
SOME PROBLEMS

DENNIS STANTON

Contents

1. Alternating sign matrices 2
2. Eigenvalues of graphs 4
3. Ranks and Cranks 4
4. The Borwein and Bressoud conjectures 6
5. Assorted q-binomial questions 8
6. Finite fields 10
7. Rogers-Ramanujan identities 12
8. Other questions 13
References 15

Some of these problems do not originate with me.

Date: May 4, 2019.

1



2 DENNIS STANTON

1. Alternating sign matrices

An n×n alternating sign matrix A is an n×n matrix, with entries 0,±1, whose
row and column sums are 1, and non-zero entries in each row and column alternate
in sign, see [13].

The number of n× n alternating sign matrices is known [48] to be

ASM(n) =

n−1∏
k=0

(3k + 1)!

(n+ k)!
.

This sequence starts 1, 2, 7, 42, 429, 7436, · · · .
It is known that ASM(n) is equal to two other numbers

(1) the number of totally symmetric self-complementary plane partitions inside
a 2n× 2n× 2n box, TSSCPP (n),

(2) the number of descending plane partitions whose largest part is at most n,
DPP (n).

A descending plane partition (DPP) [3] is a column strict tableau of shifted
shape, decreasing along rows, and strictly decreasing down columns, such that the
lead element of a row is greater than the number of elements in a that row. Here
are the 7 descending plane partitions counted by DPP (3)

∅, 2, 3, 3 2, 3 1, 3 3,
3 3

2
.

Open Problem 1.1. Find a bijection between the elements counted by ASM(n)
and those counted by TSSCPP (n) or DPP (n).

It is not even known how to do this via the involution principle [22].
It is known [42] that the values of n for which ASM(n) is odd are

n =
∑

t/2≥k≥0

2t−2k + {1 if t is odd}.

The first few values are 1, 3, 5, 11, 21, 43, 85, · · · .

Open Problem 1.2. Find a Franklin type involution which proves that ASM(n)
is even when n avoids the above sequence.

Open Problem 1.3. Find a statistic on a subset of permutations, Tn ⊂ Sn,
stat(w), such that

ASM(n) =
∑
w∈Tn

2stat(w).

Andrews conjectured [3], and Mills, Robbins, and Rumsey proved [28], that the
generating function for DPP (n) is

DPP (n, q) =

n−1∏
k=0

(3k + 1)!q
(n+ k)!q

,

for example

DPP (3, q) =
7!q ∗ 4!q

3!q ∗ 4!q ∗ 5!q
=

7q ∗ 6q
2q ∗ 3q

=(1− q + q2)(1 + q + q2 + q3 + q4 + q5 + q6)

=1 + q2 + q3 + q4 + q5 + q6 + q8.
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Open Problem 1.4. Find a statistic on ASM(n) whose generating function is
DPP (n, q).

It is easy to see that

DPP (∞, q) = lim
n→∞

DPP (n, q) =
1

(1− q2)(1− q3)(1− q4)(1− q5)2(1− q6)2 · · ·

=

∞∏
k=1

(1− q3k−1)−k(1− q3k)−k(1− q3k+1)−k

=

∞∏
k=2

(1− qk)−b(k+1)/3c.

This infinite product may be rewritten using Cauchy’s formula for Schur func-
tions as

(1) DPP (∞, q) =
∑
λ

sλ(q2, q3, q4, · · · )sλ(1, q3, q6, · · · ).

Open Problem 1.5. Find a weight preserving bijection between DPP (∞) and
pairs of column strict tableaux of the same shape which proves (1).

Open Problem 1.6. Find a weight preserving bijection between ASM(∞) and
pairs of column strict tableaux of the same shape which proves (1). Restrict this
bijection to find a bijection between DPP (n) and ASM(n), also a q-statistic for
ASM(n).

Let G be the cyclic group of order 4 which acts by rotations on the set of
n× n alternating sign matrices. It is known [36] that (ASM(n), DPP (q), G) is an
example of the cyclic sieving phenomenon. Thus DPP (i) is the number of n × n
alternating sign matrices fixed under a 90 degree rotation.

