A HYPERGEOMETRIC HIERARCHY
FOR THE ANDREWS EVALUATIONS

D. STANTON!

ABSTRACT. Several ¢F5(1) evaluations are given which generalize Andrews’ 5F4(1)
evaluations. All such evaluations are shown to be equivalent to transformations for
a 4F3(z). The methodology allows for higher evaluations, for example an gF7(1) is
given which specializes to over 100 5F4(1) results, including all of Andrews’.

1. Introduction.

In [1] George Andrews listed 20 1-balanced 5 Fy (1) evaluations, which he proved
by induction using contiguous relations. He also stated 10 others, and said that
many other related evaluations exists. This proliferation of evaluations has been
somewhat mysterious, in that they did not fit into the hypergeometric hierarchy.
Moreover, applying the WZ methodology [3] to prove them has met with only
partial success. The purpose of this paper is to organize the evaluations into the
hypergeometric framework by unifying their proof, and finding the more general
transformations that naturally imply the evaluations.

The idea is to find several 1-balanced ¢ F5(1) evaluations, each one of which gives
nine different 5F4(1) evaluations. 20 such results are given in Theorem 1 and the
Appendix ((A1)-(A20)). In §4 (see Theorem 2) we state 7Fg(1) and gF7(1) evalua-
tions, which prove 45 and 165 5F4(1) evaluations, and 9 and 45 ¢F5(1) evaluations
respectively. All of Andrews’ evaluations are corollaries of Theorem 2.

In §5 a general result is given for changing any such evaluation into a transfor-
mation for a hypergeometric series at z (Proposition 3). New transformations for
hypergeometric series arise, three are stated.

We use standard notation for hypergeometric series found in [4]. Also we let

< 2"|F(z) >
denote the coefficient of z™ in a formal power series F(z).

2. Preliminaries.
In [2], a several transformations were given which proved Andrews’ original [1,
(1.6)] 5F4(1) = 0. One of them is
(2.1)
r+1lz+1,x—2+4+1/2,—n,—a—mn;1
(@t n+1)nsFs (2z +2,20—22+1,(—a—2n)/2,(1—a— 2n)/2>
r+1l,z—22z,1—2+22,-n/2,(1—n)/2;1) )

= 2)n s F.
(@+z+n+2)ns 4<z+3/2,a:—z+1,a+x+n+2,—1—a—$—2"
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We shall see that suitably modifying (2.1) yields all of the results. In this section
we review one proof of (2.1) and motivate the method for the generalization.
Equation (2.1) followed from the transformation [2, (5.4)]

7 z+1lz+1L,z—2+1/2;4y(1—y)\ _
82 22 +2,20 — 22+ 1 -
(2.2)
z+1,z—22,1—2x+ 2z;

1— —z—1 E ’ 4(1 y))
(1=9) : 2( z24+3/2,x —z+1

We recapitulate one proof of (2.1), since the same technique will be used for the
main results.

If we multiply both sides of (2.2) by (1 —y)~%/(1 — 2y), and put z = 4y(1 —y),
the right side is

We find the coefficient of 2™ in (2.3) by using

1-—y) 4 B 2 (A+Ek+1); 2
(2.4) A—2y) —kZ:O_ o k(z)k

The resulting coefficient is

(a+z+n+2), x4+ 1,2—221—2+22,-—n/2,(1—n)/2;1)
4nn! o z2+3/2,z—z+1,-1-z—a—-2n,a+z+n+2)

The same method can be applied to the left side of (2.2), to obtain (2.1).
We record the above method in a lemma.

