
REFLECTION FACTORIZATIONS OF SINGER CYCLES

J.B. LEWIS, V. REINER, AND D. STANTON

Abstract. The number of shortest factorizations into reflections for a Singer cycle in GLn(Fq) is shown
to be (qn − 1)n−1. Formulas counting factorizations of any length, and counting those with reflections of
fixed conjugacy classes are also given. The method is a standard character-theory technique, requiring the
compilation of irreducible character values for Singer cycles, semisimple reflections, and transvections. The
results suggest several open problems and questions, which are discussed at the end.

1. Introduction and main result

This paper was motivated by two classic results on the number t(n, �) of ordered factorizations (t1, . . . , t�)
of an n-cycle c = t1t2 · · · t� in the symmetric group Sn, where each ti is a transposition.

Theorem (Dénes [7]). For n ≥ 1, one has t(n, n− 1) = n
n−2

.

Theorem (Jackson [17, p. 368]). For n ≥ 1, more generally t(n, �) has ordinary generating function
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Here the difference operator ∆(f)(x) := f(x+ 1)− f(x) satisfies ∆n(f)(x) :=
�n

k=0
(−1)n−k

�n
k

�
f(x+ k).

Our goals are q-analogues, replacing the symmetric group Sn with the general linear group GLn(Fq),
replacing transpositions with reflections, and replacing an n-cycle with a Singer cycle c: the image of a
generator for the cyclic group F

×
qn

∼= Z/(qn − 1)Z under any embedding F
×
qn �→ GLFq (Fqn) ∼= GLn(Fq)

that comes from a choice of Fq-vector space isomorphism Fqn
∼= F

n
q . The analogy between Singer cycles in

GLn(Fq) and n-cycles in Sn is reasonably well-established [26, §7], [27, §§8-9]. Fixing such a Singer cycle
c, denote by tq(n, �) the number of ordered factorizations (t1, . . . , t�) of c = t1t2 · · · t� in which each ti is a
reflection in GLn(Fq), that is, the fixed space (Fn

q )
ti is a hyperplane in F

n
q .

Theorem 1.1. For n ≥ 2, one has tq(n, n) = (qn − 1)n−1
.

Theorem 1.2. For n ≥ 2, more generally tq(n, �) has ordinary generating function
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and explicit formulas
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The q-analogues used above and elsewhere in the paper are defined as follows:
�
n

k
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, where [n]!q := [1]q[2]q · · · [n]q and [n]q := 1 + q + q

2 + · · ·+ q
n−1

,
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The equivalence of the three formulas (1.4), (1.5), (1.6) for tq(n, �) is explained in Proposition 5.1 below.
In fact, we will prove the following refinement of Theorem 1.2 for q > 2, having no counterpart for Sn.

Transpositions are all conjugate within Sn, but the conjugacy class of a reflection t in GLn(Fq) for q > 2
varies with its determinant det(t) in F

×
q . When det(t) = 1, the reflection t is called a transvection [21, XIII

§9], while det(t) �= 1 means that t is a semisimple reflection. One can associate to an ordered factorization
(t1, . . . , t�) of c = t1t2 · · · t� the sequence of determinants (det(t1), . . . , det(t�)) in F

�
q, having product det(c).

Theorem 1.3. Let q > 2. Fix a Singer cycle c in GLn(Fq) and a sequence α = (αi)�i=1
in (F×

q )
�
with

��
i=1

αi = det(c). Let m be the number of values i such that αi = 1. Then one has m ≤ � − 1, and the

number of ordered reflection factorizations c = t1 · · · t� with det(ti) = αi depends only upon � and m. This

quantity tq(n, �,m) is given by these formulas:

tq(n, �,m) = [n]�−1

q

min(m,�−n)�

i=0

(−1)i
�
m

i

��
�− i− 1
n− 1

�

q

(1.8)

=
[n]�q
[n]!q

�
∆n−1

q

�
(x− 1)mx

�−m−1
��

x=1
.(1.9)

In particular, setting � = n in (1.8), the number of shortest such factorizations is

tq(n, n,m) = [n]n−1

q ,

which depends neither on the sequence α = (det(ti))�i=1
nor on the number of transvections m.

The equivalence of the formulas (1.8) and (1.9) for tq(n, �,m) is also explained in Proposition 5.1 below.
Theorems 1.2 and 1.3 are proven via a standard character-theoretic approach. This approach is reviewed

quickly in Section 2, followed by an outline of ordinary character theory for GLn(Fq) in Section 3. Section 4
either reviews or derives the needed explicit character values for four kinds of conjugacy classes: the identity
element, Singer cycles, semisimple reflections, and transvections. Then Section 5 assembles these calculations
into the proofs of Theorems 1.2 and 1.3. Section 6 closes with some further remarks and questions.

Although Theorem 1.3 is stated for q > 2, something interesting also occurs for q = 2. All reflections
in GLn(F2) are transvections, thus one always has m = � for q = 2. Furthermore, one can see that (1.6),
(1.8) give the same answer when both q = 2 and m = �. This reflects a striking dichotomy in our proofs:
for q > 2 the only contributions to the computation come from irreducible characters of GLn(Fq) arising
as constituents of parabolic inductions of characters of GL1(Fq), while for q = 2 the cuspidal characters for
GLs(Fq) with s ≥ 2 play a role, miraculously giving the same polynomial tq(n, �) in q evaluated at q = 2.



REFLECTION FACTORIZATIONS OF SINGER CYCLES 3

Question 1.4. Can one derive the formulas (1.6) or (1.8) via inclusion-exclusion more directly?

Question 1.5. Can one derive Theorem 1.1 bijectively, or by an overcount in the spirit of Dénes [7], that
counts factorizations of all conjugates of a Singer cycle, and then divides by the conjugacy class size?

2. The character theory approach to factorizations

We recall the classical approach to factorization counts, which goes back to Frobenius [8].

Definition 2.1. Given a finite group G, let Irr(G) be the set of its irreducible ordinary (finite-dimensional,
complex) representations V . For each V in Irr(G), denote by deg(V ) the degree dimC V , and let χV (g) =

Tr(g : V → V ) be its character value at g, along with �χV (g) :=
χV (g)
deg(V )

the normalized character value. Both

functions χV (−) and �χV (−) on G extend by C-linearity to functionals on the group algebra CG.

Proposition 2.2 (Frobenius [8]). Let G be a finite group, and A1, . . . , A� ⊂ G unions of conjugacy classes

in G. Then for g in G, the number of ordered factorizations (t1, . . . , t�) with g = t1 · · · t� and ti in Ai for

i = 1, 2, . . . , � is

(2.1)
1

|G|
�

V ∈Irr(G)

deg(V ) · χV (g
−1) · �χV (z1) · · · �χV (z�).

where zi :=
�

t∈Ai
t in CG.

This lemma was a main tool used by Jackson [16, §2], as well as by Chapuy and Stump [6, §4] in their
solution of the analogous question in well-generated complex reflection groups. The proof follows from a
straightforward computation in the group algebra CG coupled with the isomorphism of G-representations
CG ∼=

�
V ∈Irr(G)

V
⊕ deg(V ); it may be found for example in [20, Thm. 1.1.12], [23, Thm. 2.5.9].

3. Review of ordinary characters of GLn(Fq)

The ordinary character theory of GLn := GLn(Fq) was worked out by Green [12], and has been reworked
many times. Aside from Green’s paper, some useful references for us in what follows will be Macdonald [24,
Chaps. III, IV], and Zelevinsky [32, §11].

3.1. Parabolic or Harish-Chandra induction. The key notion is that of parabolic or Harish-Chandra

induction: given an integer composition α = (α1, . . . ,αm) of n, so that αi > 0 and |α| :=
�

i αi = n, and
class functions fi on GLαi for i = 1, 2, . . . ,m, one produces a class function f1∗f2∗ · · · ∗fm on GLn defined
as follows. Regard the m-tuple (f1, . . . , fm) as a class function on the block upper-triangular parabolic
subgroup Pα inside GLn, whose typical element is

(3.1) p =





A1,1 ∗ · · · ∗
0 A2,2 · · · ∗
...