Open Problem 1.7. Find an insightful (non computational) proof that

(ASM(n), DPP (n, q), G)

is an example of the CSP.

Tom Sundquist [43] defined, for positive integers n and p,

A(n, p; q) =

n−1∏
k=0

(np+ k)!qk!q
((p+ 1)k + p)!q((p+ 1)k)!q

=q−P
s(pδn)′(1, q, · · · , qnp−1)

spδn(1, q, · · · , qn−1)
.

where

δn = (n− 1, n− 2, · · · , 0), P =

(
p

2

) n−1∑
i=1

i2.

Sundquist proved this was always a polynomial in q with integer coeffcients, but
did not prove positivity.

Open Problem 1.8. Prove A(n, p; q) ∈ N [q] if n and p are positive integers and
what does A(n, p; q) count?
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Note that the DPP and Catalan are both special cases, so positivity is known.

A(n, 2; q) =DPP (n, q)

A(2, p; q) =
1

[p+ 1]q

[
2p

p

]
= Catp(q)

Sundquist also gives a combinatorial interpretation for A(∞, p; q). For p = 2,
Jessica Striker has noted that this result should be the following.

Proposition 1.9. DPP (∞, q) is the generating function for all plane partitions T
of the following type. For any i, the elements of the ith column are 1, 2, · · · , i − 1
or i+ 1, i+ 4, i+ 7, · · · .

Open Problem 1.10. What restriction on the plane partitions T in Proposi-
tion 1.9 allows the generating function DPP (n, q)? Find a bijection between this
class and any of the three known ASM(n)-equivalent objects.

2. Eigenvalues of graphs

Let G be a finite simple graph with n vertices {v1, · · · , vn}. The Laplacian matrix
L(G) is an n× n matrix whose entries are

L(G)ij =


deg(vi) if i = j,

−1 if i 6= j and vi − vj is an edge,

0 if i 6= j and vi − vj is not an edge

It is known that L(G) is singular, diagonalizable, and positive semidefinite. So
one eigenvalue of L(G) is 0, and let λ1, · · · , λn−1 be the remaining non-negative
eigenvalues. It is known that

λ1 ∗ · · · ∗ λn−1 = en−1(λ1, · · · , λn−1)

is the number of rooted spanning trees of G. Moreover the combinatorial interpre-
tation of the coefficients of the characteristic polynomial of L(G) shows that

en−k(λ1, · · · , λn−1)

is the number of spanning forests of G consisting of k rooted trees.

Open Problem 2.1. What is the combinatorial interpretation of the Schur func-
tion

sµ(λ1, · · · , λn−1)?

This is a non-negative integer, because of the Jacobi-Trudi identity and the non-
negativity of the eigenvalues.

3. Ranks and Cranks

The Dyson rank [15] of an integer partition λ = (λ1, λ2, · · · )

rank(λ) = λ1 − λ′1
(largest part- number of parts) proves the Ramanujan congruences

p(5n+ 4) ≡ 0 mod 5, p(7n+ 5) ≡ 0 mod 7

by considering the rank modulo 5 and 7. No one knows bijections for these rank
classes.
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The generating function for the rank polynomial is known to be
∞∑
n=0

rankn(z)qn =

∞∑
n=0

qn
2

(zq; q)n(q/z; q)n

The rank generating function rank5n+4(z) for partitions of 5n+ 4 does have an
explicit factor of 5, but not positively. For example

rank4(z) =1 + z−3 + z−1 + z3 + z1 = (1 + z + z2 + z3 + z4) ∗ (1− z + z2)/z3,

rank14(z) =(1 + z + z2 + z3 + z4) ∗ p(z)/z13

where p(z) is an irreducible polynomial of degree 22 which has negative coeffcients.
For an explicit 5-cycle which would be a rank class bijection, one would expect the
factor 1 + z + z2 + z3 + z4 times a positive Laurent polynomial in z. Here is a
conjectured modification that does this.

