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1. Introduction

The Ariki–Koike algebras, denoted byHC,v;Q1,...,Qm

(
G(m, 1, n)

)
, can be viewed as the Iwahori–

Hecke algebras associated to the complex reflection groups G(m, 1, n) ∼= Sn ⋉ (Z/mZ)n, where
v,Qi, i = 1, . . . ,m are parameters. They were introduced by Ariki and Koike [3] and indepen-
dently by Broué and Malle [8]. In [2, 4], Ariki and Mathas showed that the simple modules of
the Ariki–Koike algebras (when the parameters are roots of unity) are labelled by the so-called
Kleshchev multipartitions.

While studying enumerative aspects of the Ariki–Koike algebras and Kleshchev multiparti-
tions [9], two double sum evaluations were found (see [9, Corollary 1.5]),

∑
r,s≥0

qr
2+s2+r+s(q2; q2)r+s+1

(q2; q2)r(q2; q2)r(q2; q2)s(q2; q2)s+1
=

(−q2; q2)∞
(q2; q2)∞

(1)

and ∑
r,s≥0

qr
2+s2+2s(q2; q2)r+s

(q2; q2)r(q2; q2)r(q2; q2)s(q2; q2)s
+
∑
r,s≥1

qr
2+s2(q2; q2)r+s−1

(q2; q2)r(q2; q2)r−1(q2; q2)s(q2; q2)s−1

=
(−q; q2)∞
(q2; q2)∞

.

(2)

Here and throughout this paper, we adopt the following q-Pochhammer symbols:

(a; q)∞ :=
∏
j≥0

(1− aqj),
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and

(a; q)n :=
(a; q)∞
(aqn; q)∞

for any integer n.

The first goal of this paper is to realize these two identities as special confluent q-Appell
function evaluations. Moreover we generalize, in Theorem 3.1 and Theorem 3.2, each evaluation
by adding an arbitrary parameter w. We need a transformation for q-Appell functions found by
F. H. Jackson [15] in 1944.

The second goal of this paper is to give in Sections 5 and 6 an integer partition interpretation of
the sum sides. When w = 1, this is accomplished in Section 5 using Kleshchev 2-multipartitions.
These partitions are known to parametrize the simple modules for specialized Ariki–Koike alge-
bras and are the original motivation for this work. In Section 6 an independent interpretation is
given using overpartitions. This also proves the infinite product summation for general w. The
combinatorial meaning of the double sum parameters is known but difficult.

The rest of this paper is organized as follows. In Section 2, we recall some identities on basic
hypergeometric series, F. H. Jackson’s transformation for q-Appell functions, and some basics
for integer partitions. In Section 3, we prove the generalizations of the identities in (1) and (2).
In Section 4, we also prove the non-negativity of the individual terms in the w-generalizations
of the sum sides of (1) and (2). In Section 5, we combinatorially interpret the double sum sides,
while the general w case is done in Section 6. We then conclude our paper providing some
remarks in Section 7.

2. Preliminaries

2.1. Some identities on basic hypergeometric series. The q-binomial coefficients, also
known as the Gaussian polynomials, are given by[

N
M

]
:=

[
N
M

]
q

:=


(q; q)N

(q; q)M (q; q)N−M
if 0 ≤ M ≤ N,

0 otherwise.

They satisfy the following recurrences [1, eqs. (3.3.3), (3.3.4)]:[
N
M

]
=

[
N − 1
M

]
+qN−M

[
N − 1
M − 1

]
, (3)[

N
M

]
=

[
N − 1
M − 1

]
+qM

[
N − 1
M

]
. (4)

Next, we list a set of identities for later use:

• The q-binomial theorem [1, eq. (3.3.6)]:∑
n≥0

(−1)nznq(
n
2)
[
N
n

]
= (z; q)N . (5)

• The q-binomial theorem [1, eq. (2.2.6)]:∑
n≥0

znq(
n
2)

(q; q)n
= (−z; q)∞. (6)

• A special case of the q-Gauss sum [1, eq. (2.2.8)]:∑
n≥0

znqn
2

(q; q)n(zq; q)n
=

1

(zq; q)∞
. (7)
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• Jacobi’s triple product identity [1, eq. (2.2.10)]:
∞∑

n=−∞
znq(

n
2) = (q,−z,−q/z; q)∞. (8)

• A q-analog of the Chu-Vandermonde summation [1, eq. (3.3.10)]:

h∑
k=0

[
n
k

][
m

h− k

]
q(n−k)(h−k) =

[
m+ n

h

]
. (9)

• A q-analog of the Vandermonde formula [12, eq. (1.5.2)]:
∞∑
j=0

(q−n; q)j(b; q)j
(q; q)j(c; q)j

(
cqn

b

)j

=
(c/b; q)n
(c; q)n

. (10)

2.2. F. H. Jackson’s transformation. In 1944 F. H. Jackson [15] gave a collection of trans-
formations for various q-Appell functions, which are basic hypergeometric series in two variables.
The one we use involves the following function (see [15, eq. (2)]).

Definition 1. Let

Ψ1(a; b; c, c
′;x, y;λ) =

∞∑
m=0

∞∑
n=0

(a; q)m+n(b; q)m
(q; q)m(q; q)n(c; q)m(c′; q)n

xmynqλn(n−1).

His transformation is [15, eq. (30)].

Proposition 2.1. We have

Ψ1(a; b; c, c
′;x, y;λ) =

∞∑
r=0

(a; q)r(b; q)r
(q; q)r(c; q)r(c′; q)r

xryrarq(1+λ)r(r−1)

× Φ(aqr; bqr; cqr;x) 1Φ1(aq
r; c′qr; yq2λr;λ),

where

Φ(A,B;C;X) =
∞∑

m=0

(A; q)m(B; q)m
(q; q)m(C; q)m

Xm,

1Φ1(A;C;Y ;λ) =

∞∑
n=0

(A; q)n
(q; q)n(C; q)n

Y nqλn(n−1).

The following special cases of the subsidiary functions in Proposition 2.1 will be used.

Proposition 2.2. If a = c′, then

1Φ1(aq
r; c′qr; yqr; 1/2) = (−yqr; q)∞.

If a = c, then
lim
b→∞

Φ(aqr, bqr; cqr;x/b) = (xqr; q)∞.