Lemma 1. If z = 4y(1 — y), then for any formal power series F(z) = Y, axz",

<2"F(2) 1 -y)7"/(1 - 2y) >=

(a+n+1), (=1, ~a—n)
1) . Z HCa—2n)/2,(1-a & n)/2)’

<z2"[F(z)(1 —y)_“ >=

(a+n+1),_1 (—n,—a—n)i
(2) i Z T —a=2n)/2, 2 —a— 202

Proof. The first part follows from (2.4), the second part from

(2.5) (1_y)fA=ZA(A+IZ!—I— Dg1 (Z)k



O

We modify (2.2) to a 4F3 transformation by inserting the parameter pair B+1, B
on the left side. The B-generalization of (2.2) (see Lemma 2) is a ¢F5 transforma-
tion. To state the results, we modify Andrews’ H-function

H(n,m,a1,as,a3) =
(2.6)
—-m—-n,z+m+n+l+a,z—2+1/2,z+m+az,z+n+1;1
@2+ 12)/2,(1+3)/2,224+m+n+1+a3,28 —22+ 1+ a1 + az — as

to

H2(n5a17a27a37a4) =
(2.7)
—n,z+n/2+1+a,2—2+1/2,x+as,2+1,B+1;1
075\ 01,61 +1/2,22+ 14 a3,2c — 22+ 1+a, +ay —as —as, B}

where 6; = (24+ 2z 4+ a4 — n/2)/2.

The dependence upon z, z, and B in the H functions has been depressed, al-
though sometimes we may append z, z to the notation. H2 is a linear function of
1/B, and thus is uniquely determined by its value at two different B’s. We next
see that any H2 evaluation implies nine H evaluations.

Proposition 1. H2(n,a;,as,as,a4) can be specialized to obtain nine different H
functions:

Hn/2—1—a4,n/2+ 1+ a4,a1 — ag,a2 — 2a4 — 2,a3 — 2a4 — 2),

(
H(n/2 —a4,n/2+ as,a1 —as — 1,02 — 2a4 — 1,05 — 2a4 — 2),
H(n/2—a4,n/2 + ag,a1 — ag — 1,02 — 2a4 — 1, a3 — 2a4),
H(n/2—as—1,n/2+as+ 1,01 —as — 1,a2 — 2a4 — 2,a3 — 2a4 — 3),
Hn/2—as—1,n/2+ a1+ 1,01 —as — 1,02 — 2a4 — 2,a3 — 2a4 — 2),
H(n/2 — a4,n/2 + as, a1 — G4, 02 — 204, a3 — 2a4),
H(n/2—as—1,n/2+as+ 1,01 —as — 1,a2 — 2a4 — 1,a3 — 2a4 — 2),
H(n/2—as—1,n/2+ as,a1 — ag,a2 — 2a4 — 1,a3 — 2a4 — 1) and
H(n/2—as—1,n/2+ as,a1 —ag — 1,02 — 2a4 — 2,03 — 2a4 — 2).

Proof. If B=12+n/2+ a; + 1, the H2 function becomes
H(n/2—1—a4,n/2+1—a4,a1—ay,a3—2a4—2,a3—2a4—2, z—n/24a4+1, z2—n/2+as+1).

The next 8 choices are given by B =2+ 1,2 —2+1/2,22+ a3, 22— 22+ a1 + a2 —
as —a4,(x +1—n/2+4 a4)/2,x + az,—n, 0, respectively. O



3. The main theorem.
We prove Theorem 1 from a ¢F5 transformation, which is Lemma 2.

Lemma 2. Ifn is a non-negative integer,

—r—n)2 = a)n_
(—x—3n/2—a—1)( ud n{ﬁ %) 1I—I2(n,a,1,1,a):
"Z/Z(x+1,x—2z,1—x+2z)j (—n/2—a+j+1)p_25-1
= (1,z+3/2,z—2z+1); (n — 2j)!

x ((1+n/B)(=3n/2 —a+3j) + (z 4+ 3n/2+ a+1)(n — 2j)/B).
Proof. Apply (1 —y)~%(B + zd%)/B to both sides of (2.2), where z = 4y(1 — y).
Lemma 1 implies that the coefficient of 2™ on the left side is

ala+n+1),-1 z+1l,z+1l,z—2+1/2,B+1,—n,—a—n
nl4n 079 \22+ 2,22 - 22+1,B,(1—a—2n)/2,(2—a—2n)/2)"

