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Abstract It is well known that the Fourier transform of a Gaussian is a Gaussian. In
this paper it is shown that a g-analogue of this integral gives the Rogers-
Ramanujan identities.
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1. Introduction

The purpose of this paper is to show that a natural g-analogue of the
elementary integral

1 o0
I(t) = E/ eI 200 2y — (1.1)

immediately leads to the Rogers-Ramanujan identities [1]

o qn2 - 1
nZ::o 1-q)(1—¢*)---(1-q" B T2, (1 — i) (1 — gBit+d)’ (1.2a)
] e - 1 (1.2b)

—~ (1-q)(1-¢*)--(1-q") T[Zo(1—¢>*2)(1—¢>*3)

An abbreviated version of this idea appears in [2].

The paper is organized as follows. A Hermite polynomial evaluation of
(1.1) is given in §2, and its g-analogue is in §3. This integral is evaluated
for a special ¢ in §4, giving the Rogers-Ramanujan identities. Two other
g-analogues of Gaussian integrals are given in §5, the resulting identities are

n
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Theorems 5.1 and 5.3. A mixed linearization result for ¢-Hermite polynomi-
als is given in Theorem 7.1 of the Appendix.

2. A Hermite polynomial interpretation

It is clear that I(t) may be evaluated by completing the square in the
exponential. In this section we reinterpret the integral in terms of Hermite
polynomials and give an alternate evaluation that /(t) = et

We need the orthogonality relation and generating function for a rescaled

version of the Hermite polynomials H,(z). These two facts are

/ H,, (z)H,(z)w(z)dz = n',,,
- (Hermite orthogonality)

1 .
w(z) :me 2,
Gz, t) = Z ﬁn(r)% = /2 (Hermite GF')
n=0 ’

We next restate I(¢) in terms of Hermite polynomials. Since

e~ 2 — G2, 1) = Gin, it),

I(t) :/_Oo Gz, t) 'w(z)de (2.1a)

:/_OO Gz, it)w(z)dz (2.1b)
=S O [ ey (210

We need to know the constant term in the expansion of H,(iz) in terms of
H,(z) to evaluate the integral in (2.1c). However,

n/2 o
Au(iz) =Y ﬁf{%%(m), (2.2)
k=0

So the constant term is 0 if n is odd, and is z”(;;—;), if n is even. Thus

o0 t2N 2
It =>" NT =€ (2.3)
N:O 4 .
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3. The g-version of I(t)

In this section we set up a g-analogue of /(t), based upon the interpretation
of §2. We use the standard notation [3] from g-series,

(a;q)n = 1:[(1 —aq'), (a50)e0 = H(l —aq').

The g-Hermite polynomials satisfy [3]

/ H,,(cosb|q)H, (cosB|q)w,(cos 8)d8 = (¢; ¢)nSmn,
0

(939)00(622'976—22'9, Yoo

wq(cos B) I i q
(g-Hermite orthogonality)
Gy(z,t) = iHn (cosblq) T = 1—2'0 . (¢-Hermite GF)
oy (Ga)n  (te?,te7"1q) o0

These are g-analogues because the appropriate limiting cases as ¢ — 1 are

i TEVI=4/210) g (3.1a)
B TR

ql_i)nln_ wy(z4/1 — ¢q/2) = w(z), (3.1b)

lim Gy(zy/1—¢q/2,t3/1 —q) = G(z,1). (3.1¢)

g—1-

Thus our g-analogue of I(t) is

1,(t) :L;er)oo/o (tew,te_w,eQie,e_Qie;q)oodH

:/ G, (cosB,t) " w,(cos 8)d6. (¢-2.1a)
0

We expect I,(t) to be a g-analogue of e’
To carry out the g-analogue of the proof in §2, we need a g-analogue of
the functional equation G(z,t)™" = G(iz,it). This is

