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Abstract. An elementary non-technical introduction to group representations and
orthogonal polynomials is given. Orthogonality relations for the spherical functions
for the rotation groups in Euclidean space (ultraspherical polynomials), and the ma-
trix elements of SU(2) (Jacobi polynomials) are discussed. A general theory for finite
groups acting on graphs, giving a finite set of discrete orthogonal polynomials is given.

Explicit examples include graphs giving the Krawtchouk and Hahn polynomials.

Introduction.

The purpose of this paper is to present a friendly, non-technical introduction
to group representations and orthogonal polynomials. No previous knowledge of
group representations is assumed, but a familiarity with orthogonal polynomials is
assumed. In particular, this paper emphasizes the classical orthogonal polynomials
and their relationship to groups. Other classical special functions can also be stud-
ied in this way, e.g. Vilenkin [19] or Miller [14] (which is more elementary). §I of
this paper could be considered as a short introduction to the sections of those books
relevant to orthogonal polynomials. More modern work on continuous groups and
the related analysis has been done by Koornwinder [11] and Dunkl [9]. Some very
recent work concerns orthogonal polynomials in several variables [13].

It was not realized until the early 1970’s that finite groups could be related to
classical orthogonal polynomials. The pioneering work was done by Dunkl [8],[9]
and Delsarte [5],[6],[7]. §II is an introduction to the general theory of finite groups.
This theory can be generalized to association schemes, which consider relations on
a finite set with certain properties. An extensive theory of association schemes can
be found in [3] and [5]. A very elementary introduction is given in [16]. A survey
of recent work and important problems is given in [4], and in Bannai’s paper [2] in
this volume.

Notation.

The classical orthogonal polynomials can be expressed as hypergeometric series.
We will use the usual notation for these series (see [15]). We will be most concerned
about three sets of polynomials: Jacobi, Krawtchouk and Hahn.

The Jacobi polynomials

(Ja) P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(

−n, n+ α+ β + 1; 1− x
α+ 1 2

)

,
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are orthogonal on [−1, 1] with respect to the weight w(x) = (1 − x)α(1 − x)β ,
α, β > −1. The ultraspherical (or Gegenbauer) polynomials are the special case
α = β of the Jacobi polynomials.

The Krawtchouk polynomials

(Kr) Kn(x, p,N) = 2F1

(

−n, −x; 1

−N p

)

are orthogonal on the finite set x = 0, 1, · · · , N with respect to the binomial distri-
bution w(x) =

(

N
x

)

px(1 − p)N−x, 0 < p < 1. We will consider p = 1/2, and more
generally p = k/(k + 1) for a positive integer k.

The Hahn polynomials

(Ha) Qn(x, α, β,N) = 3F2

(

−n, n+ α+ β + 1, −x; 1
−N, α+ 1

)

.

are orthogonal on the finite set x = 0, 1, · · · , N with respect to the hypergeometric
distribution w(x) =

(

α+x
x

)(

β+N−x
N−x

)

. For a positive weight function, α, β > −1 or
α, β < −N . We shall be considering the second case.

I.1 Continuous groups.

We begin by considering an elementary problem for polynomials: which poly-
nomials p(x, y) in x and y are harmonic. This means that the Laplacian ∆ =
∂2/∂x2 + ∂2/∂y2 annihilates p, ∆p = 0. We can assume that that p is homoge-
neous of degree n, for some n:

(1) p(x, y) =
n
∑

i=0

aix
iyn−i.

Clearly ∆p = 0 is equivalent to

(i+ 2)(i+ 1)ai+2 + (n− i)(n− i− 1)ai = 0 for 0 ≤ i ≤ n− 2.

Thus we see that a0 and a1 are arbitrary and

a2i = (−1)i
(

n

2i

)

a0

and

a2i+1 = (−1)i
(

n

2i

)

a1.

Thus an arbitrary harmonic polynomial, homogeneous of degree n in x and y, has
the form

(2) p(x, y) = A[(x+ iy)n + (x− iy)n] +Bi[(x+ iy)n − (x− iy)n],

for arbitrary real constants A and B.
In polar coordinates, the two independent solutions in (2) are rncos(nθ) and

rnsin(nθ). Thus we see the Chebyshev polynomials

Tn(cosθ) = cos(nθ)
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and

Un−1(cos θ) =
sin(nθ)

sin(θ)

appearing in the solutions to our harmonic polynomial problem. This is not sur-
prising, since zn is a complex analytic function, but what does it have to do with
group representations?