Proof. These follow from the q-binomial theorem in (6),

1Φ1(aq
r; aqr; yqr; 1/2) =

∞∑
n=0

1

(q; q)n
(yqr)nqn(n−1)/2 = (−yqr; q)∞,

and

lim
b→∞

Φ(aqr, bqr; aqr;x/b) =
∞∑

m=0

(−1)m

(q; q)m
(xqr)mqm(m−1)/2 = (xqr; q)∞.
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□

2.3. Some basics on integer partitions. An integer partition λ is a weakly decreasing se-
quence of positive integers. These positive integers are called the parts of λ. We denote by |λ|
the sum of all parts of λ and by ℓ(λ) the number of parts of λ. If |λ| = n, then λ is called a
partition of n and denoted by λ ⊢ n. It is a convention that the empty sequence ∅ is considered
a partition of 0. We denote by P the set of all partitions.

A partition λ is called a strict partition if the parts of λ are distinct. We denote by D the
set of all strict partitions. An overpartition is an ordered pair of partitions (θ1, θ2), where θ1 is
strict and θ2 is arbitrary.

For λ ⊢ n, its Young diagram, also known as the Ferrers diagram, is the graphical represen-
tation, which consists of n boxes (or dots) placed left justified in rows with λi boxes (or dots)
in the i-th row. We denote the Young diagram of λ by Yλ. In Figure 1, the Young diagram of
λ = (4, 2, 2, 1) is illustrated.

Figure 1. Y(4,2,2,1)

For a partition λ, let x = (i, j) denote the box in the i-th row and j-th column of the Young
diagram Yλ of λ. The hook of the box x = (i, j) is the following set of boxes

Hx := {(k,m) | k ≥ i,m ≥ j}.
The size of Hx is called the hook length of x and denoted by hx. In Figure 2, the number in
each box indicates its hook length.

7 5 2 1

4 2

3 1

1

Figure 2. Hook lengths of (4, 2, 2, 1)

For a positive integer t, λ is called a t-core partition if none of the hooks have length divisible
by t. As seen in Figure 2, the partition (4, 2, 2, 1) is a 6-core partition.

There is a well-known algorithm for getting a t-core partition from an arbitrary partition λ
[16]. The rim hook of a box x consists of the boxes of the rim between two ends of the hook of
x. We successively remove rim hooks of length t until no hooks of length t remain. We call this
resulting partition the t-core of λ and denote it by λt-core.

This algorithm can be described using an abacus diagram [16]. For a positive integer t, a
t-abacus diagram is a diagram with infinitely many rows and t columns, in which each position
is labelled by 0, 1, 2, . . . from left to right and from bottom to top. The columns are called
runners, and the i-runner is the column in which positions are labelled with integers congruent
to i modulo t for i = 1, 2, . . . , t. For a partition λ, we place a bead in each position labelled by
the hook lengths of the boxes in the first column of λ in the t-abacus diagram, which is called
the t-abacus of λ. A position with no bead is called a spacer.

In this paper we are concerned with 2-cores. It is well-known that if λ is a 2-core, λ has
distinct parts which differ by one and smallest part 1. This implies the next proposition.
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Proposition 2.3. A partition λ is a 2-core partition if and only if λ = ∅ or λ = (n, n−1, . . . , 1)
for some n ≥ 1. We have ∑

n≥0

c2(n)q
n =

∑
n≥0

q(
n+1
2 ),

where c2(n) counts the number of 2-core partitions of n.

We shall describe the operations (see [16, p. 76]) on the 2-abacus of λ which correspond to
removing rim hooks of size 2 from λ. These rim hooks are dominos.

(i) If a horizontal or vertical domino is removed, keeping the number of parts of λ fixed,
then a bead k > 2 is reduced by 2, replaced by a bead k − 2. Thus a bead on a runner
moves down by one to a spacer on the same runner.

(ii) If λ has at least 2 parts of size 1, removing this vertical domino corresponds to deleting
the beads 1 and 2, and subtracting 2 from all other beads. This may be considered as
moving the bead 2 to bead 0, eliminating the first row of beads 0 and 1, and moving the
remaining beads on their runners down by one position.

(iii) Finally if the smallest part of λ is a 2, 1 is a spacer. Removing this smallest part as a
horizontal domino removes the bead 2, and subtracts one from the remaining beads. So
they switch runners.

Figures 3 illustrates the algorithm with λ = (4, 2, 2, 1). Its 2-core can be easily constructed
from the Young diagram or the abacus on the right side, namely λ2-core = (2, 1).

7

4

3

1

−→
5

4

3

1

−→
5

4

3

1

−→
5

3

2

1

−→
3

1

...
...

8 9
6 7
4 5
2 3
0 1

−→

...
...

8 9
6 7
4 5
2 3
0 1

−→

...
...

8 9
6 7
4 5
2 3
0 1

−→

...
...

8 9
6 7
4 5
2 3
0 1

Figure 3. Algorithm for (4, 2, 2, 1) and its 2-core

Proposition 2.4. In the 2-abacus of λ, let si count the number of beads in the i-runner for
i = 1, 2. Then λ2-core = (j, . . . , 2, 1) if and only if s2 = s1 − j or s2 = s1 + j + 1

Proof. First move all the beads down so that there are no spacers below beads.
If s1 ≥ s2, then we eliminate the smallest s2 beads in each runner and s1 − s2 = j beads

remain, namely {1, 3, . . . , 2j − 1}, for the 2-core and λ2-core = (j, . . . , 2, 1).
If s2 > s1, then we eliminate the smallest s1 beads in each runner and s2 − s1 = j + 1 beads

remain, namely {2, 4, . . . , 2j+2}. Applying the final rule, the bead 2 is eliminated and the other
beads switch runners and become {3, 5, . . . , 2j+1}.We then shift them down to {1, 3, . . . , 2j−1}.
Again λ2-core = (j, . . . , 2, 1). □

Next, we define the 2-residue of x = (i, j) by

Res(x) := i− j (mod 2).

Figure 4 shows the 2-residues of λ = (5, 4, 1).
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0 1 0 1 0

1 0 1 0

0

Figure 4. 2-Residues of (5, 4, 1)

We are ready to define the 2-residue statistic ω(λ), which is also called the BG-rank by
Berkovich and Garvan [5, eq. (1.2)].

Definition 2. The 2-residue statistic ω (BG-rank) is

ω(λ) := |{x ∈ Yλ |Res(x) = 0}| − |{x ∈ Yλ |Res(x) = 1}|.