...
. . .

...
0 0 · · · Am,m





with Ai,i an invertible αi × αi matrix, via (f1, . . . , fm)(p) =
�m

i=1
fi(Ai,i). Then apply (ordinary) induction

of characters from Pα up to GLn. In other words, for an element g in GLn one has

(3.2) (f1∗f2∗ · · · ∗fm)(g) :=
1

|Pα|
�

h∈G:

hgh−1∈Pα

f1(A1,1) · · · fm(Am,m) if hgh−1 looks as in (3.1).

Identify representations U up to equivalence with their characters χU . The parabolic induction product
(f, g) �−→ f∗g gives rise to a graded, associative product on the graded C-vector space

Cl(GL∗) =
�

n≥0

Cl(GLn)

which is the direct sum of class functions on all of the general linear groups, with Cl(GL0) = C by convention.
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3.2. Parametrizing the GLn-irreducibles. A GLn-irreducible U is called cuspidal if χU does not occur
as a constituent in any induced character f1∗f2 for compositions n = α1 + α2 with α1,α2 > 0. Denote by
Cuspn the set of all such cuspidal irreducibles U for GLn, and say that weight wt(U) = n. Let Parn denote
the partitions λ of n (that is, |λ| :=

�
i λi = n), and define

Par :=
�

n≥0

Parn,

Cusp :=
�

n≥1

Cuspn

the sets of all partitions, and all cuspidal representations for all groups GLn. Then the GLn-irreducible
characters can be indexed as Irr(GLn) = {χλ} where λ runs through the set of all functions

Cusp
λ−→ Par

U �−→ λ(U)

having the property that

(3.3)
�

U∈Cusp

wt(U) |λ(U)| = n.

Although Cusp is infinite, this condition (3.3) implies that λ can only take on finitely many non-∅ values
λ(U1), . . . ,λ(Um), and in this case

(3.4) χ
λ = χ

U1,λ(U1)∗ · · · ∗χUm,λ(Um)

where each χ
U,λ is what Green [12, §7] called a primary irreducible character. In particular, a cuspidal

character U in Cuspn is the same as the primary irreducible χ
U,(1).

3.3. Jacobi-Trudi formulas. We recall from symmetric function theory the Jacobi-Trudi and dual Jacobi-

Trudi formulas [24, I (3.4),(3.5)] formulas. For a partition λ = (λ1 ≥ · · · ≥ λ�) with largest part m := λ1,
these formulas express a Schur function sλ either as an integer sum of products of complete homogeneous

symmetric functions hn = s(n), or of elementary symmetric functions en = s(1n):

sλ = det(hλi−i+j) =
�

w∈S�

sgn(w)hλ1−1+w(1) · · ·hλ�−�+w(�),

sλ = det(eλ�
i−i+j) =

�

w∈Sm

sgn(w)eλ�
1−1+w(1) · · · eλ�

m−m+w(m).

Here λ
� is the usual conjugate or transpose partition to λ. Also h0 = e0 = 1 and hn = en = 0 if n < 0.

The special case of primary irreducible GLn-characters χU,(n)
,χ

U,(1n) corresponding to the single row par-
titions (n) and single column partitions (1n) are called generalized trivial and generalized Steinberg charac-

ters, respectively, by Silberger and Zink [28]. One has analogous formulas expressing any primary irreducible
character χU,λ virtually in terms of parabolic induction products of such characters:

χ
U,λ =

�

w∈S�

sgn(w)χU,(λ1−1+w(1))∗ · · · ∗χU,(λ�−�+w(�))(3.5)

χ
U,λ =

�

w∈Sm

sgn(w)χU,(1λ
�
1−1+w(1)

)∗ · · · ∗χU,(1λ
�
m−m+w(m)

)(3.6)

where χ
U,(n)

,χ
U,(1n) are both the zero character if n < 0, and the trivial character 1GL0 if n = 0.

3.4. The cuspidal characters: indexing and notation. The set Cuspn of cuspidal characters for
GLn(Fq) has the same cardinality 1

n

�
d|n µ(n/d)q

d as the set of irreducible polynomials in Fq[x] of de-
gree n, or the set of primitive necklaces of n beads having q possible colors (= free orbits under n-fold cyclic
rotation of words in {0, 1, . . . , q−1}n). There are at least two ways one sees Cuspn indexed in the literature.

• Green [12, §7] indexes Cuspn via free orbits [β] = {β,βq
, · · · ,βqn−1} for the action of the Frobenius

map β
F�−→ β

q on the multiplicative group F
×
qn ; he calls such free orbits n-simplices.

In his notation, if U lies in Cusps and is indexed by the orbit [β] within Fqs , then the primary
GLn-irreducible character χU,λ for a partition λ of n

s is (up to a sign) what he denotes I
β
s [λ]. The
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special case I
β
s [(m)] he also denotes Iβs [m]. Thus the cuspidal U itself is (up to sign) denoted I

β
s [1],

and he also uses the alternate terminology Js(β) := I
β
s [1]; see [12, p. 433].

• Later authors index Cuspn via free orbits [ϕ] = {ϕ,ϕ ◦F, · · · ,ϕ ◦Fn−1} for the Frobenius action on
the dual group Hom(F×

qn ,C
×). Say that U in Cuspn is associated to the orbit [ϕ] in this indexing.

When n = 1, one simply has Cusp1 = Hom(F×
q ,C

×). In other words, the Frobenius orbits
[ϕ] = {ϕ} are singletons, and if U is associated to this orbit then U = ϕ considering both as
homomorphisms

GL1(Fq) = F
×
q

U=ϕ−→ C
×
.

Although we will not need Green’s full description of the characters χU,(m) and χ
U,λ, we will use (in the

proof of Lemma 4.8 below) the following consequence of his discussion surrounding [12, Lemma 7.2].

Proposition 3.1. For U in Cusps, every χ
U,(m)

, and hence also every primary irreducible character χ
U,λ

,

is in the Q-span of characters of the form χU1∗ · · · ∗χUt where Ui is in Cuspni
, with s dividing ni for each i.

4. Some explicit character values

We will eventually wish to apply Proposition 2.2 with g being a Singer cycle, and with the central elements
zi being sums over classes of reflections with fixed determinants. For this one requires explicit character values
on four kinds of conjugacy classes of elements in GLn(Fq):

• the identity, giving the character degrees,
• the Singer cycles,
• the semisimple reflections, and
• the transvections.

We review known formulas for most of these, and derive others that we will need, in the next four subsections.
It simplifies matters that the character value χ

λ(c−1) vanishes for a Singer cycle c unless χλ = χ
U,λ is a

primary irreducible character and the partition λ of n
s takes a very special form; see Proposition 4.7 below.

(This may be compared with, for example, Chapuy and Stump [6, p. 9 and Lemma 5.5].)

Definition 4.1. The hook-shaped partitions of n are λ =
�
n− k, 1k

�
for k = 0, . . . , n− 1.

Thus we only compute primary irreducible character values, sometimes only those of the form χ
U,(n

s −k,1k).

4.1. Character values at the identity: the character degrees. Green computed the degrees of the
primary irreducible characters χU,λ as a product formula involving familiar quantities associated to partitions.

Definition 4.2. For a partition λ, recall [24, (1.5)] the quantity n(λ) :=
�

i≥1
(i− 1)λi. For a cell a in row

i and column j of the Ferrers diagram of λ recall the hooklength [24, Example I.1]

h(a) := hλ(a) := λi + λ
�
j − (i+ j) + 1.

Theorem 4.3 ([12, Theorem 12]). The primary irreducible GLn-character χ
U,λ

for a cuspidal character U

of GLs(Fq) and a partition λ of
n
s has degree

deg(χU,λ) = (−1)n−
n
s (q; q)n

q
s·n(λ)

�
a∈λ(1− qs·h(a))

= (−1)n−
n
s (q; q)nsλ(1, q

s
, q

2s
, . . .).