Definition 3.1. For n ≥ 2 let

Mrankn(z) = rankn(z) + (zn−2 − zn−1 + z2−n − z1−n).

Conjecture 3.2. For n ≥ 0,

Mrank5n+4(z)/(1 + z + z2 + z3 + z4)

is a non-negative Laurent polynomial in z. Also

Mrank7n+5(z)/(1 + z + z2 + z3 + z4 + z5 + z6)

is a non-negative Laurent polynomial in z.

This conjecture says that the rank definition only needs to be changed for λ =
n, 1n to have the “correct” symmetry. I do not know a modification which will also
work modulo 11. Frank Garvan has verified Conjecture 3.2 for 5n+ 4 ≤ 1000 and
7n+ 5 ≤ 1000.

The Andrew-Garvan [5] crank of a partition λ is

AGcrank(λ) =

{
λ1 if λ has no 1’s

µ(λ)− (#1′s in λ) if λ has at least one 1,

where µ(λ) is the number of parts of λ which are greater than the number of 1’s of
λ. For example

AGcrank(1111) =0− 4, AGcrank(211) = 0− 2, AGcrank(22) = 2− 0

AGcrank(31) =1− 1, AGcrank(4) = 4− 0 .

The generating function of the AGcrank over all partitions of n is AGcrankn(z).
For example

AGcrank4(z) = z−4 + z−2 + z2 + z0 + z4.

The generating function for the AGcrank polynomial is known to be (after mod-
ifying AGcrank1(z))

∞∑
n=0

AGcrankn(z)qn =
(q; q)∞

(zq; q)∞(q/z; q)∞

Open Problem 3.3. Show

AGcrank5n+4(z) = (1 + z2 + z4 + z6 + z8) ∗ (a positive Laurent polynomial in z).
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Frank Garvan has verified Open Problem 3.3 for 5n+ 4 ≤ 1000.
Ramanujan factored the first 21 AGcrank polynomials, λn = AGcrankn(a), see

the paper of Berndt, Chan, Chan and Liaw [9, p. 12]. Ramanujan found the factor
ρ5 = z4 + z−4 + z2 + z−2 + 1 for n = 4, 9, 14, 19 but the other factors did not always
have positive coefficients. For example Ramanujan had

AGcrank14(z) = (z4 + z2 + 1 + z−2 + z−4) ∗ ρ9 ∗ (a5 − a3 + a1 + 1),

where

ρ9 ∗ (a5 − a3 + a1 + 1) =(z2 + z−2 + 1)(z3 + z−3 + 1) ∗ (z5 + z−5 − z3 − z−3 + z + z−1 + 1)

= 3 + 1/z10 + 1/z7 + 1/z6 + 1/z5 + 2/z4 + 2/z3 + 2/z2 + 2/z

+ 2z + 2z2 + 2z3 + 2z4 + z5 + z6 + z7 + z10.

A modified version of the AGcrank works for modulo 5, 7, and 11, with only the
values at partitions n, 1n changed.

Definition 3.4. For n ≥ 2 let

MAGcrankn,a(z) = AGcrankn(z) + (zn−a − zn + za−n − z−n).

Conjecture 3.5. The following are non-negative Laurent polynomials in z

MAGcrank5n+4,5(z)/(1 + z + z2 + z3 + z4),

MAGcrank7n+5,7(z)/(1 + z + z2 + z3 + z4 + z5 + z6),

MAGcrank11n+6,11(z)/(1 + z + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10).

Frank Garvan has verified Conjecture 3.5 for tn+ r ≤ 1000.
The 5corecrank (see [23, 1990]) may be defined from the integer parameters

(a0, a1, a2, a3, a4) involved in the 5-core of a partition λ. Its generating function for
partitions of 5n+ 4 is

∞∑
n=0

qn+1
∑

λ`5n+4

z5corecrank(λ) =
1

(q; q)5
∞

∑
~a·~1=1
~a∈Z5

qQ(a)z
∑4

i=0 iai

where

Q(a) =

4∑
i=0

a2
i −

4∑
i=0

aiai+1, a5 = a0.

