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Abstract

We give a new proof of the Suslov addition theorem for the g-exponential function on a
g-quadratic grid and the g-analogue of the expansion of a plane wave in spherical harmonics.
We also prove another addition theorem for the g-exponential function. The addition theorem
and the g-plane wave formula are used to evaluate some definite integrals and establish certain

power series identities.

1. Introduction. Suslov [12] has given a commutative g-analogue of the exponential addition

theorem e*t¥ = e%e¥. Specifically, for |¢| < 1 let
. — 79 i(#+6) 2 _ _i(¢—6) (1-n)/2.
(1.1) Eq(cosh,cos p;a) = an Z )2 _gi(#=0) (1-n)/ 1 q)n
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where the ¢-shifted factorials are defined as in [7]. If
(12) & (z0) = &(x, 050).

then &,(0;a) = 1, and lim ;1 & (z; (1 —¢)a/2) = exp(azx). The notation for £, adopted here is the
same as in [12] and is different from the original notation in [11]. Suslov [12] proved the following

addition formula for the &, function

(1.3) Eg(z,y;0) = Ey(250)Ey(y; @),
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which is the commutative g-analogue of exp(a(z + y)) = exp(az) exp(ay).

The Suslov addition theorem is an important contribution to the growing area of g-series. This
work grew out of attempts to understand Suslov’s result. We found a very simple proof of (1.3).
The key idea is to consider the expansion of &, (z;a) in terms of Rogers ¢-Hermite polynomials,
H,(z|q), then apply known connection coefficient theorems, such as (1.8). Our proof appears in

§3.

The function &;(z;a) is a g-analogue of e*”, but unlike e**, £,(z; a) is not symmetric in z and
a. The variables z and a seem to play different roles, so one would expect the function &,(z;a)
to have two different addition theorems. The Suslov addition theorem is in the = variable. In §3

we establish the following addition theorem,

(1.4) (q02, 4% ¢%) 0o Ey(z; @) E(23 B)
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in the a variable. As ¢ — 1 (1.4), with @ and § replaced by a(1—¢q)/2 and 3(1 — q)/2 respectively,

reduces to
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This technique, namely applying connection coefficient relations, also applies to other theo-
rems. An important classical expansion formula is the expansion of the plane wave in spherical
harmonics, see (6.5). Ismail and Zhang [11] gave a g-analogue of this expansion. In the present

normalization their formula is

o _ (2/2)"(¢; )0 (1= ") 2iam
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XJﬁi)n(a; q) Cn(z;9"q),

where ]ﬁ)n are ¢-Bessel functions [8], [7] and {Cy(z;5|q)} are the continuous g-ultraspherical

polynomials [2], [7], to be defined below. We shall refer to (1.5) as the ¢-plane wave expansion.
Different proofs of (1.5) were given in [5], [6], [10], and [9]. The proof by Floreanini and Vinet
[5] is group theoretic and is of independent interest. In §2 we give a new proof of (1.5) based on
Rogers’ formula (1.8). For a proof of the plane wave expansion and its connections to the addition

theorem of Bessel functions see [13, Chapter 11].

Recall that the g-Bessel function .]52)(93; q) and the continuous g¢-ultraspherical polynomials

are defined by

(16) JIEQ)(QJ“;(]) — (ql’+1;q>oo - (—1)n(;r/2)l/+2n
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and

n
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respectively.

Rogers’ connection coefficient formula (see [2] or [7, (7.6.14)]) for the continuous g-ultraspherical

polynomials is

(/2] ok n—2k
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Cr—2k(z; Blg).

The generating function for the C),’s is

_ (Bte”, Bte”% q)os
(te'? te="; q) oo

(1.9) ZC’ (cos; Blq)t"
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The continuous ¢g-Hermite polynomials are defined by

(1.10)  Hy(zl|q) = Cn(2;0|q)(¢; @)n,

and have the generating function

= t" 1
1.11 H,,(cosf|q = — :
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Al-Salam-Chihara polynomials [1], [9] have the generating function

n(cos@;a,b at,bt; q) oo
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In §4 we give an expansion of &,(z; @) in a series of the special Al-Salam-Chihara polynomials
pn(z;a,—alq). The addition theorem (1.4) implies the evaluation of several definite integrals and
provides several series identities. Section 5 contains a small sample of such results. In particular
(5.4) generalizes a result of Bustoz and Suslov [3], which is the backbone of their theory of the
g-Fourier integral on a g-quadratic grid. Our proof is much simpler than the proof of the special

case in [3].