Since all rim hooks of even length are removed while performing the algorithm to get λ2-core,
we can easily see that

ω(λ) = ω(λ2-core). (11)

3. The w-generalizations

In this section we give generalizations of the main two identities (1) and (2) which include a
new parameter w. The choice of w = 1 in Theorems 3.1 and 3.2 gives (1) and (2).

Theorem 3.1. We have∑
r,s≥0

qr
2+s2+r+s(wq2; q2)r+s+1w

r

(wq2; q2)r(q2; q2)r(q2; q2)s(wq2; q2)s+1
=

(−q2; q2)∞
(wq2; q2)∞

.

Proof. The double sum, once q2 is replaced by q, is a confluent limit of Jackson’s

lim
b→∞

Ψ1(a; b; c, c
′;x/b, y;λ),

with the choices

a = c′ = wq2, c = wq, x = −c = −wq, y = q, λ = 1/2.

Because a = c′, Proposition 2.2 shows

1Φ1(aq
r; c′qr; yqr; 1/2) = (−yqr; q)∞.

For the factor limb→∞Φ(aqr, bqr; cqr;x/b) we must work a bit harder and use a = cq.

lim
b→∞

Φ(aqr, bqr; cqr;x/b)

=
∞∑
p=0

(aqr; q)p
(q; q)p(cqr; q)p

q(
p
2)(−1)p(xqr)p

=
∞∑
p=0

(1− cqr+p)

(1− cqr)(q; q)p
q(

p
2)(−1)p(xqr)p (because a = cq)

=
1

(1− cqr)

∞∑
p=0

q(
p
2)

(q; q)p
(−1)p(xqr)p − cqr

(1− cqr)

∞∑
p=0

q(
p
2)

(q; q)p
(−1)p(xqr+1)p

=
1

1− cqr
((xqr; q)∞ − cqr(xqr+1; q)∞)

=
1

1− cqr
(−cqr+1; q)∞. (because x = −c)



THE ARIKI–KOIKE ALGEBRAS AND q-APPELL FUNCTIONS 7

Putting these two pieces into Proposition 2.1, we have an r-sum which is
∞∑
r=0

(cq; q)rq
(r2)(−1)r

(q; q)r(c; q)r(cq; q)r
(−c)rqr(cq)rq3(

r
2)(−qr+1; q)∞

1

1− cqr
(−cqr+1; q)∞

=(−q; q)∞(−cq; q)∞

∞∑
r=0

q2r+4(r2)c2r

(q; q)r(c; q)r+1

1

(−q; q)r(−cq; q)r

=
(−q; q)∞(−cq; q)∞

1− c

∞∑
r=0

c2rq2r
2

(q2; q2)r(c2q2; q2)r

=
(−q; q)∞(−cq; q)∞

1− c

1

(c2q2; q2)∞
(by (7))

=
(−q; q)∞
(c; q)∞

=
(−q; q)∞
(wq; q)∞

.

With q replaced by q2, we complete the proof. □

Theorem 3.2. We have
∞∑

r,s=0

wsqr
2+s2+2s(wq2; q2)r+s

(wq2; q2)r(q2; q2)r(wq2; q2)s(q2; q2)s
+

∞∑
r,s=1

wsqr
2+s2(wq2; q2)r+s−1

(wq2; q2)r(q2; q2)r−1(wq2; q2)s(q2; q2)s−1

=
(−q; q2)∞
(wq2; q2)∞

.

Proof. The first double sum can be obtained once q is replaced by q2 in a confluent limit of
Jackson’s

lim
b→∞

Ψ1(a; b; c, c
′;x/b, y;λ),

with the choices
a = c = c′ = wq2, x = −q, y = wq3, λ = 1/2.

This time we may apply both parts of Proposition 2.2 to obtain

(−q; q2)∞(−wq3; q2)∞

∞∑
r=0

q4r
2+2rw2r

(q2; q2)r(wq2; q2)r(−q; q2)r(−wq3; q2)r

= (−q; q2)∞(−wq3; q2)∞

∞∑
r=0

q(2r)
2+2rw2r

(−q;−q)2r(wq2;−q)2r
.

Again, the second double sum can be obtained once q is replaced by q2 in a confluent limit
of Jackson’s

wq2

1− wq2
lim
b→∞

Ψ1(a; b; c, c
′;x/b, y;λ),

with the choices
a = c = c′ = wq4, x = −q3, y = wq3, λ = 1/2.

As in the first double sum, the resulting r-sum becomes

wq2

1− wq2
(−q3; q2)∞(−wq3; q2)∞

∞∑
r=0

q4r
2+6rw2r

(q2; q2)r(wq4; q2)r(−q3; q2)r(−wq3; q2)r

=(−q; q2)∞(−wq3; q2)∞

∞∑
r=0

q(2r+1)2+(2r+1)w2r+1

(−q;−q)2r+1(wq2;−q)2r+1
.
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So the sum of these two double sums is

(−q; q2)∞(−wq3; q2)∞

∞∑
r=0

qr
2+rwr

(−q;−q)r(wq2;−q)r

= (−q; q2)∞(−wq3; q2)∞
1

(wq2;−q)∞
(by (7))

=
(−q; q2)∞
(wq2; q2)∞

as required. □

4. Non-Negativity

The individual terms of the series in (1) and (2) are generating functions for a set of multi-
partitions. Thus they have non-negative coefficients as a formal power series in q. (This will
be discussed and proven in Section 5.) One may ask if the individual terms of the series in
Theorem 3.1 and Theorem 3.2 have non-negative coefficients as a formal power series in q and
w. In this section we verify in Theorem 4.6 that this does hold.

For Theorem 3.1 we need a definition.

Definition 3. For nonnegative integers r and s, let

g(r, s, w) :=
(wq; q)r+s+1

(wq; q)r(q; q)r(q; q)s(wq; q)s+1
.

Note that

g(r, s, 1) =
1

(q; q)r(q; q)s

[
r + s+ 1
s+ 1

]
has non-negative coefficients as a power series in q. However, a natural w-version of the q-
binomial coefficients (wq; q)r+s+1/((q; q)r(wq; q)s+1) is not a polynomial function and does not
have non-negative coefficients. The extra factors in the denominator which depend on w will
force g(r, s, w) to have non-negative coefficients.