Frank Garvan also noted the following version of the previous conjectures holds
for the 5corecrank for n ≤ 100, and n ≤ 8, see [7]. Ken Ono [33], in work with
Bringmann and Rolen, has established the first statement.

Conjecture 3.6. The following are non-negative Laurent polynomial in z

5corecrank5n+4(z)/(1 + z + z2 + z3 + z4),

5corecrank5n+4,j(z)/(1 + z + z2 + z3 + z4) when restricted to BGcrank = j.

4. The Borwein and Bressoud conjectures

The Borwein conjecture ([1], proven by Chen Wang [44] in 2019, see also [10]) is
the following positivity conjecture.

Let

(q; q3)n(q2; q3)n = An(q3)− qBn(q3)− q2Cn(q3)
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for polynomials An(q), Bn(q), Cn(q). Then An(q), Bn(q), Cn(q) have non-negative
coefficients.

There are explicit alternating forms for these polynomials

An(q) =
∑
k

[
2n

n− 3k

]
q

(−1)kq(9k2−k)/2

Bn(q) =
∑
k

[
2n

n− 3k − 1

]
q

(−1)kq(9k2+5k)/2

Cn(q) =
∑
k

[
2n

n− 3k + 1

]
q

(−1)kq(9k2−7k)/2

Note that An(1) = 2 ∗ 3n−1, Bn(1) = 3n−1 = Cn(1).
The n =∞ case follows from the Jacobi triple product

(2)

A∞(q) =
(q4, q5, q9; q9)∞

(q; q)∞
,

B∞(q) =
(q7, q2, q9; q9)∞

(q; q)∞
,

C∞(q) =
(q8, q1, q9; q9)∞

(q; q)∞
.

Open Problem 4.1. Identify finite subsets of partitions whose parts are restricted
modulo 9 via (2) whose generating functions are An(q), Bn(q), Cn(q).

It is known that the hook difference polynomials do have positive coefficients and
count certain partitions which lie inside a rectangle (see [4]).

Let N,M, i,K, α, β be postive integers such that

α+ β < K, −i+ β ≤ N −M ≤ K − i− α.

Then the hook difference polynomials are

DK,i(N,M,α, β) =
∑
λ

qλ(Kλ+i)(α+β)−Kβλ
[
N +M

N −Kλ

]
q

−
∑
λ

qλ(Kλ−i)(α+β)−Kβλ+βi

[
N +M

N −Kλ+ i

]
q

A special case is

(3) D2k,k(N,N,α, β) =
∑
s

(−1)s
[

2N

N − ks

]
q

qks(s+1)(α+β)/2−βks

for

α+ β < 2k, −k + β ≤ 0 ≤ k − α.
The Borwein polynomial An(q) = D6,3(N,N, 4/3, 5/3).

Open Problem 4.2. What is the combinatorial meaning of the rational parameters
α = 4/3, β = 5/3?

Bressoud [11] investigated this question and formulated a more general conjecture
for rational parameters (his Conjecture 6).
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Conjecture 4.3. Let α and β be positive rational numbers, and let k > 1 be an
integer such that αk and βk are integers. If

1 ≤ α+ β ≤ 2k − 1, ( with strict inequalities for k = 2)

−k + β ≤ n−m ≤ k − α

then D2k,k(n,m,α, β) has non-negative coefficients.

There is also a corresponding Borwein type conjecture for special cases of these
polynomials (see [11, Conjecture 5]). If k is odd, 1 ≤ a < k/2, let

(qa; qk)m(qk−a; qk)n =

(k−1)/2∑
ν=(1−k)/2

(−1)νqk(ν2+ν)/2−aνFν(qk)

then

Fν(q) = G2k,k(n,m, ν + (k + 1)/2− a/k,−ν + (k − 1)/2 + a/k).

Conjecture 4.4. If a is relatively prime to k and m = n, then the coefficients of
Fν(q) are non-negative.