Here sλ(1, q, q2, . . .) is the principal specialization xi = q
i−1 of the Schur function sλ = sλ(x1, x2, . . .).

Observe that this formula depends only on λ and s, and not on the choice of U ∈ Cusps.
Two special cases of this formula will be useful in the sequel.

• The case of hook-shapes:

(4.1) deg(χU,(n
s −k,1k)) = (−1)n−

n
s q

s(k+1
2 ) (q; q)n

(qs; qs)n
s

�
n
s − 1
k

�

qs
.

• When s = 1 and U = 1 is the trivial character of GL1(Fq), the degree is given by the usual q-hook
formula [29, §7.21]

(4.2) deg(χ1,λ) = f
λ(q) := (q; q)n

q
n(λ)

�
a∈λ(1− qh(a))

= (q; q)nsλ(1, q, q
2
, . . .) =

�

Q

q
maj(Q)
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where the last sum is over all standard Young tableaux Q of shape λ, and maj(Q) is the sum of
the entries i in Q for which i + 1 lies in a lower row of Q. (Such characters are called unipotent

characters.)

4.2. Character values on Singer cycles and regular elliptic elements. Recall from the Introduction
that a Singer cycle in GLn(Fq) is the image of a generator for the cyclic group F

×
qn

∼= Z/(qn − 1)Z under
any embedding F

×
qn �→ GLFq (Fqn) ∼= GLn(Fq) that comes from a choice of Fq-vector space isomorphism

Fqn
∼= F

n
q . (Such an embedded subgroup F

×
qn is sometimes called a Coxeter torus or an anisotropic maximal

torus.) Many irreducible GLn-character values χ
λ(c−1) vanish not only on Singer cycles, but even for a

larger class of elements that we introduce in the following proposition.

Proposition 4.4. The following are equivalent for g in GLn(Fq).

(i) No conjugates hgh
−1

of g lie in a proper parabolic subgroup Pα � GLn.

(ii) There are no nonzero proper g-stable Fq-subspaces inside F
n
q .

(iii) The characteristic polynomial det(xIn − g) is irreducible in Fq[x].
(iv) The element g is the image of some β in F

×
qn satisfying Fq(β) = Fqn (that is, a primitive element

for Fqn) under one of the embeddings F
×
qn �→ GLFq (Fqn) ∼= GLn(Fq).

The elements in GLn(Fq) satisfying these properties are called the regular elliptic elements.

Proof. (i) is equivalent to (ii). A proper Fq-subspace U , say with dimFq U = d < n, is g-stable if and only
any h in GLn(Fq) sending U to the span of the first d standard basis vectors in F

n
q has the property that

hgh
−1 lies in a proper parabolic subgroup Pα with α1 = d.

(ii) implies (iii). Argue the contrapositive: if det(xIn − g) had a nonzero proper irreducible factor f(x), then
ker(f(g) : V → V ) would be a nonzero proper g-stable subspace.

(iii) implies (iv). If f(x) := det(xIn− g) is irreducible in Fq[x], then f(x) is also the minimal polynomial of g.
Thus g has rational canonical form over Fq equal to the companion matrix for f(x). This is the same as the
rational canonical form for the image under one of the above embeddings of any β in F

×
qn having minimal

polynomial f(x), so that Fq(β) ∼= Fqn . Hence g is conjugate to the image of such an element β embedded in
GLn(Fq), and then equal to such an element, after conjugating the embedding.

(iv) implies (ii). Assume that g is the image of such an element β in F
×
qn satisfying Fq(β) = Fqn . Then a

g-stable Fq-subspace W of Fn
q would correspond to a subset of W ⊂ Fqn stable under multiplication by Fq

and by β, so also stable under multiplication by Fq(β) = Fqn . This could only be W = {0} or W = Fqn . �

Part (iv) of Proposition 4.4 shows that Singer cycles c inG are always regular elliptic, since they correspond
to elements γ for which F

×
qn = �γ�, that is, to primitive roots in Fqn .

Definition 4.5. Recall that associated to the extension Fq ⊂ Fqn is the norm map

Fqn
NFqn/Fq−→ Fq

β �−→ β · βq · βq2 · · ·βqn−1
.

The well-known surjectivity of norm maps for finite fields [21, VII Exer. 28] is equivalent to the following.

Proposition 4.6. If F
×
qn = �γ�, then F

×
q = �N(γ)�.

Proposition 4.7. Let g be a regular elliptic element in GLn(Fq) associated to β ∈ Fqn , as in Proposi-

tion 4.4(iv).

(i) The irreducible character χ
λ(g) vanishes unless χλ

is a primary irreducible character χ
U,λ

, for some

s dividing n and some cuspidal character U in Cusps and partition λ in Parn
s
.

(ii) Furthermore, χ
U,λ(g) = 0 except for hook-shaped partitions λ =

�
n
s − k, 1k

�
.
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(iii) More explicitly, if U in Cusps is associated to [ϕ] with ϕ in Hom(F×
qs ,C

×), then

χ
U,(n

s −k,1k)(g) = (−1)kχU,(n
s )(g)

= (−1)
n
s −k−1

χ
U,(1

n
s )(g)

= (−1)n−
n
s −k

s−1�

j=0

ϕ

�
NFqn/Fqs

(βqj )
�
.

(iv) If in addition g is a Singer cycle then

�

U

χ
U,(n

s −k,1k)(g) =

�
(−1)n−

n
s −k

µ(s) if q = 2,

0 if q �= 2.

where the sum is over all U in Cusps, and µ(s) is the usual number-theoretic Möbius function of s.

Proof. The key point is Proposition 4.4(i), showing that regular elliptic elements g are the elements whose
conjugates hgh−1 lie in no proper parabolic subgroup Pα. Hence the parabolic induction formula (3.2) shows
that any properly induced character f1∗ · · · ∗fm will vanish on a regular elliptic element g.

Assertion (i) follows immediately, as (3.4) shows non-primary irreducibles are properly induced.
Assertion (ii) also follows, as a non-hook partition λ = (λ1 ≥ λ2 ≥ · · · ) has λ2 ≥ 2, so that in the

Jacobi-Trudi-style formula (3.5) for χU,λ, each term

χ
U,(λ1−1+w(1))∗χU,(λ2−2+w(2))∗ · · · ∗χU,(λ�−�+w(�))

begins with two nontrivial product factors, so it is properly induced, and vanishes on regular elliptic g.
The first two equalities asserted in (iii) follow from similar analysis of terms in (3.5), (3.6) for χU,λ when

λ =
�
n
s − k, 1k

�
. These formulas have 2k+1 and 2

n
s −k nonvanishing terms, respectively, of the form

(−1)k−m
χ
U,(α1)∗χU,(α2)∗ · · · ∗χU,(αm)

(−1)
n
s −k−m

χ
U,(1β1 )∗χU,(1β2 )∗ · · · ∗χU,(1βm )

corresponding to compositions (α1, . . . ,αm) and (β1, . . . ,βm) of n
s with α1 ≥ k + 1 and β1 ≥ n

s − k,
respectively. All such terms vanish on regular elliptic g, being properly induced, except the m = 1 terms:

χ
U,(n

s −k,1k)(g) = (−1)k−1
χ
U,(n

s )(g)

= (−1)
n
s −k−1

χ
U,(1

n
s )(g).

The last equality in (iii) comes from a result of Silberger and Zink [28, Theorem 6.1], which they deduced
by combining various formulas from Green [12].

