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Abstract. This paper is a survey on combinatorics of moments of orthogonal polynomials
and linearization coe�cients. This area was started by the seminal work of Flajolet followed
by Viennot at the beginning of the 1980’s. Over the last 30 years, several tools were conceived
to extract the combinatorics and compute these moments. A survey of these techniques is
presented, with applications to polynomials in the Askey scheme.

1. Introduction

In this article we will consider polynomials Pn(x) in one variable x with coe�cients in
a commutative ring K indexed by a non-negative integer n. In general K will be C or R.
Sometimes these polynomials will depend on formal variables a, b, c, d and q.

Given a sequence {µn}n�0 of elements of K, there exists a unique linear functional L on the
space of polynomials, L : K[x] ! K such that µn = L(xn). The sequence {µn}n�0 is called the
moment sequence of this linear functional.

Definition 1.1. A sequence {Pn(x)}n�0 is called an orthogonal polynomial sequence (OPS)
with respect to a linear functional L if

(1) Pn(x) is a polynomial of degree n for each n � 0,
(2) L(Pn(x)Pm(x)) = Kn�n,m for all n, m � 0, where Kn 6= 0.

In this case we also call Pn(x) an orthogonal polynomial.

Note that if L is a linear function for an OPS, then any linear functional L0 which is obtained
by multiplying a nonzero constant to L is also a linear functional for the OPS. Conversely, if L
and L0 are linear functionals for an OPS, then L = c ·L0 for a nonzero constant c. Thus, there is
a unique linear functional L for an OPS such that L(1) = 1. In this case we say that L and its
corresponding moments are normalized. Several books were written on the subject [2, 5, 31, 27].
Here we focus on the moments of these polynomials and their relation to combinatorics started
by Flajolet [12] and Viennot [33].

The Hankel determinant of the moment sequence {µn}n�0 is

�n =

���������

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
...

...
. . .

...
µn µn+1 · · · µ2n

���������

.

Theorem 1.2. [31] A linear functional L has an OPS if and only if �n 6= 0 for all n � 0.
Moreover, an OPS is uniquely determined up to a constant multiple. Indeed, the polynomials
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Pn(x) in monic form, are given explicitly by :

Pn(x) =
1

�n�1

�����������

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1
...

...
. . .

...
µn�1 µn · · · µ2n�1

1 x · · · xn

�����������

.

One of the most important theorems in the classical theory of orthogonal polynomials is the
three-term recurrence relation.

Theorem 1.3. Any monic OPS {Pn(x)}n�0 satisfies a three-term recurrence relation

Pn+1(x) = (x � bn)Pn(x) � �nPn�1(x),

for n � 1, for some sequences b0, b1, . . . and �1,�2, . . . , where �n 6= 0.

For non-monic orthogonal polynomials we can always rescale them to get monic ones. The
three-term recurrence relation and the moments can be easily obtained as follows.

Proposition 1.4. Suppose that Pn(x) is an orthogonal polynomial with a three-term recurrence
relation

Pn+1(x) = (Anx � Bn)Pn(x) � CnPn�1(x).

Then the rescaled orthogonal polynomial ePn(x) = anPn(tx) satisfies

ePn+1(x) = ( eAnx � eBn) ePn(x) � eCn
ePn�1(x),

where
eAn =

an+1

an
tAn, eBn =

an+1

an
Bn, eCn =

an+1

an�1
Cn.

Moreover, if {µn}n�0 and {eµn}n�0 are moment sequences of Pn(x) and ePn(x), respectively,
then there exists a constant c such that for all n � 0,

µn = c · tneµn.

The orthogonality of orthogonal polynomials with real coe�cients is defined by a measure
w(x), that is a functional L : R[x] ! R defined by the Stieltjes integral

L(P (x)) =

Z 1

�1
P (x)dw(x).

The most general classical orthogonal polynomials are called the Askey-Wilson polynomials
[3]. All of the other classical polynomials can be obtained as a specialization or a limit of these
polynomials. The Askey-Wilson polynomials depend upon five parameters: a, b, c, d, and q
and are defined by basic hypergeometric series. We use the usual notation

(a; q)k =
k�1Y

i=0

(1 � aqi), (a1, . . . , am; q)k =
mY

i=1

(ai; q)k.

Definition 1.5. The Askey-Wilson polynomials are defined by

(1) pn(x; a, b, c, d|q) =
(ab, ac, ad; q)n

an

nX

k=0

(q�n, abcdqn�1, az, a/z; q)k

(q, ab, ac, ad; q)k
qk

with x = z+z�1

2 .
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These functions are polynomials in x of degree n due to the relation

(az, a/z; q)k =
k�1Y

j=0

(1 � 2axqj + a2q2j).

A representing measure for the Askey-Wilson polynomials may be given for 0 < q < 1 and
max{|a|, |b|, |c|, |d|} < 1. The orthogonality relation is

Z ⇡

0
pn(cos ✓; a, b, c, d|q)pm(cos ✓; a, b, c, d|q)w(cos ✓; a, b, c, d|q)d✓ = 0, n 6= m,

where x = cos ✓ and the measure is given by

w(x; a, b, c, d|q) =
(z2, z�2; q)1

(az, a/z, bz, b/z, cz, c/z, dz, d/z; q)1
.

The enumeration formula and the combinatorics of the moments of these polynomials were
recently presented in [9, 10, 25, 26]. A recent catalog on known enumeration formulas for
moments appeared in [28].

In this paper, we will consider the moments of orthogonal polynomials of the Askey scheme,
and emphasize their relationship to combinatorial enumeration. In Section 2, we give a general
interpretation of the orthogonal polynomials and their moments using paths [33]. In Section
3, we introduce some basic combinatorics related to the moments of Hermite, Charlier and
Laguerre polynomials and their q-analogues. This was first started in the memoir of Viennot
[33] and then in a series of papers by several authors. In Section 4, we present an odd-even trick
which is often useful to compute moments and can also give non-trivial combinatorial results.
In Section 5, we focus on the case of the Askey-Wilson moments and their enumeration formula.
In Section 6, we present some modified moments coming from the Askey-Wilson basis. We end
in Section 7 with linearization coe�cients.

This paper is a survey and contains a collection of diverse results; so that the interested reader
can learn a series of important tools built for the study of moments of orthogonal polynomials.

2. Path interpretation of the polynomials and the moments

For general orthogonal polynomials which satisfy Theorem 1.3, the moments µn are always
polynomials in the three-term recurrence coe�cients with non-negative integral coe�cients. For
example,

µ0 = 1, µ1 = b0, µ2 = b2
0 + �1, µ3 = b3

0 + 2b0�1 + b1�1.

The orthogonal polynomials pn(x) may also be given as polynomials in x and the three-term
recurrence coe�cients, but not necessarily positive. For example,

p0(x) = 1, p1(x) = x � b0, p2(x) = x2 � (b0 + b1)x + (b0b1 � �1).

The purpose of this section is to give combinatorial interpretations for these two phenomena
using paths.

Paths live in the quarter plane ⇧ = N ⇥ N. A path ! is a sequence ! = (s0, . . . , sn) where
si = (xi, yi) 2 ⇧. The si’s are the vertices of the path. The starting vertex is s0, the ending
vertex is sn and (si, si+1) is an elementary step of the path.

The step (si, si+1) is called

• North if xi = xi+1 and yi + 1 = yi+1;
• North-North if xi = xi+1 and yi + 2 = yi+1;
• North-East if xi + 1 = xi+1 and yi + 1 = yi+1;
• South-East if xi + 1 = xi+1 and yi � 1 = yi+1; and
• East if xi + 1 = xi+1 and yi = yi+1.



4 SYLVIE CORTEEL, JANG SOO KIM AND DENNIS STANTON

The paths are weighted. There is a partial application wt : ⇧ ⇥ ⇧ ! K which associates to
each step (si, si+1) a weight wt(si, si+1) 2 K. The weight of the path ! is the product of the
weight of the steps :

wt(!) =
n�1Y

i=0

wt(si, si+1).

Definition 2.1. [33] A Favard path is a path ⌘ = (s0, . . . , sn) starting at s0 = (0, 0) with three
types of elementary steps: North, North-North and North-East. The weight of the elementary
step (si, si+1) is x if the step is North-East and �bk (resp. ��k+1) if the step is North (resp.
North-North) and the y-coordinate of si is k. The length of the path is the y-coordinate of sn.

Let Favn be the set of Favard paths of length n.

Lemma 2.2. [33] Let {Pn(x)} be a sequence of polynomials which satisfies the recurrence of
Theorem 1.3 and with boundary conditions P0(x) = 1 and P1(x) = x � b0. Then

Pn(x) =
X

!2Favn

wt(!).

A Motzkin path of length n is a path consisting of North-East steps, East steps, and South-
East steps which lies in the first quadrant. Let Motn,k,` be the set of Motzkin paths from (0, k)
to (n, `), and let Motn = Motn,0,0.