Gz, 1) =Gyygla,t/q) = (e te™; ) o0

() (—t)n

S AT (3.2)
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Since we have

HaloyT=a/20™") (L= 0" ()" _ o (0"

li -
A (1—q)/? (4:9)n n!

b

(3.2) is a g-analogue of G(x,t)™' = G(iz,t). This allows the next two steps
of (2.1) to be accomplished

t) :/7r Gl/q(cos 6,t/q)w,(cos0)dd (g-2.1Db)

_Zq /H (cos B8]g™" )w,(cos B)d6. (¢-2.1¢)

Thus we must find the constant term in the ¢-Hermite expansion of
H,(z|¢™'). However, all of the terms in this expansion were known to Rogers

(see 3, (7.6.14)], [5, p- 335 (1)])

n/2

k(k—n)(,.
_ q (4 O)n
Hnavqlzg H,_o1(x|q). 3.3
(rla™) (G R4 Dnzr (ela) (3:3)
The constant term is 0 for n odd and is q_”2/4% if n is even. Thus
o0 N2-N 2N
q t
=) (¢-2.3)

N=0

which is clearly a ¢-version of I(t) = e’ in view of the scaling t — t/1 — gq.

4. The Rogers-Ramanujan identities

In this section we prove the Rogers-Ramanujan identities. Note that
I,(/q) and I,(q) are the sum sides of the two Rogers-Ramanujan identities.
We now evaluate I,(,/q) and I,(q) in another way, which will give the prod-
uct sides of the Rogers-Ramanujan identities. Instead of using ¢-Hermite
orthogonality as in §3 we will use the classical exponential orthogonality

1 ™

e™etml g — O -
27

First note that in I,(t) we can integrate on [—m, 7], at the expense of
dividing by 2, since the integrand is an even function of 8.
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Take ¢t = /g, and expand both G(z,/q)~" and (g, e2i? e=29. ¢y in pow-
ers of €% using the Jacobi triple product identity [1]

) _ - 1\ (k)2 k
(4,2,4/% 4)oo (=1)%q :
k=—o00
(0, V3" G ) = Y (~1)FgF e, (4.1a)
k=—o00
(q7€2i6’76—2i(9;q)00 — (1 . €2i€) Z (_1)jq(j2+j)/2€2ij6" (41b)
j=—00

1,(va) = m SN Fr R (1)

k=—00 j=—00
™ . .- .
% / e—zk962u6(1 _ 6226)(10.
-7

The exponential orthogonality implies

1 o0

1,(va) " 2(;9) > (g% qU /2 _ 21 (P 4)/2) (1)
9 (o9} j:—OO
LN 2 (P42 g0
@mkwgi .

Finally applying the Jacobi triple product identity we arrive at
VD =
(¢ 4% ¢°) o
which is the product side of the first Rogers-Ramanujan identity (1.2a).

Note that the modulus 5 appears because the ¢-Hermite weight is on €%
and 22 +1 =5.

The choice t = ¢ similarly yields the second Rogers-Ramanujan identity
(1.2b).

We may also prove (1.2b) by evaluating the integral

1,(t) :/ Hi(cosBq)(te? te™, 2 =% ) . df
0

9 9
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at t = /¢, which is a g-analogue of

a2 /9 a2 2
ze~ Tt 2o=22 20— _yet”

V 27 /—oo
Using (3.3) we see that

© qutQN

lt) = _tNZO (@GN’

and the evaluation

I, () = Vi

7 0% ) oo
follows from Fourier orthogonality.

5. Two more Gaussian integrals

In this section we give two more Rogers-Ramanujan type identities, The-

orems 5.1 and 5.3, which can be established using Gaussian integrals.