The Borwein conjecture is the case k = 3, a = 1.
Conjecture 4.4 says that the coefficients of qp, p ≡ aν mod k in

(qa; qk)n(qk−a; qk)n

all have sign (−1)ν .
The refined Borwein conjecture [1, (1.5)] for the coeffcients of zt in

(q, q2; q3)m(zq, zq2; q3)n

has been proven false in general by Yee, see [46].
If q = 1 there is polynomial version [26] which replaces the sign (−1)s in (3) by

a Chebychev polynomial.

Theorem 4.5. If |N −M | ≤ k, then∑
s

(
N +M

M − ks

)
cos(sx)

is a positive polynomial in 1 + cos(x), and thus is positive for a real value of x.

Open Problem 4.6. Find a q-version of this result which contains Bressoud’s
conjecture. See [26].

5. Assorted q-binomial questions

In [39, Theorem 1] it was proven that

(4)
1

n!q
=

(1− q)n

(q; q)n

has alternating power series coefficients.

Open Problem 5.1. What is the algebraic meaning in terms of Koszul duality of
this result?
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A generalization [39, Theorem 2] was given for the alternating behavior of

(5) (1− q)n
[
n+ k

k

]
q

where nk is even.

Open Problem 5.2. What is the algebraic meaning in terms of Koszul duality of
this result?

Open Problem 5.3. Find sign-reversing involutions which prove (4) and (5) have
alternating coefficients.

In [20] a polynomial expansion for the q-binomial coefficient is given[n
k

]
q

=
∑

ω∈Ωn,k

qs(ω)(1 + q)t(ω).

The set Ωn,k is a subset of the set of all words with k 1’s and n− k 0’s.

Open Problem 5.4. Is there an apriori definition of Ωn,k, s(ω), t(ω) using coset
representatives or root systems?

Franklin [2, Ex. 13-14, p. 50] had a generalization of the q-binomial coefficient[
m+k
k

]
q

being the generating function for partitions with at most k parts, largest

part at most m.

Theorem 5.5. (Franklin) Let 1 ≤ j ≤ k. The generating function for all partitions
λ with at most k parts such that λ1 − λj+1 ≤ m is

(1− qm+1) · · · (1− qm+j)

(1− q) · · · (1− qk)
.

This has an inductive proof by a sign-reversing involution.

Open Problem 5.6. What is the analogue of Franklin’s Theorem 5.5 for the
MacMahon box theorem? Is there a result for each symmetry class of plane parti-
tions?

The KOH identity [25, 47] for the q-binomial coefficient

(6)

[
n+ k

k

]
q

=
∑
λ`k

q2n(λ)
k−1∏
i=0

[
(k − i)n− 2i+ dk−i +

∑i−1
j=0 2(i− j)dk−j

dk−i

]
q

where λ = 1d12d2 · · · is a partition of k, proves unimodality of the q-binomial
coefficient as a polynomial in q. Stanley [38] proved a stronger theorem for Weyl
groups, which implies that (−q; q)n is unimodal polynomial in q.

Open Problem 5.7. Find a KOH-type identity for (−q; q)n =
∏n
i=1(1 + qi).

The KOH identity was combinatorially proved under the assumption that[
N

s

]
q

= 0
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if s ≥ 0 and N < 0. Macdonald [32] proved a version, called MACKOH, which
assumes the definition[

N

s

]
q

=
(1− qN )(1− qN−1) · · · (1− qN−s+1)

(1− q)(1− q2) · · · (1− qs)

for all s ≥ 0, and all N . In this version, both sides of (6) are polynomials in x = qn

of degree k, true for infinitely many x. Thus (KOH) implies (MACKOH).

Open Problem 5.8. Find an involution which proves that the (MACKOH) implies
the (KOH).

For example, if k = 4, then the KOH identity is[
n+ 4

4

]
q

=

[
4n+ 1

1

]
q

+ q2

[
3n− 1

1

]
q

[
n− 1

1

]
q

+ q4

[
2n− 2

2

]
q

+ q6

[
2n− 3

1

]
q

[
n− 2

2

]
q

+ q12

[
n− 2

4

]
q

.