Suppose that two sequences b = {bn}n�0 and � = {�n}n�1 are given. For a Motzkin path
P , we define wtb,�(P ) to be the product of the weight of every step in P , where the weight of
each step is defined as follows.

(1) A North-East step has weight 1.
(2) An East step has weight bk, where k is the y-coordinate of starting point.
(3) A South-East step has weight �k, where k is the y-coordinate of starting point.

For the remainder of this section we assume that Pn(x) are orthogonal polynomials given by
P�1(x) = 0, P0(x) = 1, and for n � 1,

Pn+1(x) = (x � bn)Pn(x) � �nPn�1(x),

with the normalized linear functional L and the nth moment µn = L(xn).

Theorem 2.3. [33] We have

µn =
X

!2Motn

wtb,�(!).

We will sketch a proof of a generalization of Theorem 2.3 that also gives a combinatorial
proof of the orthogonality.

Theorem 2.4. [33] For all n, k, `,

(2) L(xnPk(x)P`(x)) = �1 · · ·�`

X

!2Motn,k,`

wt(!).

Proof. (Sketch [33].) The proof of this theorem uses the combinatorial interpretation of the
polynomials as Favard paths. Let En,k,` be the set of triplets made of

• A Favard path f of length k
• A Favard path g of length `
• A Motzkin path ! of length n + p(f) + p(g) where p(f) is the number of North-East

steps of f .
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Let Fn,k,` be the subset of En,k,` where p(f) = k, p(g) = ` and ! starts with k North-East steps
and ends with ` South-East steps. Proving the theorem is equivalent to defining a sign-reversing
involution ✓ on En,k,` whose fixed points are exactly the elements in the set Fn,k,`. Let j be
the minimal index such that (sj , sj+1) is an East step or a South-East step in !. If j < k
then let h(!) = yj otherwise h(!) = 1. Let fj be the first step of f which is a North or a
North-North step. Let h(f) = j if such a j exists otherwise h(f) = 1. If h(!) or h(f) is finite,
then if h(f) � 1 is smaller than or equal to h(!), if the h(f)th step of f is North-North, we add
a North-East step and a South-East step to ! in position h(f)� 1 and change the North-North
step to two North-East steps; otherwise (it is a North step), we add an East step to ! in position
h(f). The step in f is changed to one North-East step. Otherwise (h(f) � 1 > h(!)), we take
o↵ the first East step or the first South-East step and its previous North-East step from ! and
change two North-East steps in f by a North-North step or one North-East step in f by a
North step. One can easily check that this changes the sign. If both h’s are infinite, we apply a
similar algorithm on g and the last ` steps of !. The only triplets where the algorithm cannot
be applied are exactly the ones in Fn,k,`. ⇤

Note that this implies that

L(Pk(x)P`(x)) = �1 . . .�`�k`.

and this gives a proof of the orthogonality relation.
Let

Ci(z) =
1

1 � b0+iz � �1+iz
2

1 � b1+iz � �2+iz
2

. . .

.

Using the theory of Flajolet [12] we have

Corollary 2.5. We have

X

n�0

µnzn =
1

1 � b0z � �1z
2

1 � b1z � �2z
2

. . .

= C0(z);

X

n�0

L(xnP`(x))zn = �1 · · ·�`z
`
Ỳ

i=0

Ci(z);

X

n�0

L(xnP`(x)Pk(x))zn =

min(k,`)X

j=0

�1 · · ·�jCj(z)
Ỳ

i=j+1

�izCi(z)
kY

i=j+1

�izCi(z).

The last equation in Corollary 2.5 can be proved by observing the fact that we can uniquely
decompose a Motzkin path ! 2 Motn,k,` as

! = !k�jD · · ·!1D!0U!
0
1 · · · U!0

`�j ,

where j is a nonnegative integer, each !i and !0
i is a Motzkin path in which the starting and

ending vertices have the smallest y-coordinates, D is a South-East step, and U is a North-East
step.
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BIJECTIONS ON TWO VARIATIONS OF NONCROSSING

PARTITIONS

JANG SOO KIM

Abstract. We find bijections on 2-distant noncrossing partitions, 12312-avoiding
partitions, 3-Motzkin paths, UH-free Schröder paths and Schröder paths with-
out peaks at even height. We also give a direct bijection between 2-distant
noncrossing partitions and 12312-avoiding partitions.
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1 2 3 4 5 6 7 8 9

Figure 1. The standard representation of ({1, 4, 8}, {2, 5, 9}, {3}, {6, 7}).
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2 0
12

2
2
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2

� f0

0

2 0

0 2

0 2 2 2 2

2

Figure 2. An example of f0.

1

Figure 1. The diagram representing the set partition {{1, 4, 7}, {2, 5, 9}, {3}, {6, 7}}.

3. Combinatorics

In this section we show that the moments of Hermite, Charlier, and Laguerre polynomials
are equal to the numbers of perfect matchings, set partitions, and permutations respectively.

A set partition of a set X is a collection of mutually disjoint nonempty subsets of X
whose union is X. We denote by ⇧n the set of set partitions of [n] = {1, 2, . . . , n}. Let
⇡ = {B1, B2, . . . , Bk} 2 ⇧n. Each element Bi of ⇡ is called a block. The size of a block Bi is
the cardinality |Bi|. An edge of ⇡ is a pair (i, j) of integers such that i < j, both i and j are
contained in the same block, and the block containing i and j does not contain any integer k
with i < k < j.

We will represent a set partition of [n] as a diagram by placing integers 1, 2, . . . , n in a row
and connecting i and j for each edge (i, j) of the set partition, see Figure 1. In this pictorial
representation, the following definitions are natural.

Let ⇡ 2 ⇧n. An integer i 2 [n] is called a singleton, an opener, a closer, or a continuation of
⇡, if i is the unique element in a block of size 1, the minimum of a block of size at least 2, the
maximum of a block of size at least 2, or none of these, respectively. For example, if ⇡ is the
set partition in Figure 1, then 3 is a singleton, 1, 2, 6 are openers, 7, 8, 9 are closers, and 4, 5 are
continuations.

A crossing of ⇡ is a set of two edges (a, b) and (c, d) such that a < c < b < d. Let
crossing(⇡) denote the number of crossings of ⇡. For example, if ⇡ is the set partition in
Figure 1, then crossing(⇡) = 4 since there are four crossings {(1, 4), (2, 5)}, {(2, 5), (4, 7)},
{(4, 7), (5, 9)}, {(4, 7), (6, 8)}.

A matching is a set partition in which every block has one or two elements. A matching is
called perfect if every block has 2 elements. Let Mn denote the set of perfect matchings of [n].
One can easily see that |M2n+1| = 0 and

|M2n| = (2n � 1)!! = 1 · 3 · · · (2n � 1).

Since ⇡ 2 M2n is also a set partition, we can represent ⇡ using a diagram, and crossings of ⇡
are defined.

3.1. Hermite polynomials. The Hermite polynomials Hn(x) are defined by

H�1(x) = 0, H0(x) = 1, and

Hn+1(x) = xHn(x) � nHn�1(x), for n � 0.

A Dyck path of length n is a Motzkin path in Motn without East steps. A Hermite history
of length n is a Dyck path of length n in which every South-East step between the lines y = i
and y = i � 1 is labeled by an integer in {0, 1, . . . , i � 1}.

By Theorem 2.3, the nth moment µn of the Hermite polynomials is

µn =
X

P2Motn

wtb,�(P ),

where b = {bn}n�0 and � = {�n}n�1 are given by bn = 0 for all n � 0 and �n = n for n � 1.
Let P 2 Motn. Then wtb,�(P ) = 0 if P has an East step. Otherwise, P is a Dyck path and
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Figure 1. The standard representation of ({1, 4, 8}, {2, 5, 9}, {3}, {6, 7}).
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Figure 2. An example of f0.

1

Figure 2. An example of the bijection  H sending perfect matchings to Her-
mite histories.

wtb,�(P ) is equal to the number of Hermite histories whose underlying Dyck path is P . Thus
µn is equal to the number of Hermite histories of length n.

We now give a bijection  H : Mn ! HH(n) from the set Mn of perfect matchings of [n]
to the set HH(n) of Hermite histories of length n, which appears in [11, Section 2]. It su�ces
to consider the case when n is even since both sets are empty otherwise. Let ⇡ 2 M2n be a
perfect matching of [2n]. Then the corresponding Hermite history  H(⇡) is defined as follows.
For i = 1, 2, . . . , 2n, if i is an opener of ⇡, then the ith step of  H(⇡) is a North-East step. If
i is a closer of ⇡, then the ith step of  H(⇡) is a South-East step labeled by the number of
crossings {(a, b), (c, d)} of ⇡ with a < c < b < d and b = i. See Figure 2 for an example. One
can check that  H is a bijection. Thus we have the following theorem.

