Corollary 5.7 with m = 1 and
s = 0, and choose π(x) to be a multiple of

pn(x; (t1, t2, t3, t4, q
1−nt5), T )(Tz, T/z; q)n(Tzqn, T qn/z; q)m−1−n

which by Proposition 6.1 is a multiple of

Rn(x; t | q)(Tz, T/z; q)m−1,

and the proof is complete. �

One may ask for a polynomial orthogonality relation for a 10W9. We provide one for poly-
nomials in x of degree n (see Theorem 6.5).

Definition 6.4. Let

Un(x; t | q) =zn
(Tzqn−1; q)n

(1/z2; q)n

5∏
i=1

(ti/z; q)n

×10W9(q
−nz2; t1z, t2z, t3z, t4z, t5z, zq

2−2n/T, q−n; q; q)

Note that Definition 6.4 is equivalent to

Un(x; t | q) = αnpn(x; t, qn−1T )(Tzqn−1, T qn−1/z; q)n, T = t1t2t3t4t5,

where αn is a non-zero constant. Thus Corollary 5.7 with m = 1 and s = 0 shows that
Un(x; t | q) is a polynomial in x of degree n.

Theorem 6.5. The polynomials Un(x; t | q) of degree n satisfy the orthogonality relation∫ 1

−1
Un(x; t | q)Um(x; t | q) w(x; t, T )∏2n−2

k=0 (1− 2Txqk + T 2q2k)
dx = 0, n > m.

Proof. This follows directly from Theorem 4.2 using

w(x; t, T qn−1) =
w(x; t, T )

(Tz, T/z; q)n−1
, αnpn(x; t, qn−1T ) =

Un(x; t | q)
(Tqn−1z, Tqn−1/z; q)n

.

This completes the proof. �
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The polynomials Un are symmetric in the parameters ti. If t5 = 0 (and thus T = 0) Theo-
rem 6.5 is the orthogonality relation for Askey-Wilson polynomials. We note that t5 = 0 does
give the Askey-Wilson polynomials with the symmetric normalization

Un(x; (t1, t2, t3, t4, 0), 0) = pn(x; t|q).

A three-term relation for Un, generalizing the Askey-Wilson three-term recurrence, is given
in §9.

7. Asymptotics

In this section we give in Theorem 7.2 the large n asymptotics of the polynomials Un(x; t, T ).
Although these polynomials are not, strictly speaking, orthogonal polynomials, we show that
orthogonal polynomial techniques can lead one to guess an orthogonality relation such as
Theorem 6.5.

The following theorem relates the asymptotics of orthonormal polynomials to the weight
function, see [22, Chapter 12].

Theorem 7.1. Assume that {pn(x)} are orthonormal with respect to a weight function w on

[−1, 1] and that
∫ 1
−1 | ln f(cos θ)|dθ <∞, f(x) = w(x)

√
1− x2. Let

D(z) = exp

[
1

4

∫ π

−π
ln f(cos θ)

1 + ze−iθ

1− zeiθ

]
, |z| < 1.

Then

lim
n→∞

z−npn(x) =
1√

2π D(1/z)
,

where x ∈ C \ [−1, 1] and x = (z + 1/z)/2, |z| > 1. Moreover the radial limit exists,
limr→1− D(reiθ) = D(eiθ) and w(cos θ) = |D(eiθ)|2/ sin θ.

When we do not know the weight function w but do know asymptotics of pn(x), Theorem
7.1 will provide a good candidate for the weight function.

First we transform Un(x; t, T ) using (6.1) with A = q−nz2, B = t1z, C = t2z, and D = t3z.
The resulting expression may be written as

Un(x; t, T ) =
zn(q, t1t2, t1t3, t2t3, t4t5, q

nt1t2t3/z, Tq
n−1/z; q)n

(t1t1t3/qz; q)2n

×
n∑
k=0

(t1/z, t2/z, t3/z, t1t2t3/qz, q
n−1T/t4, q

n−1T/t5; q)n−k
(q, t1t2, t1t3, t2t3, qnt1t2t3/z, Tqn−1/z; q)n−k

t1t2t3 − zq1−2n+2k

t1t2t3 − zq1−2n

×(t4z, t5z; q)k
(q, t4t5; q)k

(qz)−2k.