For assertion (iv), say that the regular elliptic element g corresponds to an element β in Fqn under
the embedding F

×
qn �→ GLn(Fq), and let γ := NFqn/Fqs

(β) be its norm in F
×
qs . Assertion (iii) and the

multiplicative property of the norm map NFqn/Fqs
imply

(4.3)
�

U

χ
U,(n

s −k,1k)(g) = (−1)n−
n
s −k

�

U

s−1�

j=0

ϕ

�
γ
qj
�

= (−1)n−
n
s −k

�

U

�

γ�

ϕ(γ�)

where the inner sum runs over all γ� lying in the Frobenius orbit of γ within Fqs . When one further assumes
that g is a Singer cycle, then Proposition 4.6 implies F

×
qs = �γ�, so that a homomorphism ϕ : F×

qs → C
×

is completely determined by its value z := ϕ(γ) in C
×. Furthermore, ϕ will have a free Frobenius orbit if

and only if the powers {z, zq, zq2 , · · · , zqs−1} are distinct roots of unity. Thus one can rewrite the rightmost
summation

�
U

�
γ� ϕ(γ�) in (4.3) above as the sum over all z in C

× for which z
qs−1 = 1 but zq

t−1 �= 1 for

any proper divisor t of s. Number-theoretic Möbius inversion shows this is
�

t|s µ
�
s
t

�
f(t) where

f(t) :=
�

z∈C×
:

zqt−1
=1

z =

�
1 if q = 2, t = 1,

0 if q �= 2 or t �= 1.



8 J.B. LEWIS, V. REINER, AND D. STANTON

Hence

�(4.4)
�

U

�

γ�

ϕ(γ�) =

�
µ(s) if q = 2,

0 if q �= 2.

4.3. Character values on semisimple reflections. Recall that a semisimple reflection t in GLn(Fq) has
conjugacy class determined by its non-unit eigenvalue det(t), lying in F

×
q \ {1}. Recall also the notion of the

content c(a) := j − i of a cell a lying in row i and column j of the Ferrers diagram for a partition λ.

Lemma 4.8. Let t be a semisimple reflection in GLn(Fq).

(i) Primary irreducible characters χ
U,λ

vanish on t unless wt(U) = 1, that is, unless U is in Cusp1.

(ii) For U in Cusp1, so F
×
q

U→ C
×
, and λ in Parn, the normalized character �χU,λ

has value on t

�χU,λ(t) = U(det(t)) ·
�

a∈λ q
c(a)

[n]q
.

(iii) In particular, for U in Cusp1 and hook shapes λ = (n− k, 1k), this simplifies to

�χU,(n−k,1k)(t) = U(det(t)) · q−k
.

Proof. For assertion (i), we start with the fact proven by Green [12, §5 Example (ii), p. 430] that cuspidal
characters for GLn vanish on non-primary conjugacy classes, that is, those for which the characteristic
polynomial is divisible by at least two distinct irreducible polynomials in Fq[x].

This implies cuspidal characters for GLn with n ≥ 2 vanish on semisimple reflections t, since such t are
non-primary: det(xI − t) is divisible by both x− 1 and x− α where α = det(t) �= 1.

Next, the parabolic induction formula (3.2) shows that any character of the form χU1∗ · · · ∗χU� in which
each Ui is a GLni -cuspidal with ni ≥ 2 will also vanish on all semisimple reflections t: whenever hth−1 lies
in the parabolic P(n1,...,n�)

and has diagonal blocks (g1, . . . , g�), one of the gi0 is also a semisimple reflection,
so that χUi0

(gi0) = 0 by the above discussion.

Lastly, Lemma 3.1 shows that every primary irreducible χ
U,λ with wt(U) ≥ 2 will vanish on every

semisimple reflection: χ
U,λ is in the Q-span of characters χU1∗ · · · ∗χU� with each Ui a GLni -cuspidal in

which wt(U) divides ni, so that ni ≥ 2.
Assertion (iii) is an easy calculation using assertion (ii), so it only remains to prove (ii). We first claim

that one can reduce to the case where character U in Cusp1 is the trivial character F
×
q

U=1−→ C
×. This is

because one has χU,(n) = U = U ⊗ χ
1,(n) and hence using (3.5) one has

(4.5) χ
U,λ = U ⊗ χ

1,λ for λ in Parn when U lies in Cusp1.

Thus without loss of generality, U = 1, and we wish to show

(4.6) �χ1,λ(t) =
1

[n]q

�

a∈λ

q
c(a)

.

Lemma 4.9. A semisimple reflection t has χ
1,λ(t) = Ψ(sλ) where Ψ is the linear map on the symmetric func-

tions Λ = Q[p1, p2, . . .] expressed in terms of power sums that sends f(x1, x2, . . .) �→ (q; q)n−1
∂f
∂p1

(1, q, q2, . . .).

Proof of Lemma 4.9. By linearity and (3.5), it suffices to check for compositions α = (α1, . . . ,αm) of n that
χ
1,α := χ

1,(α1)∗ · · · ∗χ1,(αm) has χ
1,α(t) = Ψ(hα) where hα = hα1 · · ·hαm . The character χ

1,α is just the
usual induced character IndGLn

Pα
1Pα , so the permutation character on the set of α-flags of subspaces

{0} ⊂ Vα1 ⊂ Vα1+α2 ⊂ · · · ⊂ Vα1+α2+···+αm−1 ⊂ F
n
q ,

which are counted by the q-multinomial coefficient
�
n

α

�

q

:=

�
n

α1, . . . ,αm

�

q

=
[n]!q

[α1]!q · · · [αm]!q
= (q; q)nhα(1, q, q

2
, . . .).

Thus χ
1,α(t) counts the number of such flags stabilized by the semisimple reflection t. To count these let

H and L denote, respectively, the fixed hyperplane for t and the line which is the det(t)-eigenspace for t.
Then one can classify the α-flags stabilized by t according to the smallest index i for which L ⊂ Vα1+···+αi .
Fixing this index i, such flags must have their first i− 1 subspaces Vα1 , Vα1+α2 , . . . , Vα1+···+αi−1 lying inside
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H, and their remaining subspaces from Vα1+···+αi onward containing L. From this description it is not hard
to see that the quotient map F

n
q � F

n
q /L is a bijection between such t-stable α-flags and the (α − ei)-flags

in F
n
q /L

∼= F
n−1
q , where α− ei := (α1, . . . ,αi−1,αi − 1,αi+1, . . . ,αm). Consequently

χ
1,α(t) =

m�

i=1

�
n− 1
α− ei

�

q

= (q; q)n−1

m�

i=1

hα−ei(1, q, q
2
, . . .) = (q; q)n−1

∂hα

∂p1
(1, q, q2, . . .) = Ψ(hα)

using the fact [24, Example I.5.3] that ∂hn
∂p1

= hn−1, and hence ∂hα
∂p1

=
�m

i=1
hα−ei via the Leibniz rule. �

Resuming the proof of (4.6), since [24, Example I.5.3] shows ∂sλ/∂p1 =
�

µ⊂λ:|µ|=|λ|−1
sµ, one concludes

from Lemma 4.9 and (4.2) that

�χ1,λ(t) =
χ
1,λ(t)

deg(χ1,λ)
=

�

µ⊂λ:
|µ|=|λ|−1

(q; q)n−1sµ(1, q, q2, . . .)

(q; q)nsλ(1, q, q2, . . .)
=

�

µ⊂λ:
|µ|=|λ|−1

f
µ(q)

fλ(q)

where f
λ(q) is the q-hook formula from (4.2). Thus the desired equation (4.6) becomes the assertion

(4.7)
�

µ⊂λ:
|µ|=|λ|−1

f
µ(q)

fλ(q)
=

1

[n]q

�

a∈λ

q
c(a)

which follows from either of two results in the literature: (4.7) is equivalent1, after sending q �→ q
−1, to a

result of Kerov [19, Theorem 1 and Eqn. (2.2)], and (4.7) is also the t = q
−1 specialization of a result of

Garsia and Haiman [10, (I.15), Theorem 2.3]. �

4.4. Character values on transvections. The GLn-irreducible character values on transvections appear
in probabilistic work of M. Hildebrand [14]. For primary irreducible characters, his result is equivalent2 to
the following.