Theorem 3.1. The nth moment of the Hermite polynomial is equal to the number of perfect
matchings of [n]. In other words, µ2n+1 = 0 and µ2n = (2n � 1)!!.

Classically, Theorem 3.1 may be derived using the representing measure for the Hermite
linear functional

LHermite(p(x)) =
1p
2⇡

Z 1

�1
p(x)e�x2/2dx.

The q-Hermite polynomials Hn(x|q) are defined by H�1(x|q) = 0, H0(x|q) = 1, and for
n � 0,

Hn+1(x|q) = 2xHn(x|q) � (1 � qn)Hn�1(x|q).
For our purposes, it is more convenient to consider the rescaled q-Hermite polynomials

eHn(x|q) =
Hn(

p
1�q
2 x|q)

(1 � q)n/2
.

Then by Proposition 1.4, we have eH�1(x|q) = 0, eH0(x|q) = 1, and for n � 1,

eHn+1(x|q) := x eHn(x|q) � [n]q eHn�1(x|q).
where we have used

[n]q =
1 � qn

1 � q
= 1 + q + · · · + qn�1.

We see that the nth moment of eHn(x|q) is

µn =
X

⌘2HH(n)

q|⌘|,
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where |⌘| is the sum of labels of South-East steps. The bijection  H : Mn ! HH(n) satisfies
crossing(⇡) = | H(⌘)|. Thus we obtain the following theorem.

Theorem 3.2. [19, Eq. (3.8)] The nth moment of the rescaled q-Hermite polynomials eHn(x|q)
is

µn =
X

⇡2Mn

qcrossing(⇡).

The rescaled discrete q-Hermite polynomials ehn(x; q) are defined by eh�1(x; q) = 0, eh0(x; q) =
1, and for n � 0,

ehn+1(x; q) = xehn(x; q) � qn�1[n]qehn�1(x; q).

Again the odd moments are 0. The analogous version to Theorem 3.2 is the next result.

Theorem 3.3. [30, p. 310, (5.4)] The 2nth moment of the rescaled discrete q-Hermite polyno-

mials ehn(x; q) is

µ2n = [1]q[3]q · · · [2n � 1]q =
X

⇡2M2n

qcrossing(⇡)+2 nesting(⇡),

where nesting(⇡) is the number of pairs of two edges (a, b) and (c, d) of ⇡ such that a < c < d < b.

3.2. Charlier polynomials. The Charlier polynomials Cn(x) are defined by

Cn+1(x) = (x � n � 1)Cn(x) � nCn�1(x),

for n � 1 with initial conditions C�1(x) = 0 and C0(x) = 1.

Theorem 3.4. The nth moment of the Charlier polynomials is equal to the number of set
partitions of [n].

Theorem 3.4 may be derived using the representing measure for the Charlier linear functional

LCharlier(p(x)) =
1

e

1X

n=0

p(n)
1

n!
.

We will instead prove a generalization of the above theorem using the q-Charlier polynomials
Cn(x, a; q) given by

Cn+1(x, a; q) = (x � a � [n]q)Cn(x, a; q) � a[n]qCn�1(x, a; q).

A Charlier history of length n is a Motzkin path of length n in which every South-East step
between the lines y = i and y = i � 1 is labeled by an integer in {0, 1, . . . , i � 1} and every East
on the line y = i is either unlabeled or labeled by an integer in {0, 1, . . . , i � 1}.

By Theorem 2.3, the nth moment µn of the Charlier polynomials is

µn =
X

P2Motn

wtb,�(P ),

where b = {bn}n�0 and � = {�n}n�1 are given by bn = n + a for all n � 0 and �n = an for
n � 1. Let P 2 Motn. Then

wtb,�(P ) =
X

⌘

aunlabeled(⌘)q|⌘|,

where the sum is over all Charlier histories ⌘ with underlying Motzkin path P , unlabeled(⌘) is
the number of unlabeled steps of ⌘ and |⌘| is the sum of labels in ⌘.

We now give a bijection  C : ⇧n ! HC(n) from the set ⇧n of set partitions of [n] to the
set HC(n) of Charlier histories of length n. This map can be considered as a special case of
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Figure 3. An example of the bijection  C sending set partitions to Charlier histories.

Foata and Zeilberger’s map [13], which will be described in the next subsection. Let ⇡ 2 ⇧n be
a set partition of [n]. Then the corresponding Charlier history  C(⇡) = ⌘ is defined as follows.
For i = 1, 2, . . . , n, if i is an opener of ⇡, then the ith step of ⌘ is a North-East step. If i is
a closer of ⇡, then the ith step of ⌘ is a South-East step labeled by the number of crossings
{(a, b), (c, d)} of ⇡ with a < c < b < d and b = i. If i is a singleton of ⇡, then the ith step of ⌘ is
an unlabeled East step. If i is a continuation of ⇡, then the ith step of ⌘ is an East step labeled
by the number of crossings {(a, b), (c, d)} of ⇡ with a < c < b < d and b = i. See Figure 3 for
an example.

It is easy to see that  C is a bijection such that if  C(⇡) = ⌘ then unlabeled(⌘) = block(⇡)
and |⌘| = crossing(⇡). This implies the following theorem due to Kim, Stanton, and Zeng [24,
Theorem 4].

Theorem 3.5. The q-Charlier polynomials Cn(x, a; q) given by

Cn+1(x, a; q) = (x � a � [n]q)Cn(x, a; q) � a[n]qCn�1(x, a; q)

has the nth moment
µn =

X

⇡2⇧n

ablock(⇡)qcrossing(⇡).

3.3. Laguerre polynomials. The Laguerre polynomials Ln(x) are defined by

Ln+1(x) = (x � 2n � 1)Ln(x) � n2Ln�1(x).

Theorem 3.6. The nth moment of the Laguerre polynomials Ln(x) is equal to the number of
permutations of [n], that is, µn = n!.

Theorem 3.6 may be derived using the representing measure for the Laguerre linear functional

LLaguerre(p(x)) =

Z 1

0
p(x)e�xdx.

We will consider the following generalization of the above theorem.
The q-Laguerre polynomials Ln(x; q) are defined by

Ln+1(x; q) = (x � [n]q � y[n + 1]q)Ln(x; a) � y[n]2qLn�1(x; q).

A Laguerre history of length n is a Motzkin path of length n in which every North-East or
South-East step between the lines y = i and y = i�1 is labeled by an integer in {0, 1, . . . , i�1}
and every East step on the line y = i is either unlabeled or labeled by an integer in {�i, �i +
1, . . . , �1, 0, 1, . . . , i � 1}.
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2 JANG SOO KIM

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12
�

1

2

0

0

1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
�

0
0

2
1

0 1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

�

0

1

0 0 0
+2

2

1 0 1 �1 �1
0

1 2 3 4 5 6 7 8 9

�
�2 +2 +1

(0, 1)

(0, 0)

Figure 1. The standard representation of ({1, 4, 8}, {2, 5, 9}, {3}, {6, 7}).

Figure 4. An example of the bijection �L sending permutations to Laguerre
histories. The matching North-East steps and South-East steps are connected
by dotted lines.

By Theorem 2.3, the nth moment µn of the Laguerre polynomials is

µn =
X

P2Motn

wtb,�(P ),

where b = {bn}n�0 and � = {�n}n�1 are given by bn = y[n + 1]q + [n]q for all n � 0 and
�n = y[n]2q for n � 1. Let P 2 Motn. Then it is easy to see that

wtb,�(P ) =
X

⌘

yw(⌘)q|⌘|,

where the sum is over all Laguerre histories ⌘ with underlying Motzkin path P , w(⌘) is the
total number of North-East steps, unlabeled East steps, and East steps labeled by a nonnegative
integer, and |⌘| is the sum of labels in ⌘.

We now give a bijection  L : Sn ! HL(n) from the set Sn of permutations of [n] to the set
HL(n) of Laguerre histories of length n, which is due to Foata and Zeilberger [13]. We need
the following definitions to describe  L(⇡).

Let ⇡ 2 Sn be a permutation of [n]. An upper edge of ⇡ is a pair (i, j) such that i < ⇡(i) = j.
A lower edge of ⇡ is a pair (i, j) such that i = ⇡(j) < j. We represent ⇡ using the diagram
obtained by putting n vertices labeled by 1, 2, . . . , n and placing an upper or lower arc connecting
i and j for each upper or lower edge (i, j). For example, the upper diagram in Figure 4 represent
the following permutation in the two-line notation:

⇡ =

✓
1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 9 4 3 5 11 8 1 2 14 10 6 12 13

◆
,

where the entry in the second row and in the ith column means ⇡(i). We say that i is an opener
of ⇡ if i < ⇡(i) and i < ⇡�1(i), a closer of ⇡ if ⇡�1(i) < i and ⇡(i) < i, a singleton of ⇡ if
⇡(i) = i, and a transient of ⇡ otherwise. An upper crossing of ⇡ is a set {(a, b), (c, d)} of two
upper edges of ⇡ with a < c < b < d and b = i. A lower crossing of ⇡ is a set {(a, b), (c, d)} of
two lower edges of ⇡ with a < c  b < d and b = i.