What is the involution, assuming (MACKOH), which shows that terms with nega-
tive parameters may be dropped?

This appears to be related to the M = N conjecture in quantum integrable
systems [17, Conj. 2.8].

Gessel [24] defined a collection of Super Catalan numbers which are integers

T (m,n) =
(2n)!(2m)!

n!m!(m+ n)!
.

Combinatorial interpretations have been given for m small or n−m small, and also
signed versions for all m,n [6].

Sundquist generalized this result by considering

T (a1, a2, · · · , ak; q) =

∏k
j=1(2k−1aj)!q∏
S⊂[k] aS !q

,

where

aS =
∑
s∈S

as

and the product in the denominator does not include S = [k]. The Super Catalan
numbers are the case k = 2, a1 = m, a2 = n. He proved T (a1, a2, · · · , ak; q) is a
polynomial in q. The positivity for the q-super Catalan numbers was established in
[45, Prop. 2].

Open Problem 5.9. Prove T (a1, a2, · · · , ak; q) ∈ N [q] and find a combinatorial
interpretation for this generating function. Is there a result for other posets?

6. Finite fields

If the cyclic group of order n acts on the set of k-element subsets of [n], the
number of orbits is of size e is

O(n, k, e) =
1

e

∑
d|s|GCD(k,n)

µ
( s
d

)(n/s
k/s

)
.
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A q-version of this result was given by Drudge [14], [35, Prop. 9.2]. The number
of orbits of the Singer cycle c in GLn(Fq) on the k-dimensional subspaces of size
[e]qd , n = de is

O(n, k, e; q) =
1

[e]qd

∑
d|s|GCD(k,n)

µ
( s
d

)[n/s
k/s

]
qs
.

The special case e = n is attractive

O(n, k, n; q) =
1

[n]q

∑
s|GCD(k,n)

µ(s)

[
n/s

k/s

]
qs
.

In [35, Conj. 10.3] the polynomiality in q of this number is proven, but not
positivity.

Open Problem 6.1. Prove O(n, k, n; q) ∈ N [q] and find a combinatorial interpre-
tation for this generating function.

When GCD(n, k) = 1 this is

O(n, k, n; q) =
1

[n]q

[n
k

]
q

and this has a combinatorial interpretation.
In [30, Theorem 1.1], using the complex irreducible characters of GLn(Fq), the

number of factorizations of the Singer cycle c into n reflections was found to be

(qn − 1)n−1.

No simple proof is known. It is the q-version of the number of factorizations of an
n-cycle into transpositions being nn−2.

Open Problem 6.2. Find a direct bijection for this result.

More generally [30, Theorem 1.2], the generating function for the number of
factorizations, t(c, `), of the Singer cycle c into ` reflections is

∞∑
`=n

t(c, `)x` = (qn − 1)n−1 xn

1 + x[n]q

n−1∏
k=0

(1 + x[n]q(1 + qk − qk+1))−1.

Open Problem 6.3. Find an apriori reason for the rationality of this generating
function. Do the zeros in the denominator have geometric meaning?

Let S = Fq[x1, · · · , xn] be the polynomial ring on which GLn(Fq) naturally acts.
Let

Qm = S/ < xq
m

1 , · · · , xq
m

n > .

on which GLn(Fq) also acts. Then [31, Conj. 1.2]

Conjecture 6.4. The Hilbert series for the GLn(Fq) fixed subalgebra of Q is

min(m,n)∑
k=0

t(n−k)(qm−qk)
[m
k

]
q,t
.

In [34] and [40] some results are given for a theory of partitions and plane par-
titions whose parts sizes are [n]q instead of integers n.

Open Problem 6.5. Can these results be extended to other classical partition
results?
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7. Rogers-Ramanujan identities

There are known polynomial idenitites which generalize the Rogers-Ramanujan
(RR) identities

∞∑
k=0

qk
2

(q; q)k
=

1

(q, q4; q5)∞
,

∞∑
k=0

qk
2+k

(q; q)k
=

1

(q2, q3; q5)∞
.