Lemma 4.1. If r, s ≥ 1, then

g(r, s, w) =
g(r, s− 1, w)

1− qs
+ wqs+1 g(r − 1, s, w)

1− wqr
.

Proof. This Pascal-type relation follows from Definition 3. □

Proposition 4.2. As a formal power series in q and w, g(r, s, w) has non-negative coefficients.

Proof. Because Lemma 4.1 recursively preserves non-negativity, we must only check the initial
conditions. If r = 0, the numerator factor cancels in g(0, s, w), so it has non-negative coefficients.
If r ≥ 1 and s = 0,

g(r, 0, w) =
1− wqr+1

1− wq

1

(q; q)r
=

1

(q; q)r
+

wq

1− wq

1

(q; q)r−1

has non-negative coefficients. □

For the two double sums in Theorem 3.2, we need the following definitions.
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Definition 4. For nonnegative integers r and s, let

h(r, s, w) :=
(wq; q)r+s

(wq; q)r(q; q)r(q; q)s(wq; q)s
,

and for positive integers r and s, let

hh(r, s, w) :=
(wq; q)r+s−1

(wq; q)r(q; q)r−1(q; q)s−1(wq; q)s
.

The Pascal-type relations for h(r, s, w) and hh(r, s, w) in the following lemmas follow easily
from the Definition 4.

Lemma 4.3. For r, s ≥ 1,

h(r, s, w) =
h(r, s− 1, w)

1− qs
+ wqs

h(r − 1, s, w)

1− wqr
,

with the initial conditions at r = 0 or s = 0 are

h(0, t, w) = h(t, 0, w) =
1

(q; q)t
for t ≥ 0,

which has non-negative coefficients.

Lemma 4.4. For r, s ≥ 2,

hh(r, s, w) =
hh(r, s− 1, w)

1− qs−1
+ wqs

hh(r − 1, s, w)

1− wqr

with the initial conditions at r = 1 or s = 1 is given by

hh(t, 1, w) = hh(1, t, w) =
1

(1− wq)(q; q)t−1
for t ≥ 1,

which has non-negative coefficients.

The non-negativity properties of h(r, s, w) and hh(r, s, w) follow from Lemmas 4.3 and 4.4

Proposition 4.5. As a formal power series in q and w, both h(r, s, w) and hh(r, s, w) have
non-negative coefficients.

By Propositions 4.2 and 4.5, we obtain the following non-negativity.

Theorem 4.6. The r, s terms in Theorems 3.1 and 3.2 have non-negative coefficients as a
formal power series in q and w.

5. Kleshchev 2-Multipartitions and 2-cores

In this section, we prove in Theorem 5.7 that the generating function for a set of 2-multipartitions,
denoted Λ1,2

0 , is given by the double sum side of Theorem 3.1. An analogous statement holds

for Theorem 3.2 using Λ2,2
0 and Λ2,2

1 , but we do not give the details here. We also collect some
facts about strict partitions and 2-core partitions.

Definition 5. For a = 1, 2, we define Λa,2 to be the set of pairs of strict partitions
(
λ(1), λ(2)

)
satisfying

λ
(1)
1 ≤ ℓ(λ(2)) + (2− a).

Such a pair of partitions in Λa,2 is called a Kleshchev 2-multipartition. We put

ω(λ(1), λ(2)) := ω(λ(1)) + (−1)aω(λ(2)),

where the 2-residue statistic ω for λ(1) and λ(2) is defined in Definition 2.
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5.1. Strict partitions and 2-core partitions ∆j. For a positive integer j, we denote by ∆j

the partition with parts exactly 1, 2, . . . , j, namely

∆j := (j, . . . , 2, 1).

Also, we define

∆0 := ∅.

We begin with a fundamental result about strict partitions and their 2-cores.

Theorem 5.1. For an integer j ≥ 0,∑
λ∈D

λ2-core=∆j

q|λ| =
q(

j+1
2 )

(q2; q2)∞
. (12)

Proof. Suppose that λ is strict. In the Young diagram of λ, starting from the bottom row to
top, shift one box to the left, two boxes to the left, etc. We then obtain the shifted Young
diagram of λ. For example, the shifted Young diagram of the partition (6, 5, 3, 1) is illustrated
in Figure 5.

Figure 5. The shifted Young diagram of (6, 5, 3, 1)

The diagram to the right of the vertical bar in the middle is called the shifted shape of λ.
This shifted shape is an ordinary partition.

In the 2-abacus of λ, let s1 and s2 be the numbers of beads in the 1-runner and the 2-runner,
respectively. The bead numbers βi for λ, the first column hook lengths, have the opposite parity
of the parts in the shifted shape of λ which are λi − (ℓ(λ)− i+ 1),

βi = λi + (ℓ(λ)− i) = λi − (ℓ(λ)− i+ 1) + 2(ℓ(λ)− i)− 1.

So, the shifted shape has s1 even parts (0 allowed) and s2 odd parts. For example if λ =
(6, 5, 3, 1), then β = (9, 7, 4, 1) and the shifted shape is (2, 2, 1, 0).

Thus, λ can be decomposed into a triple (∆ℓ(λ), µ, ν), where µ and ν are partitions consisting
of even parts and odd parts from the shifted shape of λ. Since

s1 + s2 = ℓ(λ),

it follows that ∑
λ∈D

q|λ| =
∑

s1,s2≥0

q|∆s1+s2 |
∑

ℓ(µ)=s1

q|µ|
∑

ℓ(ν)=s2

q|ν|

=
∑

s1,s2≥0

q(
s1+s2+1

2 )+s2

(q2; q2)s1(q
2; q2)s2

. (13)

By Proposition 2.4, we know that λ2-core = (j, . . . , 1) corresponds to s2 = s1 − j or s2 =
s1 + j + 1.
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Case 1: (s1, s2) = (s+ j, s). Because(
2s+ j + 1

2

)
+ s =

(
j + 1

2

)
+ 2s(s+ j + 1)

the generating function from (13) becomes

q(
j+1
2 )
∑
s≥0

q2s(s+j+1)

(q2; q2)s(q2; q2)s+j
. (14)

Case 2: (s1, s2) = (s, s+ j + 1). Similarly the generating function in this case is

q(
j+1
2 )
∑
s≥0

q2(s+1)(s+j+1)

(q2; q2)s(q2; q2)s+j+1
. (15)

Therefore,

∑
λ∈D

λ2-core=∆j

q|λ| = q(
j+1
2 )

∑
s≥0

q2s(s+j+1)

(q2; q2)s(q2; q2)s+j
+
∑
s≥0

q2(s+1)(s+j+1)

(q2; q2)s(q2; q2)s+j+1


= q(

j+1
2 )
∑
s≥0

q2s(s+j+1)

(q2; q2)s(q2; q2)s+j+1

=
q(

j+1
2 )

(q2; q2)∞
, (by (7) with z → qj+1)

which completes the proof. □

In the following theorem, we give the generating function for strict partitions λ with 2-residue
weight ω(λ).