Therefore for |z| > 1 we have the limiting relation

lim
n→∞

z−n Un(x; t) = (t4t5; q)∞

3∏
j=1

(tj/z; q)∞ 2φ1(t4z, t5z; t4t5; q, 1/z
2)

Applying the q-analogue of Gauss’s theorem [7] we establish the following theorem.
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Theorem 7.2. The large n asymptotics of Un for |z| > 1 is given by

lim
n→∞

z−n Un(x; t) =

∏5
j=1(tj/z; q)∞

(1/z2; q)∞
.

If the Un’s were orthogonal polynomials Theorem 7.1 would give

D(z) =
(1/z2; q)∞∏5
j=1(tj/z; q)∞

one would expect the weight function to be

(e2iθ, e−2iθ; q)∞

sin θ
∏5
j=1(tje

iθ, tje−iθ; q)∞
, θ ∈ [0, π].(7.1)

This agrees with Theorem 6.5 except for the part of the weight function which depends on n.
In fact the weight function in Theorem 6.5 is exactly analogous to the the problem of varying
weights in orthogonal polynomials, see for example [19]. If we let n→∞ in the weight function
in Theorem 6.5 we indeed get the quantity in (7.1). So the asymptotics seems to give the n
independent part of the weight function.

8. Elliptic analogues

In this section we give elliptic analogues of the main results of the previous sections. An
elliptic version of the iterated Askey-Wilson operator is given in Proposition 8.1. An ellip-
tic analogue of the polynomials qn(x; a,b) is given in Definition 8.4, and their orthogonality
relation is Theorem 8.9.

The operator identity, Lemma 5.4 above, satisfied by the Askey-Wilson operator, is a limiting
case of an identity satisfied by a family of elliptic difference operators. We recall the elliptic
analogue of the infinite q-shifted factorials, the elliptic Gamma function of [18]

Γp,q(z) =
∏
j,k≥0

1− pj+1qk+1/z

1− pjqkz
,

which satisfies the recurrence

Γp,q(qz) = θp(z)Γp,q(z),

where

θp(z) =
∏
j≥0

(1− pj+1/z)(1− pjz).

This function, in turn, satisfies the following quasiperiodicity property:

θp(pz) = −z−1θp(z),

making θp(exp(2π
√
−1z)) a theta function for the lattice 〈1, log(p)/2π

√
−1〉. We also define

finite elliptic shifted factorial by

θp(z; q)m =
Γp,q(q

mz)

Γp,q(z)
=

∏
0≤j<m

θp(q
jz).

The analogue of a polynomial of degree n in the elliptic context is a “symmetric theta func-
tion” of degree n, a holomorphic function f such that f(1/z) = f(z) and f(pz) = (pz2)−nf(z).
As with polynomials, these form a vector space of dimension n+ 1.
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The most natural analogue of the Askey-Wilson operator is the operator Dq;p which acts by

(Dq;pf)(z) =
f(q1/2z)

θp(z2)
+
f(q−1/2z)

θp(1/z2)
,

which manifestly preserves the space of functions invariant under z 7→ 1/z. This is not quite a
direct analogue, in so far as the limit as p→ 0 is not quite the same operator (the coefficients
differ by powers of z), but is more convenient for dealing with questions of orthogonality. The
key point is that this operator is formally self-adjoint with respect to the density

∆(z; p, q) =
(p; p)∞(q; q)∞

2

1

Γp,q(z2)Γp,q(1/z2)

dz

2π
√
−1z

,

the fixed part of the density of the elliptic beta integral [20]. To be precise, if f and g are
invariant under z 7→ 1/z, then the integral∫

S1

(Dq;pf)(z)g(z)∆(z)

is, by symmetry, equal to

2

∫
S1

f(q1/2z)g(z)θp(z
2)−1∆(z).

The change of variables z 7→ q−1/2/z makes this equal to

2

∫
|z|=q−1/2

f(z)g(q1/2z)θp(z
2)−1∆(z).

Moving the contour back to the unit circle and symmetrizing gives∫
S1

f(z)(Dq;pg)(z)∆(z),

assuming that there are no poles for 1 ≤ |z| ≤ q−1/2. (The possibility of poles is why we refer
to this as “formal” self-adjointness above.)

