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Abstract. The Rogers-Ramanujan identities are investigated using the Cauchy identity for
Schur functions.

1. Introduction

Two of Steve Milne’s most noteworthy works are on the Rogers-Ramanujan identities (see
[2])
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With J. Lepowsky he proved (1) algebraically (see [6], [7]). The involution principle, with
A. Garsia [3], gave an indirect bijection for MacMahon’s combinatorial interpretation of the
identities.

Stembridge [9] used symmetric function identities via Hall-Littlewood polynomials to prove
and generalize the Rogers-Ramanujan identities. This was continued by Jouhet-Zeng [5] and S.
Ole Warnaar [11]. A vast generalization to the Rogers-Ramanujan identities, corresponding to
affine Lie algebras, was given in [4], [10]. Here the appropriate Hall-Littlewood polynomials are
specializations of the Macdonald-Koornwinder polynomials.

The purpose of this note is explore a naive approach using the Cauchy identity for Schur
functions. What would be required for a explicit bijective proof via the Cauchy identity is
discussed in Section 2. Some related identities and a speculation are given in Sections 3 and 4,
while Section 5 has two remarks.

All symmetric function facts can be found in Macdonald’s book, [8].

2. A proposal for a bijection

MacMahon’s combinatorial interpretation of (1) uses integer partitions.

Proposition 2.1. The first Rogers-Ramanujan identity is equivalent to the following two sets
of integer partitions being equinumerous for any n:

(1) integer partitions of n into parts congruent to 1 or 4 modulo 5,
(2) integer partitions of n whose parts differ by at least 2.

There is no known direct bijection between these two finite sets of partitions. There is a
similar statement for the second Rogers-Ramanujan identity, also with an unknown bijection.

The Cauchy identities for Schur functions sλ(x1, · · · , xn, · · · ) provides a start for a Rogers-
Ramanujan bijection. The Cauchy identity is∑

λ

sλ(x1, · · · , xn, · · · )sλ(y1, · · · , ym, · · · ) =
∏
i,j

(1− xiyj)−1. (2)

Moreover it is known that Robinson-Schensted-Knuth correspondence is a direct bijection for
(2).

1



2 DENNIS STANTON

Choose

(x1, · · · , xn, · · · ) = (1, q5, q10, q15, · · · ), (y1, y2) = (q1, q4)

so that the right side of (2) is the product side of the first Rogers-Ramanujan identity

1

(q; q5)∞(q4; q5)∞
,

while the left side is restricted to partitions with at most two rows∑
λ at most 2 rows

sλ(1, q5, q10, q15, · · · )sλ(q1, q4). (3)

Proposition 2.2. The Robinson-Schensted-Knuth correspondence provides a direct bijection
between

(1) integer partitions of n into parts congruent to 1 or 4 modulo 5,
(2) pairs of column strict tableaux (P,Q) of the same shape with at most two rows, P having

entries congruent to 0 modulo 5, Q having entries 1 or 4, whose sum of entries is n.

Proposition 2.2 offers some advantages and disadvantages for a bijection. On the plus side, it
changes the problem to a problem on tableaux, for which there is a well developed machinery of
bijections. These more refined objects may be easier to sort than integer partitions. Conversely,
the simple answer required, partitions whose parts differ by at least two, may not be apparent
from this detailed view.

Here are the terms in (3) corresponding to λ = ∅, 1, 2:

1 +
q + q4

1− q5
+

q2 + q5 + q8

(1− q5)(1− q10)
(4)

We want the Rogers-Ramanujan sum side
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Problem 1. Can one choose (P,Q) whose generating function is

Fn(q) = qn
2

n∏
j=1

4∑
p=0

qjp/(q5; q5)n?

Solving Problem 1 would give a Rogers-Ramanujan bijection.
For example the n = 1 term is

q1 + q2 + q3 + q4 + q5

1− q5
=

q

1− q
.

If one takes the two terms in (4) from λ = 1, and the three terms in (4) from λ = 2 with 1
chosen from 1/(1− q10), the numerator factors are q1 + q4 + q2 + q5 + q8. This is missing a single
term q3 because q3 + q8/(1− q5) = q3/(1− q5). This term appears in λ = 3, with P = (0, 0, 0)
and Q = (1, 1, 1).
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3. Formulas

For clarity here are the explicit generating functions of the Schur functions as products. These
follow from the principle specialization of Schur functions, the hook-content formula.

Proposition 3.1. Let λ = (a+ b, a). Then

sλ(1, q5, q10, q15, · · · ) =
q5a

(q5; q5)a(q5; q5)b(q5(b+2); q5)a
,

sλ(q1, q4) = q5a+b
b∑

k=0

q3k,

There is weighted version using two new parameters x and y.