If —a—n=z+n/2+a+1, then the ¢F; becomes the stated H2.
Let R(y) denote the right side of (2.2). Then

<z"(1-y)"*R(y) +

z

B
<M1= y)RO) + (1= 1) RE)) ~ SRE) (1~ )™ >=
<M1= ) RE) + 50 ((1-5) " R() ~ SR~ y) /40~ 2) >

We can routinely find the coefficient of 2" in each term using Lemma 1. Summing
these terms gives the stated result. O

In the statement of Theorem 1,

1—2z+42z,2—22,1/2),
(z+3/2,14z—2,-1—2),

R, (z,2) =

Theorem 1. If n is a non-negative integer,

(B+2n)(z+1)

Al H2(2n,0,1,1,0) = Rp(z,2) o "
(A1) (2n,0,1,1,0) R(wZ)B($+3n+1)

(A2)

B(z+3n+2)(x—n+1)

?

(A3)

H2On+1,1/2,1,1,1/2) = Ro(z, 2) ont V@B -z =14+ n)@@ + 1)

Bz +3n+3)(z+n+1)




Proof. If we set a = 0 in Lemma 2, and n is even, the right side factor (—n/2 +
J+1)n_2j_1 is zero for 0 < j < n/2, so only the j = n/2 term contributes. The
choices @ = +£1/2 work in the same way for n odd. O

According to Proposition 1, Theorem 1 gives 27 H evaluations. 23 of them are
distinct, and 11 appeared in Andrews’ list of 30 in [1].

We can now easily prove many more H?2 evaluations, by finding H2’s whose nine
B specializations include two that are known from previous cases. We list these in
the Appendix. Note that (A4) is independent of B. The number of H evaluations
implied by these results is over 100.

4. Higher evaluations.

Because of the proliferation of H2 evaluations, one may ask if it is possible to
give a l-balanced 7Fg evaluation, which will imply nine different H2 evaluations.
One may also ask for a single evaluation which implies every one on Andrews list.
In this section we explicitly answer both of these questions. In particular Theorem
2 evaluates a 1-balanced g F7 which gives Andrews’ 30 5F4’s and over 100 others.

Let

H3(n,a1,a2,a3,a4,,2) =

(4.1)
F(—n,x+n/2+1+a1,a:—z+1/2,3:+a2,z+1,B+1,C+1;1>
O\ 0,,00+1/2,22+1+a3,2c — 22+ 1+ay +as —as —as, B,C )’

where ; = 3+ z + agy — n/2)/2. (We delete z and z in formula involving H
functions if  and z are constant throughout.)

As before, H3 is a linear polynomial in 1/C. As in Proposition 1, H3 can be
specialized in nine ways to obtain an H2, any two of which determine H3. For
example, C = z+ 1, C =z + ay give

(C—2z-1)(z+a2)
Clx+ay—2-1)

H3(n,a1,a2,a3,a4,%,2) = H2(n,a1,a2 +1,a3,a4 + 1,2, 2)+

(4.2)
(C—z—ax)(z+1)
C(z+1—2z—a9)

H2(n,a1 —1,a2 — 1,a3 — 2,a4, 2+ 1,2 + 1).

Applying (A6) and (A7) to (4.2), we see that H3(2n + 1,3/2,1,3,—-1/2,z, 2) is
evaluable. A similar argument with

(2C—-2—z—a4+n/2)(22+ a3)

H2 -1 1
C(4z+2a3 —2—z —as +n/2) (n,a1,02,05 = 1,as + 1)+

H3(n,a1,as2,a3,a4) =
4.3)

(C—22—a3)(2+x+as—n/2)
C2+z+as—n/2—2z—a3))

H2(n,ay,as,a3,a4),

(A3), and (A8) evaluates H3(2n +1,1/2,1,2,-1/2,z, 2).