Schur knew that

(7) Dn(q) =

(n+1)/2∑
k=0

qk
2

[
n+ 1− k

k

]
q

, En(q) =

n/2∑
k=0

qk
2+k

[
n− k
k

]
q

had alternative representations

Dn−1(q) =
∑
j

(−1)jqj(5j+1)/2

[
n

[(n+ 5j + 1)/2]

]
q

,

En(q) =
∑
j

(−1)jqj(5j+3)/2

[
n+ 1

[(n+ 5j + 3)/2]

]
q

.

(Note that both satisfy the q-Fibonacci recurrence pn = pn−1 + qnpn−2.) Using the
Jacobi-Triple-Product on D∞(q), E∞(q), one obtains the RR identities. Easily (7)
shows that Dn(q) is the generating function for all partitions λ whose difference of
parts is at least 2, and λ1 ≤ n.

Open Problem 7.1. Which subset of partitions whose parts are restricted modulo
5 do the polynomials in (7) generate?

Bressoud [12, (1.1), (1.3)], [37, Sec. 6] gave another polynomial identity

(8)

n∑
j=0

qj
2

[
n

j

]
q

=

∞∑
j=−∞

(−1)jqj(5j+1)/2

[
2n

n+ 2j

]
q

n∑
j=0

qj
2+j

[
n

j

]
q

=

∞∑
j=−∞

(−1)jqj(5j+3)/2

[
2n+ 1

n+ 2j + 1

]
q

This time the left side generates difference two partitions λ with rank(λ) ≤ n−1.

Open Problem 7.2. Which subset of partitions whose parts are restricted modulo
5 do the polynomials in (8) generate?

Ekhad-Tre [16] also found

n∑
j=0

qj
2

[
n

j

]
q

=
(q; q)n
(q; q)2n

n∑
k=−n

(−1)kq(5k2−k)/2

[
2n

n− k

]
q

Sills [37, Sec. 6] also gives polynomial identities for

n/2∑
j=0

qj
2

[
n

2j

]
q

.
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There is a quintic transformation [21, Th. 7.1] which proves the RR identities

(9)

∞∑
n=0

qn
2

(tq)2n

(q; q)n
=

(t4q9, t2q5, t4q6; q5)∞
(t2q3; q)∞

3φ2

(
t2q2, t2q3, t2q5

t4q9, t4q6 q5; t2q5

)
,

=
(t4q8, t2q6, t4q6; q5)∞

(t2q3; q)∞
3φ2

(
t2q, t2q3, t2q4

t4q8, t4q6 q5; t2q6

)
.

The only known proof of (9) uses orthogonal polynomials.

Open Problem 7.3. Find another proof of (9). What does it mean combinatori-

ally, or for representations of A
(1)
1 . Is there a symmetric function version?

One may show that (9) implies a finite rational function identity which is nearly
positive
(10)

n∑
k=0

qk
2

(q; q)k
=

∑
a,b,c,k,s

a+b+c+k+s≤n

q5ab+a(5k+1)+3b

(q5; q5)a(q5; q5)b

q5c(n−(a+b+c+k+s))+c(5k+2)

(q5; q5)c(q5; q5)n−(a+b+c+k+s)

[
k

s

]
q5

q5(s
2)−s(−1)sq4k

(q5; q5)k
.

No direct bijection for the Rogers-Ramanujan identities is known, although the
involution principle of Garsia and Milne [22] was created to give an indirect bijec-
tion.

Open Problem 7.4. Can this identity be mutated to one with only positive terms,
and thereby lead to a direct RR bijection?

Using the Cauchy identity, whose bijective version is RSK, one obtains∑
λ

sλ(xq, xq2)sλ(q1, q6, q11, · · · , ) =
1

(xq2, xq3; q5)∞
.