Let ⇡ 2 Sn be a permutation of [n]. Then the corresponding Laguerre history  L(⇡) = ⌘ is
defined as follows.
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For i = 1, 2, . . . , n, if i is an opener of ⇡, then the ith step of ⌘ is a North-East step whose
label will be determined later. If i is a closer of ⇡, then the ith step of ⌘ is a South-East
step. In this case suppose that the jth step and ith step are the matching North-East step and
South-East step. Then the label of the jth step (resp. ith step) is the number of upper crossings
(resp. lower crossings) {(a, b), (c, d)} of ⇡ with a < c < b < d and b = i. If i is a singleton, then
the ith step of ⌘ is an unlabeled East step. Finally suppose that i is a continuation of ⇡. Then
the ith step of ⌘ is an East step whose labeled determined as follows. If the vertex i is incident
to two upper edges, then the label is +k, where k is the number of upper crossings {(a, b), (c, d)}
of ⇡ with a < c < b < d and b = i. If the vertex i is incident to two lower edges, then the
label is �k, where k is the number of lower crossings {(a, b), (c, d)} of ⇡ with a < c  b < d and
b = i. See Figure 4 for an example.

One can check that �L is a bijection such that if �L(⇡) = ⌘ then wex(⇡) = w(⌘) and
crossing(⇡) = |⌘|. Here wex(⇡) is the number of weak excedances, which are integers i such
that i  ⇡(i). Thus we obtain the following theorem, which is shown in [23, Theorem 2]. An
equivalent version of this theorem in terms of continued fractions has been proved earlier, see
[30, 6].

Theorem 3.7. The q-Laguerre polynomials Ln(x; q) has the nth moment

µn =
X

⇡2Sn

ywex(⇡)qcrossing(⇡).

Corteel et al. [8] showed that the moment has several interpretations in terms of permuta-
tions, permutation tableaux, matrix anszatz, etc. Simion and Stanton [30] consider octabasic
Laguerre polynomials (whose recurrence relation has eight independent q’s) and express their
moments using various statistics of permutations.

4. The odd-even trick

In this section we give a relation between moments for two di↵erent sets of orthogonal
polynomials. We call this occurrence the odd-even trick. It occurs for the three cases considered
in Section 3, and o↵ers alternative combinatorial interpretations for the moments. This idea
appears in [5, p. 40].

Definition 4.1. For an orthogonal polynomial satisfying the Theorem 2.4, let

µn = µn({bk}k�0, {�k}k�1)

denote the nth moment.

From Theorem 2.4, µn is a positive polynomial function of the three-term recurrence coe�-
cients. The odd-even trick is the observation that if bk = 0 for all k, the polynomials pn(x) are
alternately even and odd. Moreover if

p2n(x) = en(x), p2n+1(x) = xon(x2),

the even and polynomials en(x) and on(x) are themselves orthogonal polynomials. The moment
sequences for en(x) and on(x) are related to the moment sequence of pn(x).

Proposition 4.2. Given a sequence �k with �0 = 0 we have

µ2n(0, {�k}k�1) =µn({�2k + �2k+1}k�0, {�2k�1�2k}k�1),

µ2n+2(0, {�k}k�1) =�1µn({�2k+1 + �2k+2}k�0, {�2k�2k+1}k�1).

Proof. There are several ways to prove this. We give a sketch of the combinatorial proof due
to Viennot [34]. The first statement is equivalent to a bijection between
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• Dyck paths of length 2n where South-East steps starting at y-coordinate k are weighted
by �k,

• Motzkin paths of length n where the East steps (resp. South-East steps) starting at
y-coordinate k are weighted by �2k + �2k+1 (resp. �2k�2k�1).

Starting with a Dyck path of length 2n, (s0, . . . , s2n). For i from 0 to n � 1, suppose that
s2i = (2i, 2k)

• If (s2i, s2i+1) and (s2i+1, s2i+2) are North-East steps, change them to one North-East
step;

• If (s2i, s2i+1) and (s2i+1, s2i+2) are South-East steps, change them to one South-East
step weighted by �2k�2k�1;

• If (s2i, s2i+1) is a South-East step and (s2i+1, s2i+2) is a North-East step, change them
to one East step weighted by �2k;

• If (s2i, s2i+1) is a North-East step and (s2i+1, s2i+2) is a South-East step, change them
to one East step weighted by �2k+1.

This gives a Motzkin path of length n with the correct weights. The second statement is
equivalent to a bijection between

• Dyck paths of length 2n + 2 where South-East steps starting at y-coordinate k are
weighted by �k

• Motzkin paths of length n where the East steps (resp. South-East step) starting at
y-coordinate k are weighted by �2k+1 + �2k+2 (resp. �2k+1�2k).

One needs to delete the first and last step of the Dyck path and apply the same bijection and
adjust the weights accordingly. ⇤

Example 4.3. The Hermite polynomials have bk = 0, �k = k, so

(2n � 1)!! = µ2n(0, {k}k�1) = µn({4k + 1}k�0, {2k(2k � 1)}k�1).

Example 4.4. The Laguerre polynomials have bk = 2k + 1, �k = k2, so

n! = µn({2k + 1}k�0, {k2}k�1) = µ2n(0, {b(k + 1)/2c}k�1).

Example 4.5. The q-Charlier polynomials have bk = a + [k]q, �k = a[k]q, so in this case

µn({b}k�0, {�k}k�1) = µ2n(0, {⇤k}k�1),

where

⇤k =

(
[k/2]q, if k is even,

a, if k is odd.

Example 4.6. The renormalized Askey-Wilson polynomials Qn(y) (see Proposition 5.1)

y = a + a�1 � 2x, Qn(y) = (�1)nPn(x)

satisfy Theorem 1.3 with
bk = Ak�1 + Ck, �k = AkCk.

In this case
µn({bk}k�0, {�k}k�1) = µ2n(0, {⇤k}k�1),

where

⇤k =

(
Ck/2, if k is even,

A(k�1)/2, if k is odd.

The next Theorem follows from Example 4.6.
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Theorem 4.7. Let

✓2n = µ2n(0, {⇤k}k�1).

The Askey-Wilson moments satisfy

2nµn(a, b, c, d|q) =
nX

s=0

✓
n

s

◆
(a + 1/a)s(�1)n�s✓2n�2s.

Using the Proposition 4.2 we see

Corollary 4.8. Given a sequence ak for k � 0 with a0 = 0 we have

µn({a2k+1 + a2k}k�0, {a2ka2k�1}k�1) = a1µn�1({a2k+2 + a2k+1}k�0, {a2k+1a2k}k�1).

Example 4.9. The Laguerre polynomials have bk = 2k + 1, �k = k2, so ak = dk/2e
(n + 1)! = µn+1({2k + 1}k�0, {k2}k�1) = µn({2k + 2}k�0, {k(k + 1)}k�1).

5. Askey-Wilson moments

In this section we consider the Askey-Wilson polynomials and explicit forms for their mo-
ments. Recall that these polynomials in x have five parameters: a, b, c, d, and q. In Sub-
section 5.1 we give explicit formulas for the moments. In Subsection 5.2 we use a non-linear
change of variables on the parameters to obtain four new parameters ↵, �, �, and �. Using
these parameters we give a combinatorial interpretation for the moments as weights of special
tableaux.

Recall from (1.5) that the Askey-Wilson polynomial pn(x; a, b, c, d|q) is not monic and has
the leading term (abcd; q)n(2x)n. It is true, but not obvious, that the Askey-Wilson polynomial
pn(x; a, b, c, d|q) is symmetric in all four parameters a, b, c, and d, not just b, c, and d.

Let

Pn(x) =
1

(abcd; q)n
pn(x; a, b, c, d|q)

be the normalized Askey-Wilson (AW) polynomial whose leading term is (2x)n. The moment
sequences for Pn(x) and pn(x; a, b, c, d|q) are the same. For historical reasons, and to agree with
the literature, we keep the 2x.

Proposition 5.1. The normalized Askey-Wilson polynomials Pn(x) satisfy the three-term re-
currence relation :

Pn+1(x) = (2x � bn)Pn(x) � �nPn�1(x)

for n � 0 with P�1(x) = 0 and P0(x) = 1,

bn = (a + a�1 � An � Cn), �n = An�1Cn,

where

An =
(1 � abqn)(1 � acqn)(1 � adqn)(1 � abcdqn�1)

a(1 � abcdq2n�1)(1 � abcdq2n)
,

Cn =
a(1 � qn)(1 � bcqn�1)(1 � bdqn�1)(1 � cdqn�1)

(1 � abcdq2n�2)(1 � abcdq2n�1)
.