This paper is essentially self-contained and in §2 we develop all the preliminaries needed in §3.
In the subsequent sections we state all of the necessary formulas. They are mostly orthogonality

relations of certain g-orthogonal polynomials.



2. The ¢-plane wave expansion. In this section we prove (1.5) in two steps: first expand
&qy(z; @) in terms of the g-Hermite polynomials (Lemma 2.1), then use (1.8) to expand in terms

of the g-ultraspherical polynomials. The proof also relies on the ¢-Kummer (Bailey-Daum) sum

[7, (11.9)]

(=45 9) o (aq, aq* /b5 ¢*) 0o

(2.1)  2¢1(a,bsaq/b;q,—q/b) = (—q/b, aq/b; q)oe

Lemma 2.1 We have
2/4 n

(2.2) (q0%; ¢%) Z ¢ (z]q).
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It is not hard to see that Lemma 2.1 is the special case § = ¢ = 0 of (1.5).

Proof of Lemma 2.1. With z = cos apply

(—ig(1=m)/2680 _ig(i=m)/2=i8. o (—'iq(l_nmel:e,—iq(l_n)/Qe_Zie;Q)oo
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then expand the right-hand side in g-ultraspherical polynomials using (1.9) to get
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Now expand Cy(z;¢™"|q) in the basis Hy(z|q) ((1.8) with v = ¢7", # = 0) to see that the
right-hand side R of (2.3) is

(7" Ok bk 2 fark(nt1)/2 o ()5 g +1)/2.
R= a™(—i\" qn n q 7
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The j sum can be evaluated by the limiting case b — oo of (2.1) and is zero unless n — k = 2m

1-2m 1-2m

is even, in which case it sums to (—¢; ) (g :¢*) oo which simplifies to (¢ :q?) . Thus we

find

_ZHk( zlq) 1 kZ o "

= (@D 7*)m

The m sum is summable from the ¢-binomial theorem [7, (I1.3)], proving Lemma 2.1.

Remark. It is important to note that the series in Lemma 2.1 analytically continues the left-hand

side to an entire function in z and in «.



Proof of the ¢-plane wave expansion. Use Lemma 2.1, and expand the ¢-Hermite polynomials

in terms of the g-ultraspherical polynomials ((1.8) with v =0, 5 = ¢”). The result is

(24)  (90%¢)) 00 Ey(z50) = Z%anqﬁ/“@(m;mq)
n=0
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The k-sum contributes the ¢-Bessel function and the infinite products to (1.5).
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Observe that the formal interchange of ¢ and ¢7 amounts to interchanging the formal power

series expansions in z of (2;¢)s and 1/(2¢g7%;¢7 1) . Furthermore for |q| # 1, it readily follows
from (1.1) and (1.2) that

(2.5) Ey(zya) = E (2 —an/g).

Thus, we would expect Lemma 2.1 to be equivalent to the following corollary.

Corollary 2.2 We have

1 4
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Proof of Corollary 2.2. Take the § — oo limit of (1.7),

qn(n—l)/Z(_l)n
(43 9)n

(2.7)  Jim F7"C(e; Blg) = Hy(z]q™"),

and let 3 — 0o in (2.4) to see that (qa?;¢?)w&y(z; @) is

S =1
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Corollary 2.2 immediately follows from this.

Since Corollary 2.2 is crucial to our first proof of (1.3), it is of interest to note that it also
follows directly from Lemma 2.1 without resorting to the g-plane wave expansion. This is so since
(1.8) with v = 0 and 8 — oo give, in view of (1.10) and (2.7),

H,(z|q) [n/Q]( 1) q E(3k—2n—1)/2
(@GO = (GDK(00) -2k

(2.8) Hy,_gp(2|g™").



Using (2.8) we see that the left-hand side of (2.2) is a double sum and after interchanging the
sums it becomes (a?; ¢), times the right-hand side of (2.6) which establishes Corollary 2.2.

3. The addition theorems. In this section we give two proofs of the addition theorem (1.3).
The first proof uses the same technique as the previous section. The second proof uses separation

of variables and circumvents many of the technical difficulties in Suslov’s original proof, [12].

First Proof of (1.3). Let

2. 2
(3.1) A= % Eq(cos b, cos d; ).