Theorem 5.2. We have∑
λ∈D

xω(λ)q|λ| = (−xq; q4)∞(−q3/x; q4)∞(−q2; q2)∞.

Proof. Note that

ω(λ) = ω(λ2-core).

Also,

ω(∆j) = (−1)j+1

⌈
j

2

⌉
.

Thus, by Theorem 5.1∑
λ∈D

xω(λ)q|λ| =
1

(q2; q2)∞

∑
j≥0

x(−1)j+1⌈j/2⌉q(
j+1
2 )

=
1

(q2; q2)∞

∞∑
j=−∞

xjqj(2j−1)

=
(−xq; q4)∞(−q3/x; q4)∞(q4; q4)∞

(q2; q2)∞
(by (8))

= (−xq; q4)∞(−q3/x; q4)∞(−q2; q2)∞,

as desired. □
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5.2. A finite version of Theorem 5.1. We now consider a finite version of Theorem 5.1 by
restricting the largest part. This is already discussed by Berkovich and Uncu in [6]. We give
another proof using 2-cores.

Theorem 5.3. For an integer j ≥ 0,∑
λ∈D, λ1≤N
λ2-core=∆j

q|λ| = q(
j+1
2 )
[

N
⌊(N − j)/2⌋

]
q2
. (16)

Proof. Let λ be a strict partition such that λ2-core = ∆j and λ1 ≤ N . We copy the proof of
Theorem 5.1 with the added restriction on the largest part of λ.

Case 1: (s1, s2) = (s+j, s). The shifted Young diagram of λ has s1 = s+j even parts (0 allowed)
and s2 = s odd parts, each part at most N − (2s+ j). The generating function for each
parity of parts is given by a q2-binomial coefficient corresponding to partitions inside a
rectangle. Hence the generating function in this case is

∑
s≥0

q(
2s+j+1

2 )+s

[
⌊(N − j − 1)/2⌋

s

]
q2

[
⌊(N + j)/2⌋

s+ j

]
q2
. (17)

Case 2: (s1, s2) = (s, s+ j + 1). Similarly we obtain the following generating function∑
s≥0

q(
2s+j+2

2 )+s+j+1

[
⌊(N − j − 1)/2⌋

s

]
q2

[
⌊(N + j)/2⌋
s+ j + 1

]
q2
. (18)

By combining the two cases in (17) and (18),

q(
j+1
2 )
∑
s≥0

q2s(s+j+1)

([
⌊(N + j)/2⌋

s+ j

]
q2

+ q2(s+j+1)

[
⌊(N + j)/2⌋
s+ j + 1

]
q2

)[
⌊(N − j − 1)/2⌋

s

]
q2

= q(
j+1
2 )
∑
s≥0

q2s(s+j+1)

[
⌊(N + j)/2⌋+ 1

s+ j + 1

]
q2

[
⌊(N − j − 1)/2⌋

s

]
q2

(by (4))

= q(
j+1
2 )
[
⌊(N + j + 1)/2⌋+ ⌊(N − j)/2⌋

⌊(N − j)/2⌋

]
q2

(by (9))

= q(
j+1
2 )
[

N
⌊(N − j)/2⌋

]
q2
,

as desired. □

5.3. w-Versions for Theorems 5.1 and 5.3. To get w-versions for Theorems 5.1 and 5.3, we
define a new statistic as follows. Recall that in the 2-abacus of λ, si counts the number of beads
in the i-runner for i = 1, 2. Define

β(λ) :=


s1 +

largest even part in the shifted shape
2 if s1 ≥ s2,

s2 +
largest odd part in the shifted shape +1

2 if s1 < s2.

Theorem 5.4. For an integer j ≥ 0,∑
λ∈D

λ2-core=∆j

wβ(λ)q|λ| =
wjq(

j+1
2 )

(wq2; q2)∞
. (19)



THE ARIKI–KOIKE ALGEBRAS AND q-APPELL FUNCTIONS 13

Proof. For a strict partition λ, let si be the number of beads in the i-runner of the 2-abacus
of λ for i = 1, 2. As seen in the proof of Theorem 5.1, λ can be decomposed into the staircase
partition ∆s1+s2 and its shifted shape of s1 even parts (0 allowed) and s2 odd parts.

It follows from the definition of β(λ) and the decomposition of λ seen in (13) that the gener-
ating function with weight β(λ) is∑

λ∈D
wβ(λ)q|λ| =

∑
s1≥s2≥0

ws1q(
s1+s2+1

2 )+s2

(wq2; q2)s1(q
2; q2)s2

+
∑

s2>s1≥0

ws2q(
s1+s2+1

2 )+s2

(q2; q2)s1(wq
2; q2)s2

. (20)

As done in the proof of Theorem 5.1, we divide into two cases.

Case 1: (s1, s2) = (s+ j, s). By (20),∑
λ∈D

s1−s2=j

wβ(λ)q|λ| = q(
j+1
2 )
∑
s≥0

ws+jq2s(s+j+1)

(wq2; q2)s+j(q2; q2)s
. (21)

Case 2: (s1, s2) = (s, s+ j + 1). By (20),∑
λ∈D

s1−s2=−j−1

wβ(λ)q|λ| = q(
j+1
2 )
∑
s≥0

ws+j+1q2(s+1)(s+j+1)

(q2; q2)s(wq2; q2)s+j+1
. (22)

Thus, by combining (21) and (22), we get

∑
λ∈D

λ2-core=∆j

wβ(λ)q|λ| = q(
j+1
2 )

∑
s≥0

ws+jq2s(s+j+1)

(q2; q2)s(wq2; q2)s+j
+
∑
s≥0

ws+j+1q2(s+1)(s+j+1)

(q2; q2)s(wq2; q2)s+j+1


= q(

j+1
2 )
∑
s≥0

ws+jq2s(s+j+1)

(q2; q2)s(wq2; q2)s+j+1

=
wjq(

j+1
2 )

(wq2; q2)∞
. (by (7) with z → wq2(j+1))

□

Next, we consider the finite version of Theorem 5.4.