Unlike the Askey-Wilson operator, however, the powers of this operator are not well-behaved;
if we try to square the operator, we find that the two contributions to the constant term are
quasiperiodic, but with different multipliers, and thus the sum is not even a (meromorphic)
theta functions. However, in [16, §9], the second author introduced a family of multivariate
operators satisfying an analogue of Lemma 5.4 above; in the univariate case, this is the operator
identity

Dl+m(q; p) =
Γp,q(q

−m/2vz)Γp,q(q
−m/2v/z)

Γp,q(qm/2vz)Γp,q(qm/2v/z)
Dl(q; p)

Γp,q(q
(l+m)/2vz)Γp,q(q

(l+m)/2v/z)

Γp,q(q−(l+m)/2vz)Γp,q(q−(l+m)/2v/z)

×Dm(q; p)
Γp,q(q

−l/2vz)Γp,q(q
−l/2v/z)

Γp,q(ql/2vz)Γp,q(ql/2v/z)
,

where D1(q; p) = Dq;p. The above identity is not explicitly stated in [16].

From this, it is straightforward to deduce the analogue of Proposition 2.1. Indeed, when
m = 1, the simple fact that the right-hand side is independent of v means that the residue at
v = q1/2z must be 0, but this gives a first-order recurrence for the coefficients of Dl(q; p). The
leading coefficient is also straightforward to compute.

Proposition 8.1. The operator Dn(q; p) has the expansion

(Dn(q; p)f)(z) =
∑

0≤j≤n
(−1)jq−j(j−1)/2z2j

θp(q
n−2jz2)

θp(q−jz2; q)n+1

θp(q; q)n
θp(q; q)jθp(q; q)n−j

f(qn/2−jz)
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As remarked after Lemma 5.4, this expression turns the operator identity into a (Zariski
dense) special case of the Frenkel-Turaev summation [6], the elliptic analogue of Jackson sum-
mation.

Note that just as for n = 1, Dn(q; p) is formally self-adjoint with respect to the density
∆(z; p, q).

Theorem 8.2. Let f be a symmetric theta function of degree k, and let a be a sequence of
length 2m+ 4 satisfying

q(m+1)(n−1)+ka1 · · · a2m+4 = pm+1.

Then

1∏
1≤i≤2m+4 Γp,q(aiz)Γp,q(ai/z)

Dn(q; p)
∏

1≤i≤2m+4

Γp,q(q
n/2aiz)Γp,q(q

n/2ai/z)f(z)

is a symmetric theta function of degree mn+ k.

Proof. As before, this reduces easily to the case n = 1. In that case, we verify that the resulting
function has the correct symmetry and quasi-periodicity, so the only obstruction to being a
theta function is the potential poles coming from zeros of θp(z

2). By symmetry, however, the
function must have even order at such points, and thus the apparent simple poles are in fact
removable singularities as required. �

Remark 8.3. To relate this to Theorem 5.6 above, note that the elliptic Gamma function
satisfies the reflection principle Γp,q(x)Γp,q(pq/x) = 1, and thus we can write a ratio of elliptic
Gamma functions as a product. Moreover, we can shift one of the parameters by a factor
of p at the cost of introducing some powers of q and z to the coefficients of the operator (as
Γp,q(px)/Γp,q(x) is quasiperiodic under q-shifts!).

Applying the operator when k = 0 in Theorem 8.2 to 1 gives a symmetric theta function of
degree mn.

Definition 8.4. Let

qn(z; a; p) =
1∏

1≤i≤2m+4 Γp,q(aiz)Γp,q(ai/z)
Dn(q; p)

∏
1≤i≤2m+4

Γp,q(q
n/2aiz)Γp,q(q

n/2ai/z)(1)

Note that Proposition 8.1 implies that qn(z; a; p) has an expression as a “very-well-poised
balanced” elliptic hypergeometric series.

If we take m = −1, then we find that the operator decreases the degree. Since theta functions
of negative degree do not exist, we obtain the following result.

Corollary 8.5. If f(z) is a symmetric theta function of degree n− 1, then for any a,

Dn(q; p)

[
f(z)

θq(az)θq(a/z)

]
= 0.