Let O(2) be the group of all orthogonal transformations in the x-y plane, so that
O(2) consists of all rotations about the origin, and reflections in lines through the
origin. The group O(2) acts on the 2-dimensional vector space V of all real harmonic
polynomials of degree n. This is clear from (2): if a rotation of α is applied, θ will
be increased by α, and the addition formula for cos(θ + α) will show that cos(θ)
will be mapped to a linear combination of cos(θ) and sin(θ). If a reflection through
the line θ = β is applied, then θ will be mapped to 2β − θ, and again we use the
addition formula to find the appropriate linear combination.

This vector space V , together with the action of G = O(2), is an example of an
irreducible representation of G.

Basically what we have is to “represent” the elements of G as matrices acting
on V , in a way that preserves the group multiplication, i.e. a product of group
elements is represented by a product of matrices. The representation is irreducible
because there is no smaller subspace of V which is fixed by G. Strictly speaking
we have the following definition.

Definition 1. Given a group G and a vector space V , an irreducible representation
of G is a continuous homomorphism φ : G→ Aut(V ) such that the only subspaces

of V stable under φ(G) are V and {~0}.

If V is an inner product space over the complex numbers, and φ(g) preserves the
inner product in V , then we call φ a unitary representation. Two repreentations φ
and φ′ on V and V ′ are called inequivalent if there is no isomorphism T : V → V ′

such that T ◦ φ(g) = φ′(g) ◦ T for all g ∈ G.
We can give another example of an irreducible representation of a group, this

time a finite group. Let G be the dihedral group of order 2m which acts on a regular
m-gon in the plane. We assume that the center of the m-gon is the origin, and that
a vertex lies on the x-axis. Consider functions on the vertices of the m-gon, whose
values at vertex k given by f1 = cos(nθk), where θk = 2πk/m, 0 ≤ k ≤ m − 1.
Define f2 similarly with sine replacing cosine. These functions are a discrete version
of those in (2) and give a 2-dimensional irreducible representation of G.

We now turn to orthogonality relations from representations. Since orthogonal
polynomials have orthogonality relations, we should see what kinds of relations are
available. The next theorem states three possible orthogonality relations, which
may or may not be orthogonality relations for orthogonal polynomials.

Orthogonality Theorem. Let G be a compact or finite group, and let φ : G →
Aut(V ) and φ′ : G → Aut(V ′), be inequivalent unitary irreducible representations
on complex vector spaces V and V ′. Let {v1, . . . , vp} be an orthonormal basis for
V . If

Tφij(g) =< vi, φ(g)vj >

is the ij matrix element of φ(g) with respect to {v1, . . . , vp}, then

(1) < vi, vj >= δij,
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(2)
∫

G
Tφij(g)T

φ′

i′j′(g)dg = δii′δjj′δφφ′/dimV ,

(3)
∑p
j=1 T

φ
ij(g)T

φ
kj(g) = δik.

Clearly (1) is just a restatement that is an orthonormal basis for V . For a
continuous group G, if we can parametrize G in some way by real numbers, (2)
gives us a chance at absolutely continuous measures for orthogonal polynomials. A
finite discrete orthogonality is clearly implied by (3). For (1) for G = O(2), we could
define the inner product of our two functions to be integration over the circle. Then
the orthogonality is the orthogonality of the two Chebyshev polynomials Tn and
Un−1. The matrix elements for a rotation by α are again trigonometric functions,
and integrating over α again gives this orthogonality. The 2 by 2 matrices are easily
seen to have (3). We will explicitly find matrix elements for G = SU(2) in §I.3,
and interpret the orthogonalities (2) and (3).

I.2 Spherical functions.

In this section we give the basic properties of spherical functions, also called zonal
spherical functions. There is a great literature on the harmonic analysis of these
functions. One example of these functions will be the ultraspherical polynomials.

Suppose G acts transitively on a set X, as O(2) acts on the circle S1 in the
plane. Then we have a representation of G on L2(X)

(1) L2(X) = ⊕
µ
mµVµ.

This representation may not be irreducible, thus it decomposes into many irre-
ducible components, some of which may be equivalent. This means that up to a
non-singular transformation between these subspaces, the action of G is identical.
The integer mµ is the multiplicity of the representation Vµ in L2(X). Thus it is
assumed in (1), that different µ correspond to inequivalent representations Vµ.

The multiplicities mµ can be found in the following way. Fix x0 ∈ X, and let
K = {g ∈ G : g(x0) = x0}, so that X = G/K. The Frobenius reciprocity theorem
gives the following property of mµ and Vµ.