In this section, we will start by giving enumeration formulas for the moments of these poly-
nomials. We will then present the combinatorics coming from staircase tableaux. We will end
the section with some special cases.
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5.1. Enumeration formulas. The moments of the AW polynomials, denoted µn(a, b, c, d|q),
are not polynomials in a, b, c, d and q. But it was recently proven [25, Proposition 2.1]
that 2n(abcd; q)nµn(a, b, c, d|q) are polynomials in a, b, c, d, q with integer coe�cients. Several
explicit formulas for µn(a, b, c, d|q) are known. The following is the simplest known expression
as a double sum.

Theorem 5.2. [9, Theorem 1.13] We have

µn(a, b, c, d|q) =
1

2n

nX

m=0

(ab, ac, ad; q)m

(abcd; q)m
qm

mX

j=0

q�j2

a�2j(aqj + q�j/a)n

(q, q1�2j/a2; q)j(q, q2j+1a2; q)m�j
.

Theorem 5.2 was proved using techniques built in [17, 18]. The formula has two clear defects.
It does not demonstrate the polynomiality of 2n(abcd; q)nµn(a, b, c, d|q) in a, and it not obviously
symmetric in the four parameters a, b, c, and d.

A fivefold sum formula was found where the polynomiality is clear.

Corollary 5.3. [25, Theorem 5.6] We have

2nµn(a, b, c, d|q) =
nX

k=0

✓✓
n

n�k
2

◆
�

✓
n

n�k
2 � 1

◆◆ X

u+v+w+x+2t=k

aubvcwdx

⇥ (ac; q)v(bd; q)w

(abcd; q)v+w
(�1)tq(

t+1
2 )


u + v + w + t

u

�

q


v + w + x + t

v, w, x + t

�

q


u + x + t

x

�

q

,

where the second sum is over all integers u, v, w, x � 0 and �k  t  k/2 satisfying u + v +
w + x + 2t = k.

A combinatorial approach to the proof of Corollary 5.3 is given in Section 7. When d = 0, the
moments 2nµn(a, b, c, 0|q) are polynomials and there is an explicit polynomial formula which
also establishes symmetry.

Corollary 5.4. [25, Theorem 2.3] The Askey-Wilson moments for d = 0 are

2nµn(a, b, c, 0|q) =
nX

k=0

✓✓
n

n�k
2

◆
�

✓
n

n�k
2 � 1

◆◆

⇥
X

u+v+w+2t=k

aubvcw(�1)tq(
t+1
2 )


u + v + t

v

�

q


v + w + t

w

�

q


w + u + t

u

�

q

,

where the second sum is over all integers u, v, w � 0 and �k  t  k/2 satisfying u+v+w+2t =
k.

There is a result showing symmetry using very-well poised basic hypergeometric series.

Theorem 5.5. [25, Theorem 2.10] For an arbitrary A,

2nµn(a, b, c, d|q) =
nX

m=0

(aA, bA, cA, dA; q)m

(A2, abcd; q)m
(�q)m

8W7(m)
n+1X

s=0

✓✓
n

s

◆
�

✓
n

s � 1

◆◆

⇥
n�2s�mX

p=0

A�n+2s+2p


m + p

m

�

q


n � 2s � p

m

�

q

qm(�n+2s+p)+(m2 ),

where

8W7(m) = 8W7(A
2/q; A/a, A/b, A/c, A/d, q�m; q, abcdqm),
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and [14, Chap. 2.1]

8W7(a0; a1, . . . , a5; q, z) =
1X

k=0

(1 � a0q
2k)

(1 � a0)

(a0; q)k

(q; q)k

5Y

i=1

(ai; q)k

(qa0/ai; q)k
zk.

The expression for 2n(abcd; q)nµn(a, b, c, d|q) in Theorem 5.5 is clearly symmetric in a, b, c,
and d. From Theorem 5.5 it may be shown that it is a polynomial in these four parameters. We
do not give the details here. Instead we o↵er another representation which shows polynomiality
but breaks symmetry

(3)
(aA, bA, cA, dA; q)m

(A2; q)m
8W7(m) =

mX

j=0


m

j

�

q

(cd)j(A/c, A/d; q)j(ab; q)j

⇥ (Aaqj , Abqj , cd; q)m�j .

The details appear in [25].
The results in Corollaries 5.3 and 5.4, and Theorem 5.5, all involve a product of di↵erences

of binomial coe�cients and q-binomial coe�cients. The reason for this unusual behavior is
the form of Theorem 5.2. The power in the numerator leads to binomial coe�cients, while the
denominator terms lead to di↵erences of q-binomial coe�cients. This di↵erence can be switched
to the binomial coe�cients, giving the di↵erences that are displayed.

The proofs of these results are analytic and use properties of the Askey-Wilson functional
LAW. There is a combinatorial proof of the c = 0 case of Corollary 5.4 using weighted Motzkin
paths in [25]. Josuat-Vergès also did this case (which is the Al-Salam-Chihara polynomials),
see [20, Theorem 6.1.1]. The di↵erences of binomial coe�cients occur naturally in these com-
binatorial approaches, see (14). A combinatorial proof of a general result remains open.

5.2. Combinatorics of the moments. We define here a combinatorial object that was defined
to study the stationary distribution of the asymmetric exclusion process with open boundaries
[32].

Definition 5.6. [10] A staircase tableau of size n is a Young diagram of “staircase” shape
(n, n � 1, . . . , 2, 1) such that boxes are either empty or labeled with ↵,�, �, or �, subject to the
following conditions:

• no box along the diagonal is empty;
• all boxes in the same row and to the left of a � or a � are empty;
• all boxes in the same column and above an ↵ or a � are empty.
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where

Bn =
1/

p
y +

p
y + bn

1 � q
, ⇤n =

An�1Cn

(1 � q)2

are given by the Askey-Wilson recurrence with the substitutions a ! a/
p

y, b !
b
p

y, c ! c/
p

y, d ! d
p

y.

We also know an enumeration formula :

Theorem 6.4. [?]
Zn(y; ↵, �, �, �; q) =

This formula is a polynomial in y; ↵, �, �, �; q with 4nn! coe�cients. This is not
easy to see from the previous formula. There are several easy proof that this is true
for y = q = 1.

When y = q = 1 this generating polynomial of the staircase tableau of size n is

(3) Zn(1, ↵, �, �, �, 1) =
n�1Y

i=0

(↵ + � + � + � + i(↵ + �)(� + �))

We give here a simple bijective proof based on [?] :

Definition 6.5. • An inversion table of size n is a table T such that for
i 2 {1, ..., n}, T [i] is a non-negative integer less than i.

• A colored inversion table of size n is a table T such that for i 2 {1, ..., n},
T [i] = (i � 1)x with x 2 {↵, �, �, �} or T [i] = jx,y with 0  j < i � 1,
x 2 {↵, �} and y 2 {�, �}.

The weight of a colored inversion table is the product of its colors. Computing
the generating polynomial of the colored inversion table is trivial and it is equal
to :

nY

i=1

((↵ + �)(� + �)(i � 1) + ↵ + � + � + �)

�
�

�

↵
�

�
�

�

↵
↵�

�
�

�

↵
�

�
�

�

↵
↵� q

q
q q q q
q
q q

Figure 1. A staircase tableau of size 7

Proposition 6.6. There exists a weight preserving bijection between staircase tableaux
(with q = 1) of size n and colored inversion tables of size n.

Proof. Start with a staircase tableau of size n and number the columns from 1 to
n from left to right and the rows from 1 to n from top to bottom. The bijection is
obtained doing the following steps.

• For each column i, look at the topmost Greek letter in column i and count
the number of cells j directly to its left that does not contain any Greek
letter.

Figure 5. A staircase tableau of size 7

See the left entry of Figure 5 for an example of a staircase tableau.
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Definition 5.7. [10] The weight wt(T ) of a staircase tableau T is a monomial in ↵,�, �, �,
and q, which we obtain as follows. Some blank boxes of T are assigned a q, based on the label
of the closest labeled box to its right in the same row and the label of the closest labeled box
below it in the same column, such that:

• every blank box which sees a � to its right gets assigned a q;
• every blank box which sees an ↵ or � to its right, and a � or � below it, gets assigned

a q.

After this assignment, the weight of T , wt(T ) is then defined as the product of all labels in all
boxes.

The right entry of Figure 5 shows that this staircase tableau has weight ↵3�2�3�3q9. The
type of the tableau T is the number of ↵’s plus the number of �’s on the diagonal. We denote
it by t(T ).