Together with self-adjointness of Dn(q; p), Corollary 8.5 allows us to prove orthogonality
results. The simplest interesting case is a Rodrigues formula for the biorthogonal functions of
Spiridonov and Zhedanov, which are now defined.
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Definition 8.6. For parameters satisfying t0t1t2t3u0u1 = pq, let

fn(z; t0, t1, t2, t3;u0, u1)

=
3∏
j=0

1

Γp,q(tjz, tj/z)

1

Γp,q(u0z)Γp,q(u0/z)Γp,q(pu1q1−nz)Γp,q(pu1q1−n/z)

×Dn(q; p)H(z),

where

H(z) = Γp,q(q
−n/2u0z)Γp,q(q

−n/2u0/z)Γp,q((pu1q
1−n/2)z)Γp,q((pu1q

1−n/2)/z)

×
3∏
j=0

Γp,q(q
n/2tjz)Γp,q(q

n/2tj/z).
(8.1)

Also, define a family of densities by

∆(z; a) :=
∏

1≤i≤2m+4

Γp,q(aiz)Γp,q(ai/z)∆(z).

Lemma 8.7. The function

θp((pq/u0)z; q)nθp((pq/u0)/z; q)nfn(z; t0, t1, t2, t3;u0, u1)

is a symmetric theta function of degree n, so that fn(z; t0, t1, t2, t3;u0, u1) is a symmetric elliptic
function. Next, suppose |t0|, |t1|, |t2|, |t3|, |q−nu0|, |q1−nu1| < 1. Then for any symmetric elliptic
function g such that

θp((pq/u1)z; q)n−1θp((pq/u1)/z; q)n−1g(z)

is holomorphic, ∫
S1

fn(z; t0, t1, t2, t3;u0, u1)g(z)∆(z; t0, t1, t2, t3, u0, u1) = 0.

In particular, fn(z; t0, t1, t2, t3;u0, u1) is proportional to the elliptic biorthogonal function of
[21].

Proof. We have

θp((pq/u0)z; q)nθp((pq/u0)/z; q)nfn(z; t0, t1, t2, t3;u0, u1) = qn(z; t0, t1, t2, t3, q
−nu0, q

1−npu1; p),

which is indeed a symmetric theta function of degree n. We can also write∫
S1

fn(z; t0, t1, t2, t3;u0, u1)g(z)∆(z; t0, t1, t2, t3, u0, u1)

=

∫
S1

[Dn(q; p)H(z)]
Γp,q(u1z)Γp,q(u1/z)

Γp,q((pu1/qn−1)z)Γp,q((pu1/qn−1)/z)
g(z)∆(z),

where H(z) is given by (8.1).

The conditions on the parameters ensure that the residue terms in the formal self-adjointness
do not appear (i.e., the integrand has no poles between the shifted contour and the unit circle),
so the integrand is

∆(z)Dn(q; p)
Γp,q(u1z)Γp,q(u1/z)

Γp,q((pu1/qn−1)z)Γp,q((pu1/qn−1)/z)
g(z).

may be rewritten as

∆(z)Dn(q; p)
Γp,q(u1z)Γp,q(u1/z)

Γp,q(pu1z)Γp,q(pu1/z)
θp((pq/u1)z; q)n−1θp((pq/u1)/z; q)n−1g(z).
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Because
Γp,q(u1z)Γp,q(u1/z)

Γp,q(pu1z)Γp,q(pu1/z)
=

1

θq(u1z)θq(u1/z)
,

the integrand vanishes by Corollary 8.5. �

Remark 8.8. The constant can be recovered from the fact that when z = t0, only one of the
n+ 1 terms in the Rodrigues formula is nonzero, so that

fn(t0; t0, t1, t2, t3;u0, u1) =
θp(t0t1, t0t2, t0t3, 1/t0u1; q)n

θp(pqt0/u0; q)n
.

Essentially the same argument gives the following more general orthogonality result. When
m = 1, this recovers the above orthogonality (for the numerator of fn, to be precise).

Theorem 8.9. Let q(m+1)(n−1)∏
0≤i<2m+4 ai = pm, so that the function

qn(z; pa0, a1, . . . , a2m+3; p)

is a symmetric theta function of degree mn, and suppose |a0|, . . . , |a2m+3| < 1. Then for any
symmetric theta function g of degree n− 1,∫

S1

qn(z; pa0, a1, . . . , a2m+3; p)g(z)∆(z; a0, . . . , a2m+3) = 0.

Note that since the function
θq(bz)θq(b/z)

θq(az)θq(a/z)

is periodic in q, it follows from Proposition 8.1 that the operator

θq(q
−n/2az)θq(q

−n/2a/z)Dn(q; p)

[
1

θq(az)θq(a/z)

]
is independent of a.