The evaluation of I,(t) in §3 was based upon the explicit form of the
constant term when H, (z|¢™!) is expanded in the g-Hermite basis. Given

any set of polynomials p,(z) such that

n

pr(z) =Y carHi(lq), (5.1a)
k=0
if
= pul2)t (5.1b)
n=0
then
/ H (cos b, t)w,(cosf)df = chot (5.2)
n=0
For the first example, we choose
(") n 1/2,i0 4,1/2,—if. ,1/2
o q2 (_ ) -1y __ (tq ev,tqg /e 4 )oo
r t - Z 1/2 1/2 n Hn(x|q )_ (t2q1/2;q)oo
so that

hm H(z\/1—q/2,t/1 — (iz, 2it) —2It+2t27
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then (3.3) implies
(o]
(q1/2t2)N
H (cos,t)w,(cosb)d
/ ) Z 1/2 1/2 Jan (439N

(5.3)

Equation (5.3) is a ¢g-analogue of

00
2 2 2
e~ 2wt+2t% - /2 I — 4t

7l

The following theorem results if we evaluate the integral in (5.3) at ¢ =1
using Fourier orthogonality.

Theorem 5.1. We have

~ (43 9)2n 1
Z( ) N =

= (% 4%)N (0. 4% 0% ¢, 0% ¢°; %) 0

For an integer partition interpretation of Theorem 5.1, we use colored
partitions. Note that

(~;9)on xS ON N

S N U I
which may be interpreted as enumerating partitions with arbitrary parts

from the set 1,2,---, N, N is a part, and possibly distinct parts from the
set N+ 1,---,2N.

Corollary 5.2. Let A(n) be the number of integer partitions of n into parts
not congruent to 0 mod 6, whose parts mod 3 are colored red or blue. Let
B(n) be the number of integer partitions of n with red or blue parts, such
that the if largest red part is N, then the blue parts must be distinct and lie
between N + 1 and 2N. Then A(n) = B(n).

Theorem 5.1 is closely related to a result of Slater [6, (24)]

o0

Z (_1;Q)2NqN: 1 ] (54)

= ()N (0,9, 4% 4°,4°; 4%) 0

If Hy(cos#|q) is inserted into the integrand in (5.3), the coefficient of Hy(z|q)
rather than the constant term of (3.3) is used to evaluate the integral. The
resulting companion identity is

(vt v (056,85 0%) 0 — (65 ¢, % 0%) o0
_ Z AN H/2N L

N=0 ((]2; q2)N B (q; Q)oo(q; qQ)OO (55)
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Slater’s (5.4) is the difference of Theorem 5.1 and (5.5).
For the second example we choose the generating function

n+1 . .
_ t2€226 t 26—226’. 2
z:q H2n($|q l)z(q (7_tq ) 7Q)oo
= 4 4)o0

which satisfies

lim H(z/1— q/2,1) ZHM t/Q) = 72040 ) T 1t

g—1

This time (5.2) yields

o0

—tq)V, (5.6)

/ H(cos#,t)w,(cos8)df =
0

which is a g-analogue of

—tr2/2 (141) —z2/2d 1

,/27r1+t / Vit
Again evaluating the integral at ¢ = 1 gives Theorem 5.3.

Theorem 5.3. We have

@ v (0050
= GaN (% 4% %) oo

If we replace ¢ by —¢ in Theorem 5.3, an integer partition interpretation
can be given. The right side interpretation is clear, while for the left side we
note that
. 1—q2m+1 *)m ¢ . _

(_q7q2)N qN _ (q 7q3) , " it N = Qma
(=*m*
(450

i )qumql if N =2m+ 1.

(—¢;—9)n L

973

Corollary 5.4. Let A(n) be the number of integer partitions of n into parts
congruent to 2 or 4 mod 6, and distinct parts congruent to 1 or 5 mod 6.
Let B(n) be the number integer partitions of n

(1) whose odd parts are distinct,

(2) whose odd parts (except possibly 1) are greater than the largest even
part 2m,

(3) whose largest odd part is at most 4m — 1 if 1 is not a part,
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(4) whose largest odd part is at most 4m + 1 if 1 is a part, moreover in
this case 2m + 1 is not a part.