We can iterate this technique to evaluate a single g F; that specializes to (131) =

165 H’s, including all 30 on Andrews’ list. Of the 165 possible specializations, 145
are distinct. Let

H4(n,a1,a2,a3,a4) =
(4.4)
—n,z+n/2+1+a,2—2+1/2,24+a2,2+1,B+1,C+1,D+1;1
8 7( 01,60 +1/2,22+1+a3,2x — 22+ 14+ a1 +as —as —a4,B,C,D )

where 0; = (4+z + a4 —n/2)/2.

Theorem 2. If n is a non-negative integer, then

Ki(C—z—-1)(z+1)(A6)(z,2) — (C—z—-1)(z+ 1)(AT)(z + 1,2+ 1))+
Ky ((2C -3 —x+n+2)(22+2)(A43)(x,2) — (C —2z—2)(x —n + 1)(A8)(x, 2)),

where (A6), (A7), (A3), and (A8), are given in Theorem 1 and the Appendiz, and

(D-22-3)(z+n+2) Ko — (D—z—n-—2)(22z+3)

K= CD(z+n—-2z—1)(z—2)"" " CD@E+n—-22-1)(z—n—42-3)

Proof. Use

(D—-2z—a3)(z+n/2+1+a1)
D(z+n/2+1+a; —2z—a3)

H4(n,a1,as2,a3,a4) = H3(n,a1 + 1,as,a3,a4 + 1)+

(4.5)
(D—z—n/2—-1—a1)(22 + a3)

H3 ’ ) ) _]-, 1
D(2z+a3—x_n/2_1_al) (n,a1,a2,a3 as + 1)

and the two above evaluations of H3’s. [

5. Transformations.

In this section we derive 4F3 transformations from any of the evaluations in
Theorem 1 or the Appendix.

Suppose that F(z) = Y po,arz® is a formal power series. We will use the
following lemma.

Lemma 3. Ifz=4y(1-y), w=y//T—y. Then

<ZF(2)(1—y) 7"/ (1 = 2) >=<w"|F(2)(1 - y) "2 /(1 —y/2)47" > .

Proof. We change variables from z to y to w:

< ()1 —y)"/(1 = 29) >=< y"|F(z)1 —y)~* """ 147" >=
< W F(2)(L =)~ (L -y /247" >



]
Most of the evaluations(A1)-(A20) have the form below, so we suppose that

n

(=n,z+n/2+ )k -
>y D A ey

" (—n,z+n/2+ )k —
o2 2 Tz a2 /8 Cra—nfTr 0

Gy) = F(4y(1 —y)(1 —y)""/(1 - y/2).
Proposition 2. If (4.1) and (4.2) hold, then

) 6+ Glofly=1) =23 b I L

(2) G(y) _ ( Z ﬂZN—i—l 1/2 — é]:/vz__l)iv)ZN_’_l ( Y )2N+1
N=0

Gy)(1-2y)+Gy/ly-1))(A+y) =

Gly)(1-2y) - Gly/(y-1))(A+y) =

@) 23 vl 3N ) S RN e

Proof. We prove the first statement, the other three are done similarly. Expand

G(y)+G(y/(y—1)) as a power series in w = y/+/1 — y. Since the map y — y/(y—1)
sends w to —w, G(y) + G(y/(y — 1)) is an even function of w. Lemma 2 implies

<wN|G(y) > =< wM|F(2)(1 —y)**"/(1 —y/2) >=
=< Z2N|F(z)(1 — y)z+7+3N42N/(1 —2y) >.