Theorem 4.10 ([14, Theorem 2.1]). For U in Cusps with λ in Parn
s
, a transvection t in GLn(Fq) has

�χU,λ(t) =






1

1− qn−1



1− q
n−1

�

µ⊂λ:
|µ|=|λ|−1

f
µ(q)

fλ(q)



 if s = 1,

1

1− qn−1
if s ≥ 2.

One can rephrase the s = 1 case similarly to Lemma 4.8(ii).

Corollary 4.11. For U in Cusp1 with λ in Parn, a transvection t in GLn(Fq) has

�χU,λ(t) =

1− q
n−1

��
a∈λ q

c(a)

[n]q

�

1− qn−1
.

In particular, for U in Cusp1 and 0 ≤ k ≤ n− 1, one has

�χU,(n−k,1k)(t) =
1− q

n−k−1

1− qn−1
.

Proof. The first assertion follows from Theorem 4.10 using (4.7), and the second from the calculation
�

a∈(n−k,1k)

q
c(a) = q

−k + q
−k+1 + · · ·+ q

n−k−1 = q
−k[n]q. �

1In checking this equivalence, it is useful to bear in mind that fλt
(q) = q

�
n
2

�

fλ(q−1), along with the fact that if µ ⊂ λ with
|µ| = |λ|− 1 and the unique cell of λ/µ lies in row i and column j, then n(λ)− n(µ) = i− 1 and n(λt)− n(µt) = j − 1.

2In seeing this equivalence, note that Hildebrand uses Macdonald’s indexing [24, p. 278] of GLn-irreducibles, where partition
values are transposed in the functions λ : Cusp −→ Par relative to our convention in Sections 3.2 and 3.3.
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5. Proofs of Theorems 1.2 and 1.3.

In proving the main results Theorems 1.2 and 1.3, it is convenient to know the equivalences between
the various formulas that they assert. After checking this in Proposition 5.1, we assemble the normalized
character values on reflection conjugacy class sums, in the form needed to apply (2.1). This is then used to
prove Theorem 1.3 for q > 2, from which we derive Theorem 1.2 for q > 2. Lastly we prove Theorem 1.2 for
q = 2.

5.1. Equivalences of the formulas. We will frequently use the easy calculation

(5.1)
�
∆N

q

�
x
A
��

x=1
=

(qA−N+1; q)N
(1− q)N

which can be obtained by iterating ∆q, or via (1.7) and the q-binomial theorem [11, p. 25, Exer. 1.2(vi)]

(5.2) (x; q)N =
N�

k=0

(−x)kq(
k
2)
�
N

k

�

q

.

The following assertion was promised in the Introduction.

Proposition 5.1. As polynomials in q,

(i) the three expressions (1.4), (1.5), (1.6) for tq(n, �) asserted in Theorem 1.2 all agree, and

(ii) the two expressions (1.8), (1.9) for tq(n, �,m) asserted in Theorem 1.3 agree if m ≤ �− 1.

Proof. Assertion (i). Starting with (1.5)

tq(n, �) = (1− q)−1
(−[n]q)�

[n]!q

�
∆n−1

q

�
1

x
− (1 + x(1− q))�

x

��

x=1

,

linearity of the operator g(x) �−→
�
∆n−1

q g(x)
�
x=1

lets one expand in two different ways its subexpression

(5.3)

�
∆n−1

q

�
1

x
− f(x)

��

x=1

where f(x) :=
(1 + x(1− q))�

x
.

The first way will yield (1.4), by expanding (5.3) as
�
∆n−1

q

�
1

x

��
x=1

−
�
∆n−1

q f(x)
�
x=1

. Note that
�
∆n−1

q

�
1

x

��

x=1

=
(q1−n; q)n−1

(1− q)n−1
=

(−1)n−1

q
(n2)(1− q)n−1

(q; q)n−1

via (5.1), which accounts for the (−1)n−1(q; q)n−1 term inside the large parentheses of (1.4). Meanwhile,
applying (1.7) to

�
∆n−1

q f(x)
�
x=1

and noting that f(qn−1−k) = q
1−n

q
k(1 + q

n−k−1 − q
n−k)�, one obtains

a summation that accounts for the remaining terms inside the large parentheses of (1.4). This shows the

equivalence of (1.4), (1.5). The second way will yield (1.6), by expanding f(x) =
��

i=0

��
i

�
(1− q)�−i

x
�−i−1,

and noting that the i = � term cancels with the 1

x appearing inside (5.3). Therefore (1.5) becomes

tq(n, �) =(−[n]q)
� (1− q)n−1

(q; q)n

�−1�

i=0

−
�
�

i

�
(1− q)�−i

�
∆n−1

q

�
x
�−i−1

��
x=1

=[n]�−1

q

�−n�

i=0

(−1)i(q − 1)�−i−1

�
�

i

��
�− i− 1
n− 1

�

q

,

using (5.1). The summands with �− n+ 1 ≤ i ≤ �− 1 vanish, showing the equivalence of (1.5), (1.6).

Assertion (ii). Starting with (1.9),

tq(n, �,m) =
[n]�q
[n]!q

�
∆n−1

q

�
(x− 1)mx

�−m−1
��

x=1
,

expand the (x− 1)m factor via the binomial theorem. Using (5.1), this expression for tq(n, �,m) becomes

tq(n, �,m) = [n]�−1

q

m�

i=0

(−1)i
�
m

i

� �
�− i− 1
n− 1

�

q

.

As i ≤ m ≤ �− 1, one has �− i− 1 ≥ 0 and the sum is actually over 0 ≤ i ≤ �− n, agreeing with (1.8). �
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5.2. The normalized characters on reflection conjugacy class sums.

Definition 5.2. For α in F
×
q , let zα :=

�
t:det(t)=α t in CGLn be the sum of reflections of determinant α.

Corollary 5.3. For U in Cusps, and k in the range 0 ≤ k ≤ n
s , and any α in F

×
q \ {1}, one has

�χU,(n
s −k,1k)(zα) = [n]q

�
q
n−k−1

U(α) if s = 1

0 if s ≥ 2.

�
,(5.4)

�χU,(n
s −k,1k)(z1) = [n]q

�
q
n−k−1 − 1 if s = 1,

−1 if s ≥ 2.

�
.(5.5)

Proof. First we count the reflections t in GLn(Fq). There are [n]q = 1 + q + q
2 + · · ·+ q

n−1 choices for the
hyperplane H fixed by t. To count the reflections fixing H, without loss of generality one can conjugate t

and assume that H is the hyperplane spanned by the first n standard basis vectors e1, . . . , en−1.
If t is a semisimple reflection then its conjugacy class is determined by its determinant, lying in F

×
q \ {1}.

Having fixed α := det(t), there will be q
n−1 such reflections that fix e1, . . . , en−1: each is determined by

sending en to αen +
�n−1

i=1
ciei for some (c1, . . . , cn−1) in F

n−1
q . Hence (5.4) follows from Lemma 4.8.

The nonsemisimple reflections t are the transvections, forming a single conjugacy class, with det(t) = 1.
There will be qn−1−1 transvections that fix e1, . . . , en−1: each is determined by sending en to en+

�n−1

i=1
ciei

for some (c1, . . . , cn−1) in F
n−1
q \ {0}. Hence (5.5) follows from Theorem 4.10 and Corollary 4.11. �

5.3. Proof of Theorem 1.3 for q > 2. For a Singer cycle c in GLn(Fq), and α = (α1, . . . ,α�) in (F×
q )

�

with
��

i=1
αi = det(c), Proposition 2.2 counts the reflection factorizations c = t1t2 · · · t� with det(ti) = αi as

(5.6)
1

|GLn|
�

(s,U):

s|n
U∈Cusps

n
s −1�

k=0

deg(χU,(n
s −k,1k)) · χU,(n

s −k,1k)(c−1) ·
��

i=1

�χU,(n
s −k,1k)(zαi).