Then A(n) = B(n).
For example, if n = 9 the partitions enumerated by A(9) =7 are
81, 72, 54, 522, 441, 4221, 22221
while those for B(9) = 7 are

81, 621, 54, 441, 4221,3222, 22221.

6. Remarks

The proof of the Rogers-Ramanujan identities given here is fundamentally
the same as Rogers’ proof [5, p. 328]. He extracted constant terms without
using integration. We have shown that his method is equivalent to evaluating
a ¢-Gaussian integral.

In each of the three g-analogues of Gaussian integrals given in this pa-
per, we used the constant term in the expansion of H,(z|¢™!) in terms of
H,(z|q). Several other polynomials besides H, (z|¢~!) may be chosen whose
constant terms c¢,g in the g-Hermite basis explicitly factor, leading to in-
tegral evaluations. Many interesting choices involve changing the base in
g-Hermite polynomials to other functions of ¢ besides ¢~!. For example, one
choice involving base ¢° gives an integral which is a g-analogue of

—¢2 [ole]
f/ﬁ/ VT2 =72y — (6.1)

This integral leads to a quintic transformation which generalizes the Rogers-
Ramanujan identities [2, Theorem 7.1]. A more extensive study of these
polynomials and their corresponding Rogers-Ramanujan type identities is
given in [4].

We also note that (5.1), (5.2), and the ¢-Hermite orthogonality relation
imply that

o0

/ H(cos@,t)Hy(cosb|q)w,(cos8)df = chk(q; q)it".
0

n=0

If all of the coefficients ¢, are explicitly known, then generalized versions
of the Rogers-Ramanujan identities may be given. This occurs in (3.3),



10

thus generalizations may be given for (1.1), Theorem 5.1, and Theorem 5.3.
The generalization for the classical Rogers-Ramanujan identities is explicitly
stated for (1.1) in [2, (3.5)].

An integral which gives the multisum Rogers-Ramanujan identities is also
given in [2, §4].

7. Appendix

Because of the interest in (3.3), we state and prove a mixed linearization
result for ¢-Hermite polynomials which should be better known. The case
m =0 1is (3.3).

Theorem 7.1. We have

T

_ (65 D@3 Dmgn=st®C ™™ Hpgnozs(2]q)
J(zlg)Hy(zlg™") = .
) tela™) pors (4 @)n—s(q59)s (4; @) mtn—2s

Proof: Consider the product of the generating functions
(t2e, 1267 q) o
(t16267 t16_207 Q)oo

This is the generating function for the g-ultraspherical polynomials (see [3,

(7.4.1)])

F(tl,tg) = Gq(iC,tl)Gl/q($7t2) =

F tl,tz ZCN T, tg/tllq)

However, the g-ultraspherical polynomlals may be expanded in terms of ¢-
Hermite polynomials [3, (7.6.14)]

L 2/¢1 ’ (2) 2/1154)s
Cn(z;ta/tilg) = Z ( t(/t )):(Jq q()tN/_tgs ) Hy_2s(z|q).
We then have
F(ty,tz) = io: NZ/QtN_S(—b)S(b/tl'(])N q(2) Hy-2,(zlg) :
7 ot T (45 0) (4 ) N—2s

Expanding (t2/t1; ¢) N—s by the g-binomial theorem yields

P =Y 3 3 [N

N=0s=0 k=0

x (=1)%¢0)

)kq(g)tjl\f—s—kt;+k

HN—ZS(' |Q)
(9 (@ ) N=2s




REFERENCES 11

So the coefficient of t7'¢5 in F(tq,t2) is

o [ 9] 7+ 0) <y ez (1)
;[ n—s Lq = (43 0)s(; @) m+n—2s
_ Hy(alg)(=1)"q5) Hoelg™")

B (6;0)m(¢;0)n

Several other connection results for the ¢-Hermite polynomials are given
in [4].
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