The result follows from Lemma 1 and (4.1). The odd part gives the second state-
ment, while the second part of Lemma 1 gives the final two results. O



We apply Proposition 1 to (A1), (A2), and (A4). We find

(;c+1,z+1,m—z+1/2,B+1;4y(1—y)
1F3

1—gy)*H (1 -2
2422 —22+1,B >( y) -2y

4+ 1,z+1,z—2+1/2,B+1;—4y/(1 —y)?) 1
. F. 1-— =1 =
(5:3) 4 3( 2 +2,2c—2:+1,B 1=y (A +y)
r+1,1—x+2z,0—22,B/2+1;-y%/4(1 —y)
2(1 — y/2)4F:
(1=9/2s 3( 2+3/2,1+z — 2, B/2 ’
(5.4)

z+1,z+1,2—2+1/2,B+1;4y(1 — y)
F J ) ) ) 1— w+1/21_2 _
g 3( 22 +2,20—2:+1,B (=)™ 71— 2y)
z+1l,2+1,z—2+1/2,B+1;-4y/(1—y)?) R
F 5 ) > ) 1— z /21 —
g 3( 2 +2,22—22+1,B (1-9) (1+9)
(x—B+1)y (x+1,1—x+2z,m—2z,m—B+2;—y2/4(1—y)>

21 —y/2) T )Y
A=y =pg= T 2 +3/2,1+z—z2—B+1

x+2,z+1,x—2+1/2,B+1;4y(1 —y)
F ’ ’ ’ ) 1_ z+2
4 3( 243,22 —22+2,B (=)™
r+2,2+1,x—2+1/2,B+1;-4y/(1—y)?) R
5.5 F: 1- ==
(5:5) 4 3( 2 +3,20 — 22+ 2,B (1-y)
r4+2,1—x+2z,2—22;—y?/4(1 — y)
2(1 —y/2) 4F .
(1-y/2)4 3( 2 +3/21+z—2

(4.3)-(4.5) generalize the 3F; transformations given in [2].

We can also give ¢ F5(1) transformations (analogous to Lemma 2), by multiplying
the transformations in Proposition 2 by (1 —y)~%, and expanding either as function
of z of y. These results have the form ¢F5(1)+¢F5(1)=6F5(1).

6. Remarks.

It is not surprising that results such as (A1)-(A20) exist in view of Andrews’
results. Inserting the a pair B + 1, B into a 5 F}y gives a sum of two 5F}’s, so there
should be a result with two terms. The choices in (A1)-(A9) are particularly nice,
appearing as one term.

Andrews’ original 5Fy; = 0 follows immediately from any of (A1)-(A9) by spe-
cializing the linear factor in B to be 0.

Theorem 2 specializes to 11 of the 20 evaluations (A1)-(A20). One could give a
oF3 evaluation (as a sum of 8 terms) generalizing Theorem 2 which implies (A1)-
(A20).

Evaluations of 2, 3 and 4- balanced 5 F4’s are obtained by taking the B, C, D — oo
limits of Theorem 2 and (A1)-(A20).



One can obtain transformations of 2-balanced series, without appealing to B.
For example, if the second part of Lemma 1 is applied to (2.2) one finds
6.1
©- (a)a2n z+l,z+1,x2—2+4+1/2,—n,—a—mn;1
(a+1),° 4<2z+2,2m—22+ 1,(1 —a—2n)/2,(2—a—2n)/2>
(a4 z4+1)2, z+1,z—-22,1—2+22,-n/2,(1-n)/2,(x+a+4)/3;1)
- (a+z+2), 6 5(z+3/2,$—z+l,a—}—x—l—n—}—Z,—a—m—2n,(m+a+1)/3>'

Appendix.

We state several other H2 evaluations, besides the three given in Theorem 1.
(A4)-(A9) were chosen because of the simple form, (A10)-(A20) because of the
simple form of the B — oo limit, which is a 2-balanced 5F} evaluation.