Theorem 3.2. Choosing y1 = xq1, y2 = yq4,

1

(xq; q5)∞(yq4; q5)∞
=
∑
a,b≥0

q5a

(q5; q5)a(q5; q5)b(q5(b+2); q5)a
xayaq5a+b

b∑
k=0

xb−kykq3k

Theorem 3.2 independently follows from the finite identity

M∑
a=0

[
N
a

]
q

(qa − qN−a) =
(q; q)N

(q; q)M (q; q)N−M−1

for 0 ≤M ≤ N − 1.
Finally, a simple subclass of (P,Q) has a product formula. A proof of a more general result

is given in Theorem 4.1.

Proposition 3.3.∑
λ at most 1 row

sλ(1, q5, q10, q15, · · · )sλ(q1, q4) =
1

1− q3

(
1

(q1; q5)∞
− q3

(q4; q5)∞

)
(5)

4. Rogers-Ramanujan mod 2k + 3

The same steps as in §2 can be done for higher moduli 2k + 3, the integer partitions whose
parts avoid ±i and 0 mod 2k + 3, 1 ≤ i ≤ 2k + 2. Set

(x1, · · · , xn, · · · ) = (1, q2k+3, q2(2k+3), q3(2k+3), · · · )

(y1, · · · , y2k) = (q1, · · · , q2k+2), with qi and q2k+3−i deleted
(6)

so that ∑
λ at most 2k rows

sλ(x1, · · · , xn, · · · )sλ(y1, · · · , y2k) =
∞∏
j=1

j 6≡±i,0 mod 2k+3

(1− qj)−1.

The product side of the Rogers-Ramanujan identities (1) are the k = 1 and i = 2, 1 special cases.
There is always a version of the subclass formula (5) as a sum of infinite products.

Theorem 4.1. Let k ≥ 1, 1 ≤ i ≤ 2k + 2 and

(y1, · · · , y2k) = (q1, · · · , q2k+2), with qi and q2k+3−i deleted.
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Then ∑
λ at most 1 row

sλ(1, q2k+3, q2(2k+3), q3(2k+3), · · · )sλ(y1, · · · , y2k)

=
2k+2∑
p=1

p 6=i,2k+3−i

Ap
(qp; q2k+3)∞

, where Ap =

2k+2∏
j=1

j 6=p,i,2k+3−i

1

1− q−p+j
.

(7)

Proof. If λ = N has a single part we have

sλ(1, q2k+3, q2(2k+3), q3(2k+3), · · · ) =
1

(q2k+3; q2k+3)N
,

sλ(y1, · · · , y2k) = the coefficient of tN in

2k+2∏
j=1

j 6=i,2k+3−i

(1− tqj)−1.
(8)

By partial fractions on t we see that the Ap satisfy

2k+2∏
j=1

j 6=i,2k+3−i

(1− tqj)−1 =
2k+2∑
p=1

p6=i,2k+3−i

Ap(1− tqp)−1,

so that

sλ(y1, · · · , y2k) =
2k+2∑
p=1

p6=i,2k+3−i

Apq
pN .

We then use
∞∑
N=0

qpN

(q2k+3; q2k+3)N
=

1

(qp; q2k+3)∞
.

to complete the proof. �

Note that Theorem 4.1 for k = 1 and i = 2 is (5).

Speculation 1. The 1 row and at most 2k rows cases are sums of products in the Rogers-
Ramanujan infinite product. Perhaps this works for any number of rows R ≤ 2k. Is∑

λ at most R rows

sλ(x1, · · · , xn, · · · )sλ(y1, · · · , y2k)

a sum of a product of R infinite products, each of the form,

1/(qj ; q2k+3)∞, j 6≡ ±i, 0 mod 2k + 3,

with coefficients which are rational functions in q?

Note that Speculation 1 holds for R = 1 and R = 2k.

5. Other symmetric function Cauchy identities

Michael Schlosser has pointed out that the dual Cauchy identity∑
λ

sλ(x1, · · · , xn)sλ′(y1, · · · , ym) =

n∏
i=1

m∏
j=1

(1 + xiyj) (9)

can be similarly used with m = 2 and

(x1, x2, · · · , xn) = (1, q3, · · · , q3(n−1)), (y1, y2) = (−q,−q2)
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to obtain the Borwein product (q1; q3)n(q2, q3)n. Again column strict tableaux could be used to
approach that problem, see [1].

There are other Cauchy identities. If x and y are arbitrary sets of variables, the Macdonald
polynomials satisfy ∑

λ

Pλ(x; q, t)Qλ(y; q, t) =
∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

. (10)

Special cases of this identity, restricted by rows, have been extensively used by Rains and S.
Ole Warnaar [10].
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