Let

(4) Zn(y,↵,�, �, �, q) =
X

T
wt(T )yt(T ),

where the sum is taken on the staircase tableaux of size n.
We now link this generating polynomial to the moments of the Askey-Wilson polynomials.

Let

a =
1 � q � ↵+ � +

p
(1 � q � ↵+ �)2 + 4↵�

2↵
,

c =
1 � q � ↵+ � � p

(1 � q � ↵+ �)2 + 4↵�

2↵
,

b =
1 � q � � + � +

p
(1 � q � � + �)2 + 4��

2�
,

d =
1 � q � � + � � p

(1 � q � � + �)2 + 4��

2�
.

Proposition 5.8 (see [9]; Theorem 1.11). The generating polynomial Zn(y;↵,�, �, �; q) is

(abcd; q)n
p

y
n(↵�)n ⇥ µn

where µn are the moments of the orthogonal polynomials defined by

Gn+1(x) = (x � Bn)Gn(x) � ⇤nGn�1(x),

where

Bn =
1/

p
y +

p
y + bn

1 � q
, ⇤n =

An�1Cn

(1 � q)2

are given by the Askey-Wilson recurrence with the substitutions a ! a/
p

y, b ! b
p

y, c ! c/
p

y,
d ! d

p
y.

Remark 5.9. This proposition uses a result of [10] that relates the partition function of the
ASEP and the generating polynomial of the staircase tableaux. The proof is quite complicated.
It is still an open problem to find a simple combinatorial proof.

Remark 5.10. The Askey-Wilson moments 2n(abcd; q)nµn(a, b, c, d|q) do not have positive
coe�cients as polynomials in a, b, c, d, and q. The change of variables in the parameters
miraculously does make these moments positive.
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We also know an enumeration formula :

Theorem 5.11. [9, Theorem 1.14]

Zn(y;↵,�, �, �; q) = (abcd; q)n

✓
↵�

1 � q

◆n nX

k=0

(ab, ac/y, ad; q)k

(abcd; q)k
qk

⇥
kX

j=0

q�(k�j)2(a2/y)j�k (1 + y + qk�ja + qj�ky/a)n

(q, q2j�2k+1y/a2; q)k�j(q, a2q1�2j+2k/y; q)j
.

This formula is a polynomial in y,↵,�, �, �, q with positive coe�cients whose sum of coe�-
cients is 4nn!. This is not easy to see from Theorem 5.11. The special case y = q = 1 does make
this clear.

Proposition 5.12. The generating polynomial of the staircase tableau of size n satisfies

(5) Zn(1,↵,�, �, �, 1) =
n�1Y

i=0

(↵+ � + � + � + i(↵+ �)(� + �)).

We give here a simple bijective proof based on [7]. A colored inversion table of size n is a
table T such that for i 2 {1, ..., n}, T [i] = (i � 1)x with x 2 {↵,�, �, �} or T [i] = jx,y with
0  j < i � 1, x 2 {↵, �} and y 2 {�, �}. The weight of a colored inversion table is the product
of its colors in {↵,�, �, �}. Computing the generating polynomial of the colored inversion table
is trivial and it is equal to :

n�1Y

i=0

(↵+ � + � + � + i(↵+ �)(� + �)).

Proposition 5.13. There exists a weight preserving bijection between staircase tableaux (with
q = 1) of size n and colored inversion tables of size n.

Proof. Start with a staircase tableau of size n and number the columns from 1 to n from left
to right and the rows from 1 to n from top to bottom. The bijection is obtained doing the
following steps. For each column i, look at the topmost Greek letter in column i and count the
number of cells j directly to its left that does not contain any Greek letter.

• If this letter, say x, is topmost and leftmost, record T [i] = ix.
• Otherwise let y be the first Greek letter to the left of x and let z be the first Greek

letter under y. Then T [i] = jx,z.

We present the inverse of the algorithm. Start from a colored inversion table T of size n.
Mark all the cells of the tableau as free. For i from n down to 1,

• if Ti = (i � 1)x, put an x in in the ith column, as high as possible. Mark all the cells
to its left as reserved.

• Otherwise, Ti is equal to some jx,y. Put an x in the ith column, as high as possible.
Mark j boxes to its immediate left as reserved. Suppose that x is inserted in row k.

• Insert a y in column i � j � 1 as high as possible but in a row with a label larger than
k (such a cell always exists as one can check that the diagonal box of column i � j � 1
is still free). Mark all the cells to its left as reserved.

⇤

For example, we obtain the inversion table T = (0� , 1� , 2↵, 1↵,� , 2↵,�, 2�,�, 1�,�) from the
tableau on the left of Figure 5, . Note that the proof of Proposition 5.13 gives a proof of (5).
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5.3. Special cases. We give alternative proofs of special cases for Zn(y;↵,�, �, �; q) proven in
[9, Table 1]. These were proven using the staircase tableaux and the matrix ansatz. We use
here the moments and the explicit three-term recurrence relation. The first result is new and
does not have (yet) a combinatorial proof.

Proposition 5.14. If � = ��/y, then

Zn(y;↵,�, �, �; q) =
n�1Y

j=0

(↵y + �qj).

Proof. First let’s check that the choice � = ��/y forces ⇤1 = 0, so that in Proposition 5.8
µn = Bn

0 .
In general we have bd = ��/�. So Proposition 5.1 and Proposition 5.8 imply that ⇤1 has

the numerator factor (1 � bdy) = (1 + y�/�) = 0.
Since abcd = ��/↵�, we have

Zn(y;↵,�, �, �; q) = (��/↵�; q)n
p

y
n(↵�)n ⇥ Bn

0 .

Take the version of Proposition 5.1 which uses b instead of a. In this case A(0) = C(0) = 0,
and

B0 =
1/

p
y +

p
y + b

p
y + 1/b

p
y

1 � q
=

p
y

�
.

⇤

Proposition 5.12 may be shown using the recurrence relation instead of the bijection of
Proposition 5.13. We need the fact, which follows from Proposition 1.4, that the rescaled
Laguerre polynomials which have

bn = A(2n + ✓ + 1), �n = A2n(n + ✓),

have moments of

µn = An
nY

i=1

(✓ + i).

We do not give these details.
The next result can be proven bijectively by adapting the bijection between staircase tableaux

and inversion tables given in the preceding subsection, see [7].

Proposition 5.15. If ↵ = � = 0, then

Zn(y;↵,�, �, �; q) =
n�1Y

j=0

(� + ��[j]q + �qj).

Proof. This analogously comes from the q-Laguerre polynomials studied by de Médicis and
Viennot [11] which have

bn =Aqn ([n]q + B + q + · · · + qn) , �n = A2q2n�1[n]q
�
B + q + · · · + qn�1

�
,

µn =An
nY

j=1

(B + q + · · · + qj�1).

⇤
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6. Modified moments

The Askey-Wilson polynomials have the polynomial representation in Definition 1.5 using
the Askey-Wilson basis of polynomials,

�n(x; a) =
n�1Y

k=0

(1 � 2axqk + a2q2k) = (az, a/z; q)n, z = ei✓, x = cos ✓.

However it is not clear how Theorem 1.2 and Theorem 5.2 lead to the explicit formula in
Definition 1.5. One may ask if an analogue of Theorem 1.2 exists for the Askey-Wilson basis
�n(x; a) instead of xn. We shall see that for the Askey-Wilson polynomials it does exist. It was
given by Wilson in his 1978 thesis and is implicit in [35].

Suppose that polynomial sequences { k(x)}1
k=0 and {�k(x)}1

k=0 are given with

deg( k(x)) = deg(�k(x)) = k.

For the linear functional L define a matrix M by

Mi,j = L( i�j).

Proposition 6.1. The orthogonal polynomial pn(x) for L is

pn(x) =
1

Bn

�����������

M0,0 M0,1 · · · M0,n

M1,0 M1,1 · · · M1,n

...
...

. . .
...

Mn�1,0 Mn�1,1 · · · Mn�1,n

�0(x) �1(x) · · · �n(x)

�����������

,

where

Bn =

���������

M0,0 M0,1 · · · M0,n�1

M1,0 M1,1 · · · M1,n�1
...

...
. . .

...
Mn�1,0 Mn�1,1 · · · Mn�1,n�1

���������

.