Because the Schur function with 2 variables is zero unless the partition has at most
two parts, one may rewrite this as

1

(xq2, xq3; q5)∞
=

∞∑
N=0

xN
q2N

(q5; q5)N

[N/2]∑
b=0

qb[N − 2b+ 1]q

([
N

b

]
q5
−
[
N

b− 1

]
q5

)
.

All terms here are positive. May this be extended to a proof of RR?
In [29] refinements of the Rogers-Ramanujan identities are given by marking

parts. These are based upon some sporadic positive rational function identities.

Open Problem 7.5. Can these identities be generated via computer algebra? Are
they related to decompositions of polytopes, or Hilbert series in commutative alge-
bra?

8. Other questions

Type RI and RII orthogonal polynomials [27] satisfy the respective recurrence
relations

Pn(x) = (x− bn)Pn−1(x)− λn(x− an)Pn−2(z),
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with the initial conditions

P0(x) = 1, P1(x) = x− b1.

and

Qn(x) = (x− cn)Qn−1(x)− λn(x− an)(x− bn)Qn−2(z),

with the initial conditions

Q0(x) = 1, Q1(x) = x− c1.

There are linear functionals L1 and L2, defined on the appropriate vector space of
rational functions, such that

L1

(
xjPn(x)/

n∏
k=1

(x− ak+1)

)
= 0, 0 ≤ j < n, L1(1) = λ1

and

L2

(
xjQn(x)/

n∏
k=1

(x− ak+1)(x− bk+1)

)
= 0, 0 ≤ j < n.

Open Problem 8.1. Develop a Viennot theory for type RI and RII polynomials.

(Note: September 12, 2019: Jang Soo Kim and I have done this for type RI .)

Open Problem 8.2. Does a GLn(Fq) version of the cycle index generating func-
tion easily count involutions in GLn(Fq) (see [18]) or explain the competing q-
versions of the Poisson distribution [19]? Are there separate q-Central Limit The-
orems for the discrete and continuous q-Hermite polynomials?

A perfect Hamming 1-code is a subset S of the vertices of the n-dimensional
cube Xn = {0, 1}n so that the balls of radius one about points of S are disjoint and
cover Xn. Clearly for this to occur, n+ 1 divides 2n, so n must be one less than a
power of two. Such perfect codes are known to exist.

The q-analogue of the Hamming scheme is a graph whose vertices are the maxi-
mal isotropic subspaces over Fq, with edges if they overlap maximally. In types Bn
and Cn it is known that there are (1 + q)(1 + q2) ∗ · · · ∗ (1 + qn) such vertices, and
the ball of radius 1 has size (1− qn+1)/(1− q). Again the sphere packing condition
implies that n = 2k − 1 for some k. It is known that such perfect codes exist for
n = 3, but it is unknown for n ≥ 7.

Open Problem 8.3. Settle the existence/non-existence question of perfect codes
in the association schemes of dual polar spaces of types Bn and Cn for n = 2k − 1,
k ≥ 3. See ([41, §8].)

The continuous q-Hermite polynomials pn(x) satisfy

pn+1(x) = xpn(x)− [n]qpn−1(x)

while the discrete q-Hermite polynomials rn(x) satisfy

rn+1(x) = xrn(x)− qn−1[n]qrn−1(x).

There is another set of q-Hermite polynomials sn(x) which satisfy

(11) sn+1(x) = xsn(x)− q−n − qn

q−1 − q1
sn−1(x).
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These polynomials remarkably have linearization formula

snsm =

min(m,n)∑
k=0

cknmsk,

cknm =
[n
k

]
q

[m
k

]
q
k!q

(−qm+n+1−2k; q)k
(1 + q)k

q−k/2(2m+2n−1−3k),

where cknm can be proven to be a non-negative polynomial in q. A combinatorial
interpretation of the moments for the corresponding indeterminate moment problem
is known.

Open Problem 8.4. Find any of the following information about sn(x): an ex-
plicit formula, generating function, or measure. Is there an Askey scheme with
these polynomials at the bottom?
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