There are several simplifications in this formula.
Firstly, note that the outermost sum over pairs (s, U) reduces to the pairs with s = 1: since det(c) is a

primitive root in F
×
q by Proposition 4.6 and q > 2, one knows that det(c) �= 1, so that at least one of the αi

is not 1. Thus its factor �χU,(n
s −k,1k)(zαi) in the last product will vanish if s ≥ 2 by (5.4).

Secondly, when s = 1 then Corollary 5.3 evaluates the product in (5.6) as

(5.7)
��

i=1

�χU,(n
s −k,1k)(zαi) = [n]�q (qn−k−1 − 1)m q

(n−k−1)(�−m)
U(det(c))

if exactly m of the αi are equal to 1, that is, if the number of transvections in the factorization is m. This
justifies calling it tq(n, �,m) where m ≤ �− 1.

Thirdly, for s = 1 Proposition 4.7(iii) shows3 that χU,(n−k,1k)(c−1) = (−1)kU(det(c−1)), so there will be
cancellation of the factor U(det(c)) occurring in (5.7) within each summand of (5.6).

Thus plugging in the degree formula from the s = 1 case of (4.1), one obtains the following formula for
(5.6), which we denote by tq(n, �,m), emphasizing its dependence only on � and m, not on the sequence α:

tq(n, �,m) =
(q − 1)[n]�q

|GLn|

n−1�

k=0

q
(k+1

2 )
�
n− 1
k

�

q

(−1)k (qn−k−1 − 1)m q
(n−k−1)(�−m)

.

This expression may be rewritten using the q-difference operator ∆q and (1.7) as

tq(n, �,m) =
[n]�q
|GLn|

q
(n2)(q − 1)n

�
∆n−1

q

�
(x− 1)mx

�−m−1
��

x=1
.

Since |GLn| = q
(n2)(−1)n(q; q)n, this last expression is the same as (1.9). Hence by Proposition 5.1, this

completes the proof of Theorem 1.3 for q > 2.

3Here we use the fact that c−1 is also a Singer cycle.
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that the final sum has all summands 0 except for the i = 0 summand, whence in this case we have [n]n−1
q

reflections. In particular, for � = n the number of factorizations is completely independent of the tuple α of
determinants (provided the product of the entries of α actually is det c).

5.4. Proof of Theorem 1.2 when q > 2. We will use Theorem 1.3 for q > 2 to derive (1.5) for q > 2.

First note that one can choose a sequence of determinants α = (α1, . . . ,α�) in F
×
q that has

��
i=1

αi = det(c)
and has exactly m of the αi = 1 in a two-step process: first choose m positions out of � to have αi = 1,

then choose the remaining sequence in
�
F
×
q \ {1}

��−m
with product equal to det(c). Simple counting shows

that in a finite group K, the number of sequences in (K \ {1})N whose product is some fixed nonidentity
element4 of K is

(5.8)
(|K|− 1)N − (−1)N

|K| .

Applying this to K = F
×
q with N = �−m gives

tq(n, �) =
��

m=0

tq(n, �,m)

�
�

m

�
(q − 2)�−m − (−1)�−m

q − 1
.

Thus from (1.9) one has

tq(n, �) =
(q − 1)[n]�q

|GLn|
q
(n2)(q − 1)n−1

�
∆n−1

q

�
��

m=0

�
�

m

�
(x− 1)mx

�−m−1
(q − 2)�−m − (−1)�−m

q − 1

��

x=1

=
(−[n]q)�

|GLn|
q
(n2)(q − 1)n−1

�
∆n−1

q

�
(1 + x(1− q))�

x
− 1

x

��

x=1

=(1− q)−1
(−[n]q)�

[n]!q

�
∆n−1

q

�
1

x
− (1 + x(1− q))�

x

��

x=1

which is (1.5). Hence by Proposition 5.1, this completes the proof of Theorem 1.2 when q > 2.

5.5. Proof of Theorem 1.2 when q = 2. Here all reflections are transvections and (2.1) gives us

tq(n, �) =
1

|GLn|
�

χλ∈Irr(GLn)

deg(χλ) · χλ(c−1) · �χλ(z1)
�

=
1

|GLn|
�

(s,U):

s|n
U∈Cusps

n
s −1�

k=0

deg(χU,(n
s −k,1k)) · χU,(n

s −k,1k)(c−1) · �χU,(n
s −k,1k)(z1)

�

� �� �
Call this f(s,U)

using the vanishing of χλ(c−1) from Proposition 4.7(i,ii). We separate the computation into s = 1 and s ≥ 2,
and first compute

�
U∈Cusp1

f(s, U). As q = 2 there is only one U in Cusp1, namely U = 1, and hence

�

U∈Cusp1

f(s, U) = f(1,1) =
n−1�

k=0

deg(χ1,(n−k,1k)) · χ1,(n−k,1k)(c−1) · �χ1,(n−k,1k)(z)�

=
n−1�

k=0

q
(k+1

2 )
�
n− 1
k

�

q

· (−1)k · [n]�q(qn−k − q
n−k−1 − 1)�

using the degree formula (4.1) at s = 1, the fact that χ
(1,n−k,1k)(c−1) = (−1)kχ1,(n)(c−1) = (−1)k from

Proposition 4.7(iii), and the value �χ1,(n−k,1k)(z1) = [n]q(qn−k − q
n−k−1 − 1) from (5.5).

4In fact, Theorem 1.2 is stated for n ≥ 2, but remains valid for when n = 1 and q > 2. It is only in the trivial case where
GL1(F2) = {1} that the “Singer cycle” c is actually the identity element, so that the count (5.8) fails.
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For s ≥ 2, we compute

�

(s,U):

s|n,s≥2

U∈Cusps

f(s, U) =
�

(s,U):

s|n,s≥2

U∈Cusps

n
s −1�

k=0

deg(χU,(n
s −k,1k)) · χU,(n

s −k,1k)(c−1) · �χU,(n
s −k,1k)(z1)

�

=
�

s|n
s≥2

n
s −1�

k=0

(−1)n−
n
s q

s(k+1
2 )(q; q)n

(qs; qs)n
s

�
n
s − 1
k

�

qs
·




�

U∈Cusps

χ
U,(n

s −k,1k)(c−1)



 · (−[n]q)
�

again via (4.1), Proposition 4.7(iii), and (5.5). The parenthesized sum is (−1)n−
n
s −k

µ(s) by Proposi-
tion 4.7(iii, iv), so

�

(s,U):

s|n,s≥2

U∈Cusps

f(s, U) = (−[n]q)
�(q; q)n

�

s|n
s≥2

1

(qs; qs)n
s




n
s −1�

k=0

(−1)kqs(
k+1
2 )

�
n
s − 1
k

�

qs



µ(s)

= (−[n]q)
�(q; q)n

�

s|n
s≥2

µ(s)

(qs; qs)n
s

(qs; qs)n
s −1

= (−[n]q)
�(q; q)n−1

�

s|n
s≥2

µ(s)

= −(−[n]q)
�(q; q)n−1,

where the second equality used the q-binomial theorem (5.2). Thus one has for q = 2 that

(5.9) tq(n, �) =
1

|GLn|

�
−(−[n]q)

�(q; q)n−1 +
n−1�

k=0

q
(k+1

2 )
�
n− 1
k

�

q

· (−1)k · [n]�q(qn−k − q
n−k−1 − 1)�

�
.

Since |GLn| = (−1)nq(
n
2)(q; q)n, one finds that (5.9) agrees with the expression (1.4)

tq(n, �) =
(−[n]q)�

q
(n2)(q; q)n

�
(−1)n−1(q; q)n−1 +

n−1�

k=0

(−1)k+n
q
(k+1

2 )
�
n− 1
k

�

q

(1 + q
n−k−1 − q

n−k)�
�

after redistributing the [n]�q and powers of −1. This completes the proof of Theorem 1.2 for q = 2.