Thus, as in (2.3) we have

> ae iy
A= E qn2/4( )

Ch(cos; ¢~ "|q)(—e" (nt1)/2)k,
P TR k(cos ;g7 "|q)(—€"q )

Now expand the C)’s in terms of the H,’s using (1.8) to establish

(32) A = f: qn2/4qk(n+1)/2(_1)kaneié(k—n)q—nj—f-j(j—l)/Q
n,k,7=0
(=17 (47" q)k—j Hi—2;(z]q)
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X

The restrictions on j, k,n are k > 25 and n > k — j. Weset k =25+ and n = N 4+ to find

0o 12/4 1 oo N?/4 N N T o
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The j-sum is Hy(cos@|l¢™!), so Lemma 2.1 and Corollary 2.3 complete the proof.

The second proof of (1.3) relies on the symmetry of £(z, y; ) in z and y. To see the symmetry
first observe that
€—2in¢$(_ei(€+¢)q(1—2n)/27 _ei(¢—6)q(1—2n)/2; 0)on

_ e—2in¢(_ei(€+¢)q(1—2n)/27 _ei(qﬁ—ﬁ)q(l—Qn)/Q; 0

X (_62(6+¢)q1/27 _€Z(¢_6)q1/2, q)n
— q_n2 (_q1/262(6+¢)7 _q1/2€i(¢_6)7 _q1/2ei(6_¢)7 _q1/2€_2(6+¢) q)n
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The above expression is clearly symmetric in 8 and ¢. Similarly we find

e_i(2”+1)¢(—ei(6+¢)q_n, —el (=0 g q)2n+1
=m0 (1 4 (i0+6)) (1 4 (i(6=0))
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The last expression is also symmetric in # and ¢. Therefore the terms in the series (1.1) defining

Eq(cos b, cos ¢; ) are symmetric in § and ¢, hence &,(z, y; ) is symmetric in z and y.

Second Proof of (1.3). In this proof we use (3.2) and the symmetry of £(z,y; ) in z and y.
We rewrite (3.2) as

s q(]_m)2/40é‘7+m62(]_m)¢ ql2/4al

A= 2 (@ 0)m(959); (g9

j7l7m:0

Hi(cos8|q).

Lemma 2.1 implies that the [ sum is (¢a?; ¢®)eo & (cos ;). Thus &,(z,y; ) is the product of
&y(z;a) and a function independent of . This and the symmetry of £,(z, y; &) in = and y give a

separation of variables of the form
(3.3) Eg(z,y;0) = E(z50) & (y; ) g(a),

where g is a function of a and is independent of z or y. To find ¢g(«), we set z = y = 0. The

generating function (1.11) implies

= " 1
H,(0 q — )
T;) o )(Q§Q)n (=1%4%) oo

and we find

(34)  Hyny1(0lg) =0, Han(0]g) = (—=1)"(g;¢%)n-

Therefore Lemma 2.1 implies

(q0% ) £, (0;0) = 3 (—a?)rg LDn _ go2. g2y
oy (4 9)2n

which is &(0; ) = 1. So (3.3) implies that g(«) = 1 and the second proof is complete.



Our proof of (1.4) uses the linearization formula [2], [7]

min(m,n)

(3.5) H,, (z|q) Hy(z]q) _ Hopy ok (2]q)

(4 (45 4)n = (@G Dm—k(6 Dk

Proof of (1.4). From Lemma 2.1 and (3.5) we get

(g0, 4B% 4%) o Ey(z; ) Ey (23 B)

IS) min(m,n)
— (m2+n2)/4am n H’m+n—2k ($|Q)
m,zn;oq ’ kz:% (43 ) k(@5 @)=k (4 @)t

> 2,2 Hin(x
— Z q(m +n )/4am/@n(_aﬁq(m—|—n+1)/2;q)oo : + ( |q)

m,n=0
> aN Hy(z 2
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which simplifies to (1.4).

4. Another example. Any set of polynomials p,(z), whose the connection coefficients from
H,(z|q) are explicitly given, will have an &, (z;a) expansion analogous to the plane wave ex-
pansion. For example, the special case b = —a of the Al-Salam-Chihara polynomials of (1.12)

satisfies

4j—n

@1y eGla) [nf] ¥ pagj(zia, —alg)
(4 9)n = @5 (4 0)n-2

Formula (4.1) follows easily from the generating function of p,(z;a,—alq). If (4.1) is used in

Lemma 2.1, the following theorem results.

Theorem 4.1 The function &,(z; ) has the expansion

(4.2) (qOAQ; qQ)OO Ey(zy o) = i(—OAQCLQqn-H; QQ)OOOAna_nanMZM_
= 4;9)n
n=0

The case a = 0 of Theorem 4.1, when a™"p,(z;a,—alq) = H,(z|q), is Lemma 2.1. The case
a = /q of Theorem 4.1, when p,(z; /g, —/4lq) = ¢ H, (z|q?), is [9, (4.3)].