Theorem 5.5. For an integer j ≥ 0,∑
λ∈D,λ1≤N
λ2-core=∆j

wβ(λ)q|λ| = wjq(
j+1
2 )

⌊(N−j)/2⌋∑
t=0

wtq2t
[
⌊(N + j − 1)/2⌋+ t

t

]
q2
. (23)

Proof. As done in the proof of Theorem 5.3, we need to get a finite version for the generating
function of the shifted shape. We divide into two cases. Then the w-weighted generating function
for each case follows from the proofs of Theorems 5.3 and 5.4.

Case 1: (s1, s2) = (s+ j, s). The generating function is

wjq(
j+1
2 )
∑
s≥0

wsq2s(s+j+1)

[
⌊(N − j − 1)/2⌋

s

]
q2

⌊(N+j)/2⌋−(s+j)∑
i=0

wiq2i
[
s+ j + i− 1

i

]
q2
, (24)

where the coefficient of wi in the inner sum generates even parts in the shifted shape of
λ with its largest even part equal to 2i.
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Case 2: (s1, s2) = (s, s+ j + 1). The generating function is

wjq(
j+1
2 )
∑
s≥0

wsq2s(s+j+1)

[
⌊(N − j − 1)/2⌋

s

]
q2

⌊(N+j)/2⌋−(s+j)∑
i=1

wiq2i+2(s+j)

[
s+ j + i− 1

i− 1

]
q2
,

(25)

where the coefficient of wi in the inner sum generates odd parts in the shifted shape of
λ with its largest odd part equal to 2i− 1.

By (3), for i ≥ 1,[
s+ j + i− 1

i

]
q2

+ q2(s+j)

[
s+ j + i− 1

i− 1

]
q2

=

[
s+ j + i

i

]
q2
.

So, by combining the two cases in (24) and (25),

wjq(
j+1
2 )
∑
s≥0

wsq2s(s+j+1)

[
⌊(N − j − 1)/2⌋

s

]
q2

⌊(N+j)/2⌋−(s+j)∑
i=0

wiq2i
[
s+ j + i

i

]
q2

= wjq(
j+1
2 )

⌊(N−j)/2⌋∑
t=0

wtq2t
∑
s≥0

q2s(s+j)

[
⌊(N − j − 1)/2⌋

s

]
q2

[
t+ j
t− s

]
q2

= wjq(
j+1
2 )

⌊(N−j)/2⌋∑
t=0

wtq2t
[
⌊(N + j − 1)/2⌋+ t

t

]
q2

(by (9))

as desired. □

5.4. Kleshchev 2-multipartitions in Λ1,2
0 . We use the techniques of the previous subsections

to find the generating function for some Kleshchev 2-multipartitions (see Theorem 5.6 and
Theorem 5.7).

Theorem 5.6. We have∑
λ∈Λ1,2

0

q|λ| =
∑
j≥0

∑
s≥0

q2s(s+j+1)+2(j+1
2 )

(q2; q2)s(q2; q2)s+j

[
2s+ j + 1

s

]
q2

+
∑
s≥0

q2(s+1)(s+j+1)+2(j+1
2 )

(q2; q2)s(q2; q2)s+j+1

[
2s+ j + 2

s+ 1

]
q2

 .

(26)

Proof. Let λ = (λ(1), λ(2)) ∈ Λ1,2
0 . By Definition 5,

ω(λ) = ω(λ(1))− ω(λ(2)).

Since ω(µ) = ω(µ2-core) for any partition µ,

ω(λ) = ω(λ
(1)
2-core)− ω(λ

(2)
2-core).

Hence ω(λ) = 0 implies that

λ
(1)
2-core = λ

(2)
2-core.

We now fix the 2-core of λ(2) to be ∆j . For i = 1, 2, let

si := # beads in the i-runner in the 2-abacus for λ(2).

Then

s1 + s2 = ℓ(λ(2))
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with

λ
(1)
1 ≤ ℓ(λ(2)) + 1 = s1 + s2 + 1.

Thus, ∑
λ∈Λ1,2

0

q|λ| =
∑
j≥0

∑
λ
(2)
2-core=∆j

q|λ
(2)|

∑
λ
(1)
2-core=∆j

q|λ
(1)|. (27)

Note that λ(2) has its 2-core equal to ∆j when (s1, s2) = (s + j, s) or (s, s + j + 1) for some
s ≥ 0.

By (14) and (16),∑
s≥0

∑
λ
(2)
2-core=∆j

(s1,s2)=(s+j,s)

q|λ
(2)|

∑
λ
(1)
2-core=∆j

q|λ
(1)| =

∑
s≥0

q2s(s+j+1)+2(j+1
2 )

(q2; q2)s(q2; q2)s+j

[
2s+ j + 1

s

]
q2
, (28)

and by (15) and (16),∑
s≥0

∑
λ
(2)
2-core=∆j

(s1,s2)=(s,s+j+1)

q|λ
(2)|

∑
λ
(1)
2-core=∆j

q|λ
(1)| =

∑
s≥0

q2(s+1)(s+j+1)+2(j+1
2 )

(q2; q2)s(q2; q2)s+j+1

[
2s+ j + 2

s+ 1

]
q2
. (29)

By plugging (28) and (29) in (27), we complete the proof. □

Finally, to obtain the left hand side of the equation in Theorem 3.1 when w = 1, these two
double sums collapse into a single double sum.

Theorem 5.7. We have∑
λ∈Λ1,2

0

q|λ| =
∑
r,s≥0

qr
2+s2+r+s(q2; q2)r+s+1

(q2; q2)r(q2; q2)r(q2; q2)s(q2; q2)s+1
.

Proof. First we rewrite the double sum side of Theorem 5.7 as two double sums, splitting the
r ≤ s and r > s cases, and then obtaining the two double sums in Theorem 5.6. □

5.5. Kleshchev 2-multipartitions in Λ2,2
0 ∪ Λ2,2

1 . Analogous results for Λ2,2
0 ∪ Λ2,2

1 can be

obtained in similar ways to the ones used for Λ1,2
0 . We only state the results omitting the

details.