The determinant Bn in Proposition 6.1 is non-zero and pn(x) is a polynomial of exact degree
n with leading term �n(x). To prove this, let Dn be the matrix of the determinant �n in
Theorem 1.2. Let Y and Z be the n ⇥ n non-singular lower triangular matrices defined by
 i(x) =

Pi
s=0 Yisx

s, �j(x) =
Pj

t=0 Zjtx
t. Then Mi,j is the ij-entry of the matrix Y DnZT ,

which is invertible.
Theorem 1.2 is the special case  k(x) = �k(x) = xk of Proposition 6.1.
Whenever we have two bases of polynomials for which Mi,j may be explicitly computed,

we have a determinantal formula for pn(x). The explicit representation for the polynomials is
reduced to evaluating the determinant

det(Mi,j) 0in�1
0jn,j 6=k

,

(6) pn(x) =
1

Bn

nX

k=0

(�1)k�k(x) det(Mij) 0in�1
0jn,j 6=k
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The Askey-Wilson bases provide such an example for the Askey-Wilson polynomials. We
use a normalized representing measure for 0 < q < 1, 0  |a|, |b|, |c|, |d| < 1, which is [3]

LAW(p(x)) =
1

2⇡

(ab, ac, ad, bc, bd, cd; q)1
(abcd; q)1

⇥
Z ⇡

0
p(cos(✓))

(e2i✓, e�2i✓; q)1 d✓

(aei✓, ae�i✓, bei✓, be�i✓, cei✓, ce�i✓, dei✓, de�i✓; q)1
.

In this form we have the Askey-Wilson integral

LAW(1) = 1.

Proposition 6.2. If  i(x) = �i(x; d), �j(x) = �j(x; a), then

LAW( i�j) = Mi,j =
(ab, ac; q)j(bd, cd; q)i(ad; q)i+j

(abcd; q)i+j
.

Proof. Finding LAW( i�j) amounts to shifting a to aqj and d to dqi in the Askey-Wilson
integral. ⇤

To find the coe�cient of �k(x; a) for the Askey-Wilson polynomials in Definition 1.5, the
following determinant evaluation of Wilson ([35, p. 1155]) is used in (6).

Proposition 6.3. If 0  k  n, we have

det

✓
(Aqi; q)j

(Dqi; q)j

◆

0in�1,0jn,j 6=k

= �nn⇡k/⇡n,

where

�nn =
n�1Y

r=0

(q, D/A; q)r

(Dqr; q)n�1
Arqr(r�1)

⇡k =
(q�n, Dqn�1; q)k

(q, A; q)k
(�q)k

Proposition 6.3 with A = ad and D = abcd and (6) give the explicit formula in Definition 1.5
for the Askey-Wilson polynomials.

Another example occurs with the Hahn polynomials Qn(x;↵,�, N), 0  n  N , whose
measure is purely discrete (the hypergeometric distribution), and is located at the integers
x = 0, 1, · · · , N,

w(x;↵,�, N) =

�
↵+x

x

��
�+N�x

N�x

�
�
↵+�+1+N

N

� .

In this case the choices of

 i(x) =(�x)i = (�x)(�x + 1) · · · (�x + i � 1),

�j(x) =(�N + x)j = (�N + x)(�N + x + 1) · · · (�N + x + j � 1)

yield

Mi,j =
(↵+ 1)i(� + 1)j

(↵+ � + 2)i+j

N !

(N � i � j)!
(�1)i+j , for i + j  N.

Here another determinant evaluation leads to the explicit hypergeometric representation [27]
for Qn(x;↵,�, N).
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7. Linearization coefficients

Suppose that {Pn(x)}n�0 is an orthogonal polynomial sequence with respect to a linear
functional L : K[x] ! K. Since {Pn(x)}n�0 is a basis of the ring K[x], we can express the
product Pn(x)Pm(x) of two polynomials in the basis as follows:

(7) Pn(x)Pm(x) =
n+mX

k=0

ck
n,mPk(x).

If we multiply both sides of (7) by P`(x) and apply the linear functional L, then by the
orthogonality we obtain

c`
n,m =

L(Pn(x)Pm(x)P`(x))

L(P`(x)2)
.

By Theorem 2.4, L(P`(x)2) is obtained immediately once we know the three-term recur-
rence relation. Thus computing the coe�cients c`

n,m is equivalent to computing the quantity

L(Pn(x)Pm(x)P`(x)). Although it is more common to call c`
n,m the linearization coe�cient, for

brevity, we will instead call the quantity L(Pn1(x)Pn2(x) · · · Pnk
(x)) the linearization coe�cient

of the orthogonal polynomials Pn(x).
Using the three-term recurrence relation, Lemma 2.2 allows us to consider orthogonal polyno-

mials Pn(x) as generating functions of Favard paths. By Theorem 2.3, there is a combinatorial
meaning to the moments µn = L(xn) of Pn(x). Therefore it is possible to understand the
linearization coe�cients of Pn(x) combinatorially. When Pn(x) are q-Hermite, q-Charlier, or q-
Laguerre polynomials, there is a nice combinatorial expression for the linearization coe�cients.

In this section we will consider the linearization coe�cients of the Hermite polynomials. Then
we will see a connection between the linearization coe�cients of the q-Hermite polynomials and
the moments of Askey-Wilson polynomials.

Recall that the Hermite polynomials Hn(x) are defined by H�1(x) = 0, H0(x) = 1, and for
n � 0,

(8) Hn+1(x) = xHn(x) � nHn�1(x),

and the moment µn = L(xn) is equal to the number of perfect matchings of [n]. Using the
three-term recurrence relation (8), one can easily see that

(9) Hn(x) =
X

⇡2Matching(n)

(�1)edge(⇡)xfix(⇡),

where fix(⇡) is the number of singletons in ⇡, which are also called fixed points.
Recall that Mn is the set of perfect matchings of [n]. Suppose that n = n1 + n2 + · · · + nk

and for 1  i  k, let

(10) Si = {ai�1 + 1, ai�1 + 2, . . . , ai�1 + ni} ,

where ai�1 = n1 + n2 + · · · + ni�1 for i � 2 and a0 = 0. Then [n] is a disjoint union of Si’s. An
edge (i, j) of ⇡ 2 Mn is called homogeneous if i, j 2 Sr for some r 2 [k], and inhomogeneous
otherwise. If every edge is inhomogeneous in ⇡ 2 Mn, then we call ⇡ an inhomogeneous perfect
matching. We denote by M(n1, n2, . . . , nk) the set of inhomogeneous perfect matchings of [n].

The following theorem is due to Azor, Gillis, and Victor [4] and Godsil [15].

Theorem 7.1. The linearization coe�cient of the Hermite polynomials is equal to the number
of inhomogeneous perfect matchings:

L(Hn1(x) · · · Hnk
(x)) = |M(n1, n2, . . . , nk)|.
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Proof. By (9), Hn1(x) · · · Hnk
(x) is equal to

X

⇡12Matching(n1)

· · ·
X

⇡k2Matching(nk)

(�1)edge(⇡1)+···+edge(⇡k)xfix(⇡1)+···+fix(⇡k).

Since L(xm) is the number of perfect matchings of [m], we have

L(Hn1(x) · · · Hnk
(x)) =

X

(⇡1,...,⇡k,⇡0)2X

(�1)edge(⇡1)+···+edge(⇡k),

where X is the set of all (k + 1)-tuples (⇡1, . . . ,⇡k,⇡0) such that

⇡1 2 Matching(n1), . . . ,⇡k 2 Matching(nk),

and ⇡0 is a perfect matching of the union of the sets of fixed points in ⇡1,⇡2, . . . ,⇡k. As before
we say that an edge (a, b) is homogeneous if (a, b) 2 Si for some 1  i  k, and inhomogeneous
otherwise, where Si is given in (10). Note that all edges in ⇡1, . . . ,⇡k are homogeneous and ⇡0

may have both homogeneous and inhomogeneous edges.
We will construct a sign-reversing involution ⇢ on X. For (⇡1, . . . ,⇡k,⇡0) 2 X, we define

⇢((⇡1, . . . ,⇡k,⇡0)) = (⇡0
1, . . . ,⇡

0
k,⇡0

0) as follow. If ⇡1, . . . ,⇡k are all empty and ⇡0 has only
inhomogeneous edges, then ⇡0

i = ⇡i for all 0  i  k. Otherwise, there is a homogeneous edge
(a, b) in one of ⇡1,⇡2, . . . ,⇡k or ⇡0. Take the homogeneous edge (a, b) such that b is minimal.
If (a, b) 2 ⇡i for some 1  i  k, then let ⇡0

i = ⇡i \ {(a, b)} and ⇡0
0 = ⇡0 [ {(a, b)}, and ⇡0

j = ⇡j

for j 6= 0, i. If (a, b) 2 ⇡0, then let i be the index for which a, b 2 Si and let ⇡0
i = ⇡i [ {(a, b)}

and ⇡0
0 = ⇡0 \ {(a, b)}, and ⇡0

j = ⇡j for j 6= 0, i.
It is not hard to check that ⇢ is a sign-reversing involution on X whose fixed points are the

(k+1)-tuples (⇡1, . . . ,⇡k,⇡0) 2 X such that ⇡1, . . . ,⇡k are all empty and ⇡0 is an inhomogeneous
perfect matchings of S1 [ · · · [ Sk. This completes the proof. ⇤

From now on we put x = cos ✓.
The generating function for the q-Hermite polynomials Hn(x|q) is given by

H(cos ✓, z) :=
1X

n=0

Hn(cos ✓|q)
(q; q)n

zn =
1

(zei✓; q)1(ze�i✓; q)1
.