We use

l—-z+22+a,z—22+0b,1/2),

S, bc) =
n(%,2,a,b,c) (z+3/2+c,1+m—z+a+b,—1—w)n’

so that R, (z,z2) = S,(z,2,0,0,0).
(A4) H2(2n,1,2,2,0) = R,(z, 2),

2n+1)(1 — 2B + 2z — 22)

_ 1o ol
(A5) H2(2n+1,3/2,2,1,1/2) = Sp(z,2—1,2,-2,1) Br—25=3) )

2n+1)(B—1—2)
B(z+2) ’

(A6)  H2(2n+1,3/2,2,3,1/2) = Su(x, 2,0,0, 1)(

(2n+1)(—z + n)(z — B)
B(z 4+ n)2

(A7) H2(2n+1,1/2,0,1,-1/2) = Sp(z — 2,2,—1,3,0)

2n+1)(B—-22-2)
B(2z 4+ 2n + 3)

(A)  H2(2n+1,1/2,1,2,-1/2) = Sp(z — 1,2,0,1,0)

(2n+1)(1 — B + 2z — 22)

A9) H2(2 1,1/2,1,1,-1/2) = Sp(z—1,2,—1,2
(A9) H2(2n+1,1/2,1,1,-1/2) = Salz—1,2,—1,2,0) 2 =22

(A10)

—n+1)BRz—z—-n+1)+2n(z+1
H2(2n’1’1’2’07$7z):Sn(w—l,z,O,l,O)(x n+1)(BR2z—z—-n+1)+2n(z+1))

Blz+n+1)(2z—z+n+1)

(1+2)(B(2z—z+n)+n(2z — 22 — 1))

All) H2(2n,1,1,1 = Lip(z,
( ) (n7 ) ,0,.’1},2) R (IL' Z) (2z—m)B(Z‘+n+1)




H2(2n+1,1/2,2,2,1/2,3,2) =

A12
. Ry (x z)(2n+1)(B(2z+m+3n+5)—(z+1)(2a:+2n+4))
e (22 +2n + 3)B(z + 3n + 3)
H2(2n+1,3/2,2,2,1/2,z,2) =
(A13)

2n+1)(B(3x —22+3n+4)+ (22 — 2z — 1)(x + n + 2))
2B(z+3n+3)(x—z+n+1)
H2(2n +1,3/2,2,2,1/2,2,2) =
Cn+1)(Bzx+n+2)+222+1—-22) -2z —-1)
B(2z+4+2n+3)(z —2z+n+1)
H2(2n+1,-1/2,0,0,-1/2,2,2) =
(A15)

Sn(w -1,2z,—1, 270)

R, (z,2)

(A14) Ry (2, 2)

z(2n+1)(B(4z — 4+ 3n+ 2) — 2z(z2 + 2n + 1) + 2nz)
(2z+1)B(z + 3n+2)(z +n)

H2(2n+1,-1/2,0,1,-1/2,2,2) =
(A16)
Sn('r - ].,Z,O, 170)

z(2n+ 1)(B(4z — 3z — 3n) + (22 + 1)(z + n) + 22(n — z))
2(z—x)B(z + 3n + 2)(z +n)
H2(2n +1,1/2,2,1,~1/2,2,2) =
(A17)
Sn(z,z—1,1,—-1,1)

@Cn+1)(B2z+2n+1)+(n+2+2)(22 -2z —1))
(22—=22—3)B(—z+n—1)

H2(2n+1,1/2,2,3,-1/2,2,2) =

(A18)
2n+1)(B(z—z—n)+(z+n+2)(z+1))

Snl@;2,1,-1,1) (z+2)B(—z+n-1)

(A19)

HQ(QTL,O, 17 2707'777'2) = Sn(.CL',Z,O, _170) (1 + -'E)(B(2Z —z—3n+ 1) + 4n(z + 1))

(1-z+22)B(zx+3n+1)

(A20)

1+ 2)(B(22 — Az — 4z — 2
H2(2n,0,1,0,0,:c,z):Sn(:c,z—l,l,—Q,O)( +2)(B(2z — @+ 3n) + n(dz — 4z - 2))

(- +22)B(x +3n+1)
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