6. Further remarks and questions

6.1. Product formula versus partial fraction expansions. The equivalence between (1.1), (1.2), and
between (1.3), (1.4) are explained as follows. One checks the partial fraction expansion of (1.1) is

�

�≥0

t(n, �)x� =
n
n−2

x
n−1

�n−1

k=0

�
1− xn

�
n−1

2
− k

�� =
1

n!

n−1�

k=0

(−1)k
�n−1

k

�

1− xn
�
n−1

2
− k

�

and comparing coefficients of x� gives the first equality in (1.2).
Similarly, one checks that the partial fraction expansion of the right side of (1.3) is

(6.1)

(qn − 1)n−1 · x
n

(1 + x[n]q)
�n−1

k=0
(1 + x[n]q(1 + qk − qk+1))

=
(−1)n

q
(n2)(qn − 1)

�
1

1 + x[n]q
+

n−1�

k=0

(−1)k+1
q
(k+1

2 )

(q; q)k(q; q)n−1−k
· 1

1 + x[n]q(1 + qn−k−1 − qn−k)

�
.

Comparing coefficients of x� in (6.1) gives (1.4). This proves (1.3).
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6.2. More observations about tq(n, �,m). From (1.6) and (1.8) one can derive q = 1 limits

t1(n, �) := limq→1

tq(n,�)
(1−q)n−1 = (−n)�−1

��
n

�

t1(n, �,m) := limq→1 tq(n, �,m) = n
�−1

��−m−1

�−n

�
.

We do not know an interpretation for these limits.

6.3. Exponential generating function. The classical count t(n, �) of factorizations of an n-cycle into �

transpositions has both an elegant ordinary generating function (1.1) and exponential generating function

(6.2)
�

�≥0

t(n, �)
u
�

�!
=

1

n!

�
e
un

2 − e
−un

2
�n−1

.

This was generalized by Chapuy and Stump [6] to well-generated finite complex reflection group W as follows;
we refer to their paper for the background on such groups. If W acts irreducibly on C

n, with a total of
Nref reflections and Nhyp reflecting hyperplanes, then for any Coxeter element c, the number a� of ordered
factorizations c = t1 · · · t� into reflections satisfies

(6.3)

�

�≥0

a�
u
�

�!
=

1

|W |

�
e
uNref

n − e
−uNhyp

n

�n

=
1

|W |e
−uN

hyp

�
e
uNref +Nhyp

n − 1

�n

=
1

|W |e
−uN

hyp

�
∆n

�
e
uxNref +Nhyp

n

��

x=0

where the last equality uses the fact that the difference operator ∆ satisfies [∆n(eax)]x=0
= (ea − 1)n.

One can derive an exponential generating function analogous to (6.3) for the number tq(n, �) of Singer
cycle factorizations in W = GLn(Fq),

(6.4)
�

�≥0

tq(n, �)
u
�

�!
=

(q − 1)n−1
q
(n2)

|W | e
−uN

hyp

�
∆n−1

q

�
1

x

�
e
uxNref +Nhyp

qn−1 − 1

���

x=1

,

where Nhyp
,Nref denote the number of reflecting hyperplanes and reflections in W = GLn(Fq), that is,

Nhyp = [n]q,

Nref = [n]q(q
n − q

n−1 − 1).

To prove (6.4), use (1.5) to find

�

�≥0

tq(n, �)
u
�

�!
=
(1− q)n−1

(q; q)n

�
∆n−1

q

�
1

x

�
e
−u[n]q − e

−u[n]q(1+x(1−q))
���

x=1

=
(−1)n(1− q)n−1

q
(n2)

|W | e
−u[n]q

�
∆n−1

q

�
1

x

�
1− e

ux[n]q(q−1))
���

x=1

.

Noting that [n]q = Nhyp, and [n]q(q − 1) = q
n − 1 = (Nhyp +Nref)/qn−1, and distributing some negative

signs, gives (6.4).

6.4. Hurwitz orbits. In a different direction, one can consider the Hurwitz action of the braid group on �

strands acting on length � ordered factorizations c = t1t2 · · · t�. Here the braid group generator σi acts on
ordered factorizations as follows:

(t1, . . . , ti−1, ti, ti+1, ti+2, . . . , t�)
σi�−→

(t1, . . . , ti−1, ti+1, t
−1

i+1
titi+1, ti+2, . . . , t�).

For well-generated complex reflection groups W of rank n and taking � = n, Bessis showed [3, Prop. 7.5]
that the set of all shortest ordered factorizations (t1, . . . , tn) of a Coxeter element c = t1t2 · · · tn forms a
single transitive orbit for this Hurwitz action.

One obvious obstruction to an analogous transitivity assertion for c a Singer cycle in GLn(Fq) and factor-
izations c = t1t2 · · · t� is that the unordered �-element multiset {det(ti)}�i=1

of F×
q is constant on a Hurwitz



REFLECTION FACTORIZATIONS OF SINGER CYCLES 15

orbit, but (when q �= 2) can vary between different factorizations, even when � = n. Nevertheless, we make
the following conjecture.

Conjecture 6.1. Any two factorizations c = t1t2 · · · t� with the same multiset {det(ti)}�i=1
lie in the same

Hurwitz orbit. In particular, there is only one Hurwitz orbit of factorizations when q = 2 for any �.

We report here some partial evidence for Conjecture 6.1.

• It is true when n = � = 2; here is a proof. Fix a Singer cycle c in GL2(Fq) and α1,α2 in F
×
q having

det(c) = α1α2. Theorem 1.3 in the case � = n = 2 tells us that there will be exactly [2]q = q + 1
factorizations c = t1 · t2 of c as a product of two reflections with (det(t1), det(t2)) = (α1,α2), and
similarly q + 1 for which (det(t1), det(t2)) = (α2,α1). This gives a total of either q + 1 or 2(q + 1)
factorizations with this multiset of determinants, depending upon whether or not α1 = α2. Now
note that applying the Hurwitz action σ1 twice sends

(t1, t2)
σ1�−→ (t2 , t

−1

2
t1t2)

σ1�−→ (t−1

2
t1t2, t

−1

2
t
−1

1
t2t1t2� �� �

=c−1t2c

),

yielding a factorization with the same determinant sequence, but whose second factor changes from
t2 to c

−1
t2c. This moves the reflecting hyperplane (line) H for t2 to the line c

−1
H for c−1

t2c. Since
F
×
q2 = �c�, one knows that the powers of c act transitively on the lines in Fq2

∼= F
2
q, and hence there

will be at least q + 1 different second factors {c−i
t2c

i} achieved in the Hurwitz orbit. This shows
that the Hurwitz orbit contains at least q + 1 or 2(q + 1) different factorizations, depending upon
whether or not α1 = α2, so it exhausts the factorizations that achieve this multiset of determinants.
This completes the proof.

• Conjecture 6.1 has also been checked
– for q = 2 when n = � ≤ 5 and n = 3, � = 4,
– for q = 3 when n = 2 and � ≤ 4, and also when n = � = 3,
– for q = 5 when n = 2 and � ≤ 3.

One might hope to prove Conjecture 6.1 similarly to the uniform proof for transitivity of the Hurwitz
action on short reflection factorizations of Coxeter elements in real reflection groups, given in earlier work
of Bessis [2, Prop. 1.6.1]. His proof is via induction on the rank, and relies crucially on proving these facts:

• The elements w ≤ c in the absolute order, that is, the elements which appear as partial products
w = t1t2 · · · ti in shortest factorizations c = t1t2 · · · tn, are all themselves parabolic Coxeter elements,
that is, Coxeter elements for conjugates of standard parabolic subgroups of W .

• All such parabolic Coxeter elements share the property that the Hurwitz action is transitive on their
shortest factorizations into reflections.

One encounters difficulties in trying to prove this analogously, when one examines the interval [e, c] of
elements lying below a Singer cycle c in GLn(Fq):

• It is no longer true that the elements g in [e, c] all have a transitive Hurwitz action on their own
short factorizations. For example in GL4(F2), the unipotent element u equal to a single Jordan
block of size 4 appears as a partial product on the way to factoring a Singer cycle, but its 64 short
factorizations u = t1t2t3 into reflections break up into two Hurwitz orbits, of sizes 16 and 48.