5. Some integrals and sums. In this section we reinterpret Theorem 4.1 as integral evaluations.
We need the orthogonality relations for continuous g-ultraspherical polynomials {C),(z;8|q)} [7,
(7.4.15)]

(62207 6226’.

(5.1) /Oﬂ Ch (cos 0; 8lq)Cy(cos 8; B|q) (Be2?, ﬂe—éig;)(:;)oo d6

_ 27(8,45: )0 (B%9)n(1—B)
(0,8% )0 (q;q)n(1 = Bg™) ™"

for |B] < 1. The case § = 0 of (5.1) is the orthogonality relation for ¢-Hermite polynomials

(5.2) /Hm(coso|q) (o8 Blg) (¢20, =20, g df = 2T\ LDn 5
0

(43 @)oo

while the Al-Salam-Chihara polynomials satisfy
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Theorem 5.1 We have
(5.4) / &, (cos B; a) &, (cos 8; B) (2, €72, q) oo H,, (cos 8] q) dB
0
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™ i ,—2:0
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Proof. Formula (5.4) immediately follows from (1.4) and (5.2). To prove (5.5), first substitute
for the product of &,’s from (1.4). Thus the left-hand side of (5.5) is

2/4 n
(5.6) Z q h —aBq" V2 q) (g 2B as )
n=0
X/ Hy(cos0q)Co(cos 0 7]q) (¢*, e )0
0 (g0, 45% ¢?) o (ve?l, ve=20 q) oo

JFrom (1.8) and the orthogonality relation (5.1) it follows that the integral is 0 for n odd while

for n even we have

(e, e72% q) s g = VG0 27 (7, 471 @)oo
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This reduces (5.6) to the right-hand side of (5.5) and the proof is complete.

Bustoz and Suslov [3] established the special case v = 1/2 of (5.5) using divided difference
operators. This special case played a key role in their theory of the ¢-Fourier integral. It is hoped

that (5.5) will eventually lead to a one parameter extension of the Bustoz-Suslov theory.
The integral evaluation

™ ‘ ‘ (622'07 6—22(97 q)
(5.7) /0 Eq(cosb; )&,y (cosb; ) (720, =20, )
_2m(y, "t —aBgU 2 ) o (U2 B o Q)nan n2/4
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_gnt1)/2 _g(nt1)/2
q a/B,—q Bl (n+1)/2
X2¢2 ( qn+1")/7—ozﬂq(n+1)/2 q7_aﬁ7q

Cr(cos;v|q) df

extends (5.5) and can be proved in the same fashion. The expansion formula associated with (5.7)

is

o] n+1 _(1-n)/2 . R
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xa™ss ( g0 5, g+

gy, —afq /2
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Observe that the ¢y in (5.8) with v = ¢” and 8 — 0 reduces to a multiple of a‘”‘”Jﬁ_)n(a; q),
so this limiting case of (5.8) is equivalent to the ¢-plane wave expansion.
One can extend (5.5) in a direction different from (5.7) by replacing H,(z|q) by p,(z;a, —alq).
One can prove from (1.4), (4.1) and (5.3) that
[ ‘ ‘ (62i0 6—226’7q) '
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The evaluation (5.9) is equivalent to the orthogonal expansion
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We can deduce series identities from (5.5). For example if we substitute for the &,’s from (1.5)

with v = ¢” in (5.5) we arrive at the expansion

o~ (L= 0" (@5 Dn ya 0272 502) (2) (93.
(5.11) nz_:o T, Ve (205 0) 5 (26;4)
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- (Q7Q7Q)oo 2¢2( u+1 Oéﬁql/Q q7aﬁq +1/2 .

If aand 3 are replaced by (1—¢)aand (1—¢)3, and ¢ — 1, then (5.11) reduces to the multiplication

formula

(5.12) i_o: v+ n) 20)n (=1)"Jotn(20) Jy4n (28) = <aofﬁ)y JUIS(QV(OZ_}_—I_I)/@)

This is very interesting because it is the special case ¢ = 0 of the Gegenbauer addition theorem
[13, (11.4.2)].

One can also derive variations on these integral evaluations and summation identities. For

example by taking products of (1.4) then applying (5.2) we find

(5.13) /Oﬂ [H Eq(cosb; ozk)] (e e=2: q) oo dB

k=1
2T

= T e 0 e
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