Proposition. The subspace of Vµ invariant under K has dimension mµ.

If each mµ = 1, we call the representation multiplicity free. In this case each
Vµ contains a unique (up to a multiple) vector invariant under K. This suitably
normalized vector φµ ∈ Vµ, is the spherical function for Vµ. φµ is constant on the
K-orbits of G/K, thus constant on the double cosetsK\G/K. Since these functions
are in distinct representations, they are orthogonal by Orthogonality Theorem (2).
Thus, if the double cosets can be parametrized by a single real parameter, we
will have an absolutely continuous measure for which the spherical functions are
orthogonal. Many of the properties of spherical functions can be found in [9]. We
mention here that there is (1) an integral representation using the character of the
representation, and (2) an integral product formula.

Let G = O(2), X = S1, x0 = (1, 0), and K =< the reflection in the x-axis>.
Then the K-orbits on X are pairs of points on the unit circle which are complex
conjugates. Thus, any function invariant under K on the circle can be considered
a function of cos(θ). For the irreducible representation of harmonic polynomi-
als of degree m in §2, the spherical function clearly is the Chebyshev polynomial
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Tm(cos(θ)) = cos(mθ). The orthogonality of these polynomials is precisely the
orthogonality of spherical functions in distinct representations,

∫

X

φµ(x)φµ′(x)dx = 0, µ 6= µ′,

(2)

∫ π

0

Tm(cos(θ))Tm′(cos(θ))dθ = 0,m 6= m′.

For the dihedral group acting on an n-gon (n odd) the orthogonality is

(3)
1

n
+

2

n

n/2
∑

k=1

Tm(cos(θk))Tm′(cos(θk)) = 0,m 6= m′.

Clearly, as n→ ∞, (3) → (2).
For the rotation group SO(3) on the sphere S2, one can choose x0 to be the

north pole, and thus K is the subgroup of rotations about the diameter which
passes through x0. Then any function f(x) on S2, invariant under K, only depends
upon the angle θ = x · x0. Precisely the same statement can be said about the
higher dimensional spheres Sn−1 = SO(n)/SO(n− 1).

Theorem 1. Let Harm(m) be the vector space of harmonic polynomials which are
homogeneous of degree m. Let Harm(m)|Sn−1 be the restriction of these functions
to the sphere Sn−1. Then

(1) L2(Sn−1) = ⊕∞
m=0Harm(m)|Sn−1 ,

(2) Harm(m)|Sn−1 is inequivalent to Harm(m′)|Sn−1 , for m 6= m′,
(3) the spherical function for Harm(m)|Sn−1 is the ultraspherical polynomial

P
((n−3)/2,(n−3)/2)
m (cos θ), where x · (0, . . . , 0, 1) = cos θ.

Why should the spherical function be an ultraspherical polynomial? It is easy to
see that it must be a polynomial of degree m in cosθ. The spherical Laplacian ∆S

commutes with the action of SO(n), and so must be a constant on Harm(m)|Sn−1 .
The resulting eigenvalue equation is just the differential equation for the ultras-
pherical polynomials.

Why should (1) hold in Theorem 1? The vector space of homogeneous polyno-
mials of degree m, Hom(m), decomposes by (see [19, p. 444])

(4) Hom(m) = Harm(m)⊕ r2Hom(m− 2).

Iterating (4) gives

Hom(m) = Harm(m)⊕ r2Harm(m− 2)⊕ · · · .

Thus the vector space of all polynomial functions on Sn−1 is the vector space of all
harmonic polynomial functions.

We can also find dim(Harm(m)) from (4). There are
(

n+m−1
n−1

)

distinct mono-
mials in n variables of degree m. This yields

dim(Harm(m)) =

(

n+m− 1

n− 1

)

−

(

n+m− 3

n− 1

)

.
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Note that for n = 2, dim(Harm(m)) = 2, as it is in §2. Also note that every
restriction of a non-zero homogeneous polynomial is a non-zero function on Sn−1.

Finally we come to the invariant measure for the sphere. On S2 it is sin(θ)dθ,
which is sin(θ) times the invariant measure for the circle S1. It is clear from the
Pythagorean theorem, that each dimension gives another factor of sin(θ), so that
the measure for Sn−1 is sinn−2(θ). This completes the group theoretic proof that

P
((n−3)/2,(n−3)/2)
m (cos(θ)) are orthogonal on [0, π] with respect to sinn−2(θ).