• It also seems nontrivial to characterize intrinsically the elements in [e, c] for a fixed Singer cycle c. For
example, the elements g which are c-noncrossing in the following sense appear5 to be always among
them: arranging the elements F×

qn = {1, c, c2, . . . , cqn−2} clockwise circularly, g permutes them (after
embedding them via Fqn

∼= F
n
q ) in cycles that are each oriented clockwise, and these oriented arcs do

not cross each other. However, starting already with GL4(F2) and GL3(F3), there are other element
below the Singer cycle besides these c-noncrossings.

6.5. q-Noncrossings? The poset of elements [e, c] lying below a Singer cycle c in the absolute order on
GLn(Fq) would seem like a reasonable candidate for a q-analogue of the usual poset of noncrossing partitions

of {1, 2, . . . , n}; see [1]. However, [e, c] does not seem to be so well-behaved in GLn(Fq), although a few things
were proven about it by Jia Huang in [15].

5That is, it is true for GLn(F2) with n = 2, 3, 4 and also for GLn(F3) with n = 2, 3.
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For instance, he showed that the absolute length of an element g in GLn(Fq), that is, the minimum length
of a factorization into reflections, coincides with the codimension of the fixed space (Fn

q )
g. Hence the poset

[e, c] is ranked in a similar fashion to the noncrossing partitions of real reflection groups, and has an order-
and rank-preserving map

[e, c]
π−→ L(Fn

q )
g �−→ (Fn

q )
g

to the lattice L(Fn
q ) of subspaces of F

n
q . Because conjugation by c acts transitively on lines and hyperplanes,

this map is surjective for n ≤ 3; empirically, it seems to be surjective in general. The poset [e, c] also has a
Kreweras complementation anti-automorphism w �→ w

−1
c.

However, Huang noted that the rank sizes of [e, c] do not seem so suggestive. E.g., for [e, c] in GL4(F2)
they are (1, 60, 240, 60, 1), and preclude π being an N -to-one map for some integer N , since L(F4

2) has rank
sizes (1, 15, 35, 15, 1) and 35 does not divide 240.

Question 6.2. Are the c-noncrossing elements mentioned in Section 6.4 a better-behaved subposet of [e, c]?

6.6. Regular elliptic elements versus Singer cycles. Empirical evidence supports the following hy-
pothesis regarding the regular elliptic elements of GLn(Fq) that appeared in Proposition 4.4.

Conjecture 6.3. The number of ordered reflection factorizations g = t1t2 · · · t� is the same for all regular

elliptic elements g in GLn(Fq), namely the quantity tq(n, �) that appears in Theorem 1.2.

Conjecture 6.3 has been verified for n = 2 and n = 3 using explicit character values [30]. In the case det g �= 1,
only minor modifications are required in our arguments to prove Conjecture 6.3. The spot in our proof that
breaks down for regular elliptic elements with det g = 1 is the identity (4.4). For example, when s = n = 4 and
q = 2, if one chooses β in F

×
24

with β
5 = 1 (so still one has F24 = F2(β), but F

×
24

�= �β�), then there are three
homomorphisms ϕ with free Frobenius orbits and

�
φ

�
ϕ(β) + ϕ(β2) + ϕ(β4) + ϕ(β8)

�
= −3 ( �= 0 = µ(4)).

Nevertheless, in this GL4(F2) example it appeared from GAP [9] computations that such regular elliptic g

with g
5 = 1 had the same number of factorizations into � reflections for all � as did a Singer cycle in GL4(F2).

Remark 6.4. On the other hand, in considering transitivity of Hurwitz actions, we did see a difference in
behavior for regular elliptic elements versus Singer cycles: in GL4(F2), there are 3375 = (24 − 1)4−1 short
reflection factorizations t1t2t3t4 both for the the Singer cycles (the elements whose characteristic polynomials
are x

4 + x
3 + 1 or x

4 + x + 1) and for the non-Singer cycle regular elliptic elements (the elements whose
characteristic polynomials are x4+x

3+x
2+x+1). However, for the Singer cycles, these factorizations form

one Hurwitz orbit, while for the non-Singer cycle regular elliptic elements they form four Hurwitz orbits.

6.7. The approach of Hausel, Letellier, and Rodriguez-Villegas. The number of factorizations g =
t1t2 · · · t� where t1, . . . , t�, g come from specified GLn(Fq) conjugacy classes C1, . . . , C�, C�+1 appears in work
of Hausel, Letellier, and Rodriguez-Villegas [13] and more recently Letellier [22]. They interpret it in terms
of the topology of objects called character varieties under certain genericity conditions [22, Definition 3.1]
on the conjugacy classes. One can check that these conditions are satisfied in the case of interest to us,
that is, when C�+1 is a conjugacy class of Singer cycles and the C1, . . . , C� are all conjugacy classes of
reflections. Assuming these genericity conditions, [22, Theorem 4.14] gives an expression for the number
of such factorizations in terms of a specialization Hω(q−

1
2 , q

1
2 ) of a rational function Hω(z, w) defined in

[13, §1.1] via Macdonald symmetric functions. In principle, this expression should recover Theorem 1.3 as a
very special case. However, in practice, the calculation of Hω(z, w) is sufficiently intricate that we have not
verified it.

6.8. Jucys-Murphy approach? The formulas for character values on semisimple reflections and transvec-
tions in Lemma 4.8(ii) and Corollary 4.11 are remarkably simple compared to the machinery used in their
proofs. Can they be developed using a q-analogue of the Okounkov-Vershik approach [5, 31] to the ordinary
character theory of Sn, using the commuting family of Jucys-Murphy elements [18, 25], a multiplicity-free
branching rule, a Gelfand-Zetlin basis, etc.? Such a theory might even allow one to prove q-analogues for
more general generating function results, such as one finds in Jackson [17].

A feature of the Sn theory (see Chapuy and Stump [6, §5], Jucys [18, §4]) is that any symmetric function
f(x1, . . . , xn) when evaluated on the Jucys-Murphy elements J1, . . . , Jn acts as a scalar in eachSn-irreducible
V

λ, and this scalar is f(c(a1), . . . , c(an)) where c(ai) are the contents of the cells of λ. Taking f =
�n

i=1
xi
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gives a quick calculation of the irreducible characters evaluated on
�n

i=1
Ji, the sum of all transpositions.

Lemma 4.8(ii) and Corollary 4.11 seem suggestive of a q-analogue for this assertion.
It is at least clear how one might define relevant Jucys-Murphy elements.

Definition 6.5. For 1 ≤ m < n embed GLm ⊂ GLn as the subgroup fixing em+1, . . . , en. Then for each
α ∈ F

×
q , let J

α
m :=

�
t t be the sum inside the group algebra CGLn over this subset of reflections:

(6.5) {reflections t ∈ GLm : det(t) = α and t �∈ GLm−1}.

Proposition 6.6. The elements {Jα
m} for m = 1, 2, · · · , n and α in F

×
q pairwise commute.

Proof. Note that J
α
n commutes with any g in GLn−1, or equivalently, gJα

n g
−1 = J

α
n , since conjugation by

g induces a permutation of the set in (6.5). This shows that J
α
n , J

β
m commute when n �= m, since if one

assumes m < n, then every term of Jβ
m lies in GLn−1. To see that [Jα

n , J
β
n ] = 0, note that our conjugacy sums

zα =: zn,α from Definition 5.2 lie the center of CGLn and can be expressed as zn,α =
�n

i=1
J
α
i . Therefore

0 = [zn,α, J
β
n ] =

�
n�

i=1

J
α
i , J

β
n

�
= [Jα

n , J
β
n ] +

�
�

i<n

J
α
i , J

β
n

�
= [Jα

n , J
β
n ]

using bilinearity of commutators, and the commutativity of Jα
i , J

β
n for i < n. �
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