Theorem 5.8. We have∑
λ∈Λ2,2

0 ∪Λ2,2
1

q|λ|

=
∑
j≥0

∑
s≥0

q2s(s+j+1)+j2

(q2; q2)s(q2; q2)s+j

[
2s+ j

s

]
q2

+
∑
s≥0

q2(s+1)(s+j+1)+j2

(q2; q2)s(q2; q2)s+j+1

[
2s+ j + 1

s+ j

]
q2


+
∑
j≥0

∑
s≥0

q2s(s+j+1)+(j+1)2

(q2; q2)s(q2; q2)s+j

[
2s+ j

s+ j + 1

]
q2

+
∑
s≥0

q2(s+1)(s+j+1)+(j+1)2

(q2; q2)s(q2; q2)s+j+1

[
2s+ j + 1
s+ j + 1

]
q2

 .

To obtain the left hand side of the equation in Theorem 3.2 when w = 1, these four double
sums collapse into two double sums.
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Theorem 5.9. We have∑
λ∈Λ2,2

0 ∪Λ2,2
1

q|λ| =
∑
r,s≥0

qr
2+s2+2s(q2; q2)r+s

(q2; q2)r(q2; q2)r(q2; q2)s(q2; q2)s
+
∑
r,s≥1

qr
2+s2(q2; q2)r+s−1

(q2; q2)r(q2; q2)r−1(q2; q2)s(q2; q2)s−1
.

6. Overpartitions

The right side of Theorem 3.1 is a generating function for overpartitions, once q2 has been
replaced by q. In this section we reprove Theorem 3.1 and find the combinatorial meaning of
the summation parameters r and s. We give in Propositions 6.2 and 6.3 explicit combinatorial
ways to compute r and s from an overpartition (θ1, θ2). Thus we give a combinatorial proof of
Theorem 3.1. The key is a hidden auxiliary parameter p which comes from a Durfee rectangle
decomposition.

This proof of Theorem 3.1 rewrites the double sum as a triple sum, and then evaluates each
of the three sums.

Proof. To start the proof, we apply the q-Vandermonde theorem (10) to change the r, s term of
Theorem 3.1 into a sum over p.

q(
r
2)+(

s
2)+r+s(wq; q)r+s+1w

r

(wq; q)r(q; q)r(q; q)s(wq; q)s+1
=

min(r,s+1)∑
p=0

q(
s+1
2 )

(q; q)s

[
s+ 1
p

]
q

qp
2

(q; q)r−p

wp+r

(wq; q)p
q(

r+1
2 ). (30)

The left side of Theorem 3.1 is therefore a triple sum over r, s, p. Each sum may be evaluated
as an infinite product.

The s-sum is, after using the Pascal relation in (4) and replacing s = t+ p, and s = u+ p− 1,∑
s≥0

q(
s+1
2 )

(q; q)s

[
s+ 1
p

]
q

=
∑
s≥0

q(
s+1
2 )

(q; q)s

(
qp
[
s
p

]
q

+

[
s

p− 1

]
q

)

=
1

(q; q)p

∑
t≥0

q(
t+p+1

2 )+p

(q; q)t
+

1

(q; q)p−1

∑
u≥0

q(
u+p
2 )

(q; q)u

=
q(

p
2)+2p

(q; q)p
(−qp+1; q)∞ +

q(
p
2)

(q; q)p−1
(−qp; q)∞

=
q(

p
2)

(q; q)p
(−qp+1; q)∞ =

q(
p
2)

(q2; q2)p
(−q; q)∞. (31)

The r-sum is, upon replacing r = t+ p,

∞∑
r=p

q(
r+1
2 )

(q; q)r−p
wr =q(

p+1
2 )

∞∑
t=0

q(
t+1
2 )

(q; q)t
wt+pqtp

=wpq(
p+1
2 )(−wqp+1; q)∞. (32)

The remaining p-sum now is

(−q; q)∞

∞∑
p=0

(−wqp+1; q)∞
(q2; q2)p(wq; q)p

q2p
2
w2p =(−q; q)∞(−wq; q)∞

∞∑
p=0

q2p
2
w2p

(q2; q2)p(w2q2; q2)p

=(−q; q)∞
(−wq; q)∞
(w2q2; q2)∞

=
(−q; q)∞
(wq; q)∞

(33)

as desired. □
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To interpret this proof combinatorially, and find the meaning of the summation parameters r
and s in Theorem 3.1, we consider the equations (33), (32) and (31) in reverse order. Note that
each equation is manifestly positive so that bijections prove each one.

First consider (33), which concerns the arbitrary partition θ2 in the overpartition (θ1, θ2).
Here each part of θ2 is weighted by w. The statement that

1

(wq; q)∞
=

(−wq; q)∞
(w2q2; q2)∞

is considering the parts of θ2 by even and odd multiplicity. Namely, if the multiplicity of
a part is odd, we separate one copy to make a subpartition γo. Then the remaining parts
form a subpartition γe, each part of which has an even multiplicity. For example, if θ2 =
(7, 5, 5, 4, 4, 4, 2, 2, 2, 2, 1), then γo = (7, 4, 1) and γe = (5, 5, 4, 4, 2, 2, 2, 2).

The p-sum expansion

1

(w2q2; q2)∞
=

∞∑
p=0

q2p
2
w2p

(q2; q2)p(w2q2; q2)p

in (33) is the Durfee rectangle decomposition of the subpartition γe of θ2 consisting of its parts
with even multiplicity.

Definition 6. Let γe be the subpartition of θ2 resulting from deleting one copy of each part with
odd multiplicity. Let the Durfee rectangle of γe have size 2p× p.

(1) Let Θ1 be the partition of the column lengths in γe to the right of the Durfee rectangle,
so Θ1 has parts from the set 2, 4, . . . , 2p.

(2) Let Θ2 be the parts of γe below the Durfee rectangle, so the parts of Θ2 have even
multiplicity and are from the set 1, 2, . . . , p.

Note that the generating function of Θ1 is 1/(q2; q2)p while Θ2’s is 1/(w
2q2; q2)p. In the above

example, γe = (5, 5, 4, 4, 2, 2, 2, 2), so the corresponding Durfee rectangle has size 4 × 2, i.e.,
p = 2. Hence, Θ1 = (4, 4, 2) and Θ2 = (2, 2, 2, 2). This is illustrated in Figure 6, where the
Durfee rectangle is indicated with thicker sides.