I.3 Matrix elements.

In this section we compute the matrix elements for SU(2) and show that they are
effectively Jacobi polynomials. From the Orthogonality Theorem and the explicit
invariant measure for SU(2), we then have the orthogonality for these polynomials.

We let elements of g ∈ SU(2) be written as

g =

(

α β
−β α

)

,

where α and β are complex numbers satisfying |α|2 + |β|2 = 1.
Let Vm be the vector space of homogeneous polynomials p(x, y) in x and y of

degree m. The element g ∈ SU(2) acts by a linear change of variable,

p(x, y)g = p(αx− βy, βx+ αy).

We need an appropriate basis for V , and a way of parametrizing the group
elements of SU(2). It turns out that appropriate multiples of the monomials give
an orthonormal basis, on which the group acts unitarily:

vi = cix
m/2−iym/2+i,−m/2 ≤ i ≤ m/2.

(For odd m, i will be half-integral. This slightly unusual way of writing the expo-
nents will simplify the following calculation.) Thus

vig = ci(αx− βy)m/2−i(βx+ αy)m/2+i.

Expanding by the binomial theorem we find

(1) vig =

m/2−i
∑

s=0

m/2+i
∑

t=0

ci

(

m/2− i

s

)(

m/2 + i

t

)

αm/2−i−s(−β)sαtβm/2+i−t.

The coefficient of cjvj in (1) is a single sum which is a 2F1. This is the basic reason
that Jacobi polynomials are the matrix elements.

The group elements g can be parametrized by three parameters (φ, ψ, θ), called
the Euler angles of SU(2). φ and ψ are related to the phase of α and β, and θ gives
the modulus of α (and thus β)

g(φ, ψ, θ) =

(

ei(φ+ψ)/2cos(θ/2) iei(φ−ψ)/2sin(θ/2)
iei(−φ+ψ)/2sin(θ/2) ei(−φ−ψ)/2sin(θ/2)

)

.

A short calculation gives

Tmij (φ, ψ, θ) = constant · (1− cos(θ))(i−j)/2 · (1 + cos(θ))(i+j)/2

e−i(iφ+jψ) · P
(i−j,i+j)
m/2−i (cos(θ)).
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The invariant measure on SU(2) in terms of the Euler angles is

dg =
dφ

2π

dψ

4π

sin(θ)dθ

2
.

Clearly the orthogonality in Orthogonality Theorem (2) is trivial if i or j change.
If i and j are fixed, then we have the Jacobi polynomial orthogonality.

What is the discrete orthogonality (3) of the Orthogonality Theorem? It becomes

m
∑

j=0

(

m

j

)

(1− cos(θ))j−m/2(1 + cos(θ))m/2−j

· 2F1

(

−(m/2− i), −j; 2

−m 1− cos(θ)

)

· 2F1

(

−(m/2− k), −j; 2

−m 1− cos(θ)

)

= 0 for i 6= k.

This is precisely the Krawtchouk polynomial orthogonality with p = (1−cos(θ))/2.

I.4 Clebsch-Gordan coefficients.

Here we state the basic problem of the Clebsch-Gordan coefficients. These coef-
ficients have orthogonality relations, which turn out to be, for SU(2), the orthogo-
nality relations for Hahn polynomials [1], [12].

The main problem is the following: let V and W be irreducible representations
of G. Find the decomposition of the tensor product V ⊗W .

For SU(2), let V = Vj1 and W = Vj2 , it can be shown that

Vj1 ⊗ Vj2 = ⊕j1+j2j=|j1−j2|
Vj .

(This in fact can be proved from the Chebyshev polynomials of the second kind,
which are the characters of Vm.)

We have two different orthonormal bases for V ⊗ W : one made up of tensor
products of orthonormal bases from V = Vj1 and W = Vj2 , and another which
consists of the basis vectors for Vj inside Vj1 ⊗ Vj2 .

(1) vj1m1
⊗ vj2m2

, −j1 ≤ m ≤ j1, −j2 ≤ m ≤ j2,

(2) wjm, |j1 − j2| ≤ j ≤ j1 + j2, −j ≤ m ≤ j.

The Clebsch-Gordan coefficients are the entries of the matrix which accomplishes
this change of basis:

vj1m1
⊗ vj2m2

=
∑

m,j

C(j,m|j1,m1, j2,m2)w
j
m.

Since each basis is orthonormal, the Clebsch-Gordan matrix must be orthogonal.
The discrete orthogonality is equivalent to Hahn polynomial orthogonality.