In fact, the same theta functions satisfy a number of different orthogonality relations, arising
from the fact that

qn(z; pa0, a1, . . . , a2m+3; p) = qn(z; a0, pa1, . . . , a2m+3; p),

which in turn follows immediately from the above observation that

θq(q
−n/2az)θq(q

−n/2a/z)Dn(q; p)

[
1

θq(az)θq(a/z)

]
is independent of a. It seems likely that these orthogonality relations determine qn (indeed, it
should typically be enough to take the first m such relations), though to prove this in general
requires the computation of a fairly complicated determinant.

We also have the following analogue of Theorem 6.5.

Corollary 8.10. Let Un(z; t1, t2, t3, t4, t5; p) := qn(z; t1, t2, t3, t4, t5, p
2q2−2n/t1t2t3t4t5). Then

for m < n,∫
S1

Un(z)Um(z)θp(az, a/z; q)n−1−m∆(z; t1, t2, t3, t4, t5, pq
2−2n/t1t2t3t4t5) = 0.

Remark 8.11. Note here that the density depends on m in a crucial way. Of course, in the
limit p→ 0, one may as well take a = 0, and thus recover Theorem 6.5.



16 MOURAD E.H. ISMAIL, ERIC M. RAINS, AND DENNIS STANTON

9. A Recursion Relation

Proposition 9.1. The polynomial Un(x) = Un(xn; t|q) satisfies the following 3-term recur-
rence relation

Un+1 −An+1(1− q2n−2Tz)(1− q2n−2T/z)(1− q2n−3Tz)(1− q2n−3T/z)Un−1
− (Bn(1− t1/z)(1− t1z) + Cn))Un = 0,

(9.1)

where

An =

4∏
i=1

5∏
j=i+1

(1− titjqn−2)(1− qn−1)(−q8)/
5∏
i=1

(1− e5qn−2/ti)
N

D
, where

N =(q10 − e45q8n + e25(q
3n+5 − q5n+5)− e4q2n+8 + e25e4(q

6n+3 − q5n+3) + e5e3q
3n+6

+ e35e1q
6n+2 − e25e2q5n+4 + e5e1(q

3n+7 − q2n+7))

D =(q18 − e45q8n + e25(q
3n+10 − q5n+8)− e4q2n+14 + e25e4(q

6n+5 − q5n+6)

+ e5e3q
3n+11 + e35e1q

6n+4 − e25e2q5n+7 + e5e1(q
3n+12 − q2n+13));

Cn =

5∏
j=2

(1− qnt1tj)
(1− q2n−1t2t3t4t5)(1− q2nt2t3t4t5)

t1(1− qn−1t2t3t4t5)

−An+1
(1− t21t2t3t4t5q2n−2)(1− t21t2t3t4t5q2n−3)(1− t2t3t4t5qn−2)t1∏5

j=2(1− qn−1t1tj)
.

Bn =
(
(1− t1t2qn)

5∏
j=3

(1− qnt2tj)
(1− q2n−1t1t3t4t5)(1− q2nt1t3t4t5)

(1− qn−1t1t3t4t5)t2

−An+1
(1− t1t22t3t4t5q2n−2)(1− t1t22t3t4t5q2n−3)(1− t1t3t4t5qn−2)t2∏5

j=3(1− qn−1t2tj)(1− t1t2qn−1)
− Cn

)
/(1− t1/t2)(1− t1t2).

and ej is the elementary symmetric function of t1, t2, t3, t4, t5 of degree j.

This was verified using computer algebraic techniques by Christoph Koutschan [13].

It must be noted that equation (9.1) when written in x, x = (z + 1/z)/2 is of the form of a
recurrence relation of an RII fraction, [10, (3.1)]. In the notation of §3 of [10], the interpolation
points are

an+1 = [Tq2n−2 + q2−2n/T ]/2, bn+1 = [Tq2n−3 + q3−2n/T ]/2.

The interpolation points are also manifested in the orthogonality relation in Theorem 6.5.
Moreover Un(x; t|q) can be evaluated at these special points. To see this use the symmetry of
Un in z and 1/z to put 1/z = Tq2n−2 in (6.2). Indeed we have

Un(xn; t|q) =
q2n(n−1)

Tn

5∏
j=1

(Tqn−1/tj ; q)n, xn =
1

2
[Tq2n−2 + q2−2n/T ].

Similarly we may just set z = Tq2n−3 in (6.2) and the 8W7 is now a sum of two terms, so we
can find a closed form expression for Un(yn; t|q), where yn = [Tq2n−3 + q3−2n/T ]/2.
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