Figure 6. γe = (5, 5, 4, 4, 2, 2, 2, 2)

Proposition 6.1. Let (θ1, θ2) be an overpartition. Let γe be the subpartition of θ2 resulting
from deleting one copy of each part with odd multiplicity. The summation parameter p is the
size of the 2p× p Durfee rectangle for γe.

Note that p = 0 when γo = θ2 and γe = ∅.
Next we consider (32) to interpret r. Note that

(−wq; q)∞
(w2q2; q2)p

=
(−wqp+1; q)∞

(wq; q)p
.
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The numerator factor (−wqp+1; q)∞ is the generating function for the parts of γo which are at
least p+ 1. Note that the number of parts of γo is the same as the number of parts of θ2 with
odd multiplicity.

Proposition 6.2. Let (θ1, θ2) be an overpartition, and let p be given by Proposition 6.1. Let t be
the number of part sizes of θ2, each size at least p+1, which have odd multiplicity, or equivalently
the number of parts of γo of size at least p + 1. The summation parameter r in Theorem 3.1
corresponding to (θ1, θ2) is p+ t.

Finally we consider (31) to interpret s. The final term in (31)

(−q; q)∞
(q2; q2)p

is the generating function for θ1 ∪Θ1, which is the partition consisting of all parts of θ1 and Θ1.
We can split each part of Θ1 into two equal parts, to obtain a new partition Θ̃1, whose parts
are from the set 1, 2, . . . , p and have even multiplicity. In the previous example, Θ1 = (4, 4, 2),

so Θ̃1 = (2, 2, 2, 2, 1, 1). The generating function for θ1 ∪ Θ̃1 is

(−qp+1; q)∞
(q; q)p

.

This means the parts 1, 2, . . . , p in θ1∪ Θ̃1 have arbitrary multiplicity, while the other part sizes,
which must come from θ1, must be distinct.

We must consider the two terms in (31) as subsets of the possible θ1 ∪ Θ̃1. In the first term
of (31)

q2p

(q; q)p
(−qp+1; q)∞

the part p has multiplicity at least 2 in θ1 ∪ Θ̃1. This occurs exactly when 2p is part of Θ1.
In the second term

1

(q; q)p−1
(−qp; q)∞

the part p has multiplicity 0 or 1 in θ1 ∪ Θ̃1. This occurs exactly when 2p is not a part of Θ1.
In the example above, since p = 2 and Θ1 = (4, 4, 2), θ1 ∪ Θ̃1 has the part p with multiplicity

at least 2. So, this example corresponds to the first case.

Proposition 6.3. Let (θ1, θ2) be an overpartition, let Θ1 be given by Definition 6, and let p be
given by Proposition 6.1.

(1) If p = 0, then the summation parameter s in Theorem 3.1 corresponding to (θ1, θ2) is
the number of parts of θ1.

(2) If p ≥ 1 and 2p is a part of Θ1, then the summation parameter s in Theorem 3.1
corresponding to (θ1, θ2) is t + p, where t is the number of parts of θ1 of size at least
p+ 1.

(3) If p ≥ 1 and 2p is not a part of Θ1, then the summation parameter s in Theorem 3.1
corresponding to (θ1, θ2) is u+ p− 1, where u is the number of parts of θ1 of size at least
p.

Theorem 6.4. Let (θ1, θ2) be an overpartition. The corresponding parameters r and s in The-
orem 3.1 for (θ1, θ2) are given by Propositions 6.2 and 6.3.

Theorem 6.4 identifies the (r, s)-subset of overpartitions (θ1, θ2) with weight

q|θ1|+|θ2|wℓ(θ2).



THE ARIKI–KOIKE ALGEBRAS AND q-APPELL FUNCTIONS 19

This provides an explicit version of Theorem 4.6.

7. Remarks

We do not know an explicit bijection between Λ1,2
0 (2n) and overpartitions of n. For

(
λ(1), λ(2)

)
∈

Λ1,2
0 the parameters r and s are defined by the sizes of the runners in the 2-abacus of λ(2). For

overpartitions (θ1, θ2), the r and s variables are hidden by the additional parameter p. However,
the right side of Theorem 3.1 is clear from the overpartition definition, and is not clear from the
definition of Λ1,2

0 . We could not find a version of Theorem 3.1 which included a parameter in
the numerator infinite product.

Although we proved Theorems 5.1 and 5.3 using generating function manipulations, we can
construct explicit bijections based on our proofs using generalized Durfee rectangles. Thus, our
proofs can be considered combinatorial. We also note that Huang, Senger, Wear and Wu proved
Theorem 5.3 combinatorially in [14], and their proof is essentially the same as ours. In [11],
Fu and Tang proved Theorem 5.1 combinatorially using the idea of Vandervelde on balanced
partitions from [17]. Recently, Dhar and Mukhopadhyay proved Theorem 5.3 combinatorially
in [10] by employing the idea of Fu and Tang from [11].

The 2-core/quotient generating function in (17) and (18) has a connection to a cumulative
crank generating function. In [9], we have the following theorem:

Theorem 7.1. Let M(m,n) be the number partitions of n with crank m. For any integer j,∑
m≥j

∑
n≥0

M(m,n)qn =
∑
n≥0

q(n+1)(n+j)

(q)n(q)n+j
.

Since M(m,n) = M(−m,n),

q(
j+1
2 )

∑
s≥0

q2(s+1)(s−j)

(q2; q2)s(q2; q2)s−j
+
∑
s≥0

q2(s+1)(s+j+1)

(q2; q2)s(q2; q2)s+j+1


= q(

j+1
2 )

∑
m≤j

∑
n≥0

M(m,n)q2n +
∑

m≥j+1

∑
n≥0

M(m,n)q2n


=

q(
j+1
2 )

(q2; q2)∞
.

In [7], Bessenrodt and Olsson defined 4-bar-core/quotient partitions for strict partitions to
study characters in a fixed 2-block of the covering groups of the symmetric groups. Their
4-bar-core and quotient partition generating function is given by

(−xq; q4)∞(−q3/x; q4)∞(−q2; q2)∞.

Thus, it follows from Theorem 5.2 that their 4-bar-quotient partition generating function matches
the generating function for 2-quotient partitions.
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