The orthogonality for the q-Hermite polynomials is

Z ⇡

0
Hn(cos ✓|q)Hm(cos ✓|q)v(cos ✓|q)d✓ = 0, n 6= m,

where

v(cos ✓|q) =
(q; q)1

2⇡
(e2i✓; q)1(e�2i✓; q)1.

We now look at the Askey-Wilson polynomials defined in (1.5). The total mass

(11) I0(a, b, c, d) =
(q; q)1

2⇡

Z ⇡

0
w(cos ✓, a, b, c, d; q)d✓ =

(abcd; q)1
(ab, ac, ad, bc, bd, cd; q)1
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of the measure is called the Askey-Wilson integral. Observe that the Askey-Wilson integral is
the generating function for linearization coe�cients of the q-Hermite polynomials

I0(a, b, c, d) =

Z ⇡

0
H(cos ✓, a)H(cos ✓, b)H(cos ✓, c)H(cos ✓, d)v(cos ✓|q)d✓

=
1X

n1,n2,n3,n4=0

L(Hn1(x|q)Hn2(x|q)Hn3(x|q)Hn4(x|q))

⇥ an1bn2cn3dn4

(q; q)n1(q; q)n2(q; q)n3(q; q)n4

,

where L is the linear function for Hn(x|q) defined by

L(p(x)) =

Z ⇡

0
p(cos ✓)v(cos ✓|q)d✓,

Using this observation Ismail, Stanton, and Viennot [19] evaluated the Askey-Wilson integral
combinatorially. More precisely, they considered the rescaled q-Hermite polynomials, which
are more suitable to work with combinatorially, and showed the following generalization of
Theorem 7.1.

Theorem 7.2. [19, Theorem 3.2] Let eL be the normalized linear functional for eHn(x|q). Then

eL( eHn1(x|q) · · · eHnk
(x|q)) =

X

⇡2M(n1,...,nk)

qcrossing(⇡),

where M(n1, . . . , nk) is the set of inhomogeneous perfect matchings of [n1] ] · · · ] [nk].

This idea can be extended to compute the moments of the Askey-Wilson polynomials as
follows. Let

(12) In(a, b, c, d) =
(q; q)1

2⇡

Z ⇡

0
(cos ✓)nw(cos ✓, a, b, c, d; q)d✓.

Then the normalized moment µn(a, b, c, d; q) of the Askey-Wilson polynomials is

(13) µn(a, b, c, d; q) = In(a, b, c, d)/I0(a, b, c, d).

By the same observation as above we have

In(a, b, c, d) =

Z ⇡

0
(cos ✓)nH(cos ✓, a)H(cos ✓, b)H(cos ✓, c)H(cos ✓, d)v(cos ✓|q)d✓

=
1X

n1,n2,n3,n4=0

L(xnHn1(x|q)Hn2(x|q)Hn3(x|q)Hn4(x|q))

⇥ an1bn2cn3dn4

(q; q)n1(q; q)n2(q; q)n3(q; q)n4

.

Using the above formula Kim and Stanton [25] found the formula for µn(a, b, c, d; q) in Corol-
lary 5.3. In what follows we briefly explain the idea of their proof.

First, in [25] they consider the rescaled q-Hermite polynomials and show the following theo-
rem.

Theorem 7.3. [25, Theorem 5.1] Let eL be the normalized linear functional for eHn(x|q). Then

eL(xn eHn1(x|q) · · · eHnk
(x|q)) =

X

⇡2M(n;n1,...,nk)

qcrossing(⇡),
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where M(n; n1, . . . , nk) is the set of perfect matchings ⇡ of S1 [ · · · [ Sk [ Sk+1 such that if ⇡
contains a homogeneous edge (a, b) 2 Si, then i = k+1. Here, Si is given in (10) for 1  i  k,
and

Sk+1 = {n1 + · · · + nk + 1, n1 + · · · + nk + 2, . . . , n1 + · · · + nk + n}.

In order to evaluate the sum in the left hand side of the above theorem, they [25] decompose
⇡ 2 M(n; n1, n2, n3, n4) as a pair (⇡0,⇡1) of a matching ⇡0 of [n] with m fixed points and
an inhomogeneous perfect matching ⇡1 2 M(m, n1, n2, n3, n4) for some integer m. In this
decomposition we have crossing(⇡) = crossing⇤(⇡0) + crossing(⇡1), where crossing⇤(⇡0) is the
number of pairs (e1, e2) such that

• e1 = {a, b} and e2 = {c, d} are edges of ⇡0 with a < c < b < d, or
• e1 = {a, b} is an edge of ⇡0 and e2 = {c} is a singleton of ⇡0 with a < c < b.

Then they use the following formula due to Josuat-Vergès [22, Proposition 5.1]:

(14) (1 � q)(n�m)/2
X

⇡2M⇤(n,m)

qcrossing⇤(⇡)

=
X

k�0

✓✓
n

n�k
2

◆
�

✓
n

n�k
2 � 1

◆◆
(�1)(k�m)/2q(

(k�m)/2+1
2 )

k+m
2

k�m
2

�

q

,

where M⇤(n, m) is the set of matchings of [n] with m fixed points.
The appearance of the di↵erence of binomial coe�cients in (14) can be explained as follows.

A Dyck prefix is a path obtained from a Dyck path by taking the first m steps for some m. By
a similar argument using Hermite histories, the left hand side of (14) is the generating function
for Dyck prefixes whose South-East steps are labeled by 1 or �qi, where i is the y-coordinate
of the starting point. Then we can use Penaud’s idea [29] which decomposes such a labeled
Dyck prefix into a Dyck prefix and a certain labeled Dyck path. The number of Dyck prefixes
is given by a di↵erence of binomial coe�cients.

There are analogous combinatorial interpretations for the linearization coe�cients of q-
Charlier polynomials and q-Laguerre polynomials.

Theorem 7.4. [1, p. 127] Let LC be the normalized linear functional for the q-Charlier poly-
nomials Ca

n(x; q). Then

LC(Ca
n1

(x; q) · · · Ca
nk

(x; q)) =
X

⇡2⇧(n1,...,nk)

ablock(⇡)qcrossing(⇡),

where ⇧(n1, . . . , nk) is the set of partitions of S1 [ · · · [ Sk which do not have homogeneous
edges. Here, Si is given in (10) for 1  i  k.

Kim, Stanton and Zeng [24] found a combinatorial proof of Theorem 7.4. Kasraoui, Stanton,
and Zeng [23] showed the following theorem using recurrence relations.

Theorem 7.5. [23, Theorem 5] Let LL be the normalized linear functional for the q-Laguerre
polynomials Ln(x; q). Then

LL(Ln1(x; q) · · · Lnk
(x; q)) =

X

⇡2D(n1,...,nk)

ywex(⇡)qcrossing(⇡),

where D(n1, . . . , nk) is the set of permutations ⇡ of S1 [ · · · [ Sk such that if ⇡(a) = b then a
and b are in di↵erent Si’s. Here, Si is given in (10) for 1  i  k.
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Note that in Theorem 7.5, if n1 = · · · = nk = 1, then D(n1, . . . , nk) becomes the set of
derangements of [k], i.e., permutations with no fixed points. Permutations in D(n1, . . . , nk) are
called multi-derangements. There is a nice generating function expression for the number of
multi-derangements, see [16, p. 563] and references therein.

Ismail, Kasraoui, and Zeng [16] found a general approach to find the linearization coe�cients
using recurrence relations.
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http://www.xavierviennot.org/xavier/livres.html

[34] X. G. Viennot. A combinatorial interpretation of the quotient-di↵erence algorithm. Formal Power Series
and Algebraic Combinatorics (Moscow, 2000), pages 379–390. Springer, Berlin, 2000.

[35] James A. Wilson. Orthogonal functions from Gram determinants. SIAM J. Math. Anal., 22(4):1147–1155,
1991.

LIAFA, CNRS et Universit

´

e Paris Diderot, Case 7014, 75205 Paris Cedex 13 France

E-mail address: corteel@liafa.univ-paris-diderot.fr

Department of Mathematics, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Su-

won, Gyeonggi-do 440-746, South Korea

E-mail address: jangsookim@skku.edu

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 USA

E-mail address: stanton@math.umn.edu


	1. Introduction
	2. Path interpretation of the polynomials and the moments
	3. Combinatorics
	3.1. Hermite polynomials
	3.2. Charlier polynomials
	3.3. Laguerre polynomials

	4. The odd-even trick
	5. Askey-Wilson moments
	5.1. Enumeration formulas
	5.2. Combinatorics of the moments
	5.3. Special cases

	6. Modified moments
	7. Linearization coefficients
	References