II. Finite groups.

In §I at no time did we refer to the three term recurrence relation that all
orthogonal polynomials satisfy

(II.1) xpi(x) = Aipi+1(x) +Bipi(x) + Cipi−1(x).
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Given (II.1), it is possible to develop a combinatorial theory of general orthogo-
nal polynomials, [18]. In this theory pn(x) is the generating function for certain
weighted lattice paths in the plane, as are the moments µn for the measure for
pn(x). We cannot, however, interpret a general set of orthogonal polynomials given
by (II.1) as the matrix elements of a group, since matrix elements have special
properties that general orthogonal polynomials do not have. Nevertheless, we shall
see that (II.1) is the key ingredient for orthogonal polynomials on finite groups.

We give the general theory for finite groups in §II.1. These are applied to the
Krawtchouk, Hahn and q-Hahn polynomials in §II.2, §II.3, and §II.4. References
to combinatorial applications are given in §II.5.

II.1 Finite groups and graphs.

There is a complete analogy to the action of the continuous group SO(n) on
Sn−1, and the action of certain finite groups G on certain graphs X. In this
section we give the general theory of such an analogy, and prove that the spherical
functions are always given by orthogonal polynomials. The definitions in §I.3 and
the Orthogonality Theorem hold for finite groups.

Recall that a graph X = (V,E) consists of a set of vertices V , together with
some subcollection E of all 2-element subsets of V , called the edges of X. Rather
than stick to this cumbersome notation, we let X denote the vertices and the graph
simultaneously. The metric d(x, y) on X is defined by the length of the shortest
path from x to y in X. If the graph X is connected, i.e. there is some path between
any two vertices, then d(x, y) <∞ for all x, y ∈ X.

Let G be the group of automorphisms of X, this means that each g ∈ G permutes
the vertices of X and preserves the edges of X. Thus, each g ∈ G preserves the
metric d. We assume that (*)

(*1) X is connected,
(*2) if d(v, w) = d(v′, w′), then there exists g ∈ G such that (gv, gw) = (v′, w′).

Under these assumptions G acts transitively on X, so that we can think of the
action of G on all complex functions on X, L2(X), as comparable to the action of
SO(3) on L2(S2). This action of G on L2(X) is called a permutation representation
since G permutes the points of X. One example of such a graph is the n-gon, whose
automorphism group is the dihedral group of order 2n. The following theorem shows
the spherical functions of §I.3 are applicable.

Theorem 1. The permutation representation of G on X is multiplicity free.

We will prove Theorem 1 while computing the spherical function for each ir-
reducible representation. To find these subspaces of L2(X), we need |X| × |X|
matrices which are indexed by X. We let d be the maximum distance in the graph
X, and define a matrix Ai for each 0 ≤ i ≤ d by

(Ai)xy =

{

1 if d(x, y) = i,

0 otherwise.

The three-term recurrence relation (II.(1)) is given by the multiplication of A1Ai.

Proposition 1. For any 0 ≤ i ≤ d,

A1Ai = αiAi+1 + βiAi + γiAi−1,
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where, for a fixed (v, w) ∈ X ×X

αi =|{z ∈ X : d(z, v) = 1, d(z, w) = i}|, d(v, w) = i+ 1,

βi =|{z ∈ X : d(z, v) = 1, d(z, w) = i}|, d(v, w) = i,

γi =|{z ∈ X : d(z, v) = 1, d(z, w) = i}|, d(v, w) = i− 1.

Proof. Find the vw entry of each side by counting the appropriate number of tri-
angles in the graph. By the triangle inequality, the three terms listed are the only
ones that contribute. �

From Proposition 1, we see that Ai = pi(A1), for a finite orthogonal polynomial
sequence pi. Since each Ai is polynomial in A1, the algebra of symmetric matrices
generated by {A0, A1, . . . , Ad} is commutative. Thus they are simultaneously di-
agonalizable, and if {λ0 > λ1 > · · · > λd} are the distinct eigenvalues of A1, then
{pi(λ0), pi(λ1), . . . , pi(λd)} are the eigenvalues of Ai.

It was not an accident that there are d + 1 distinct eigenvalues of A1. The
dimension of the algebra of matrices generated by {Ai : 0 ≤ i ≤ d} is clearly d+ 1.
This algebra is a polynomial algebra in A1, thus A1 has d+ 1 distinct eigenvalues.

Let V0, V1, . . . , Vd be the eigenspaces for A1 corresponding to {λ0 > λ1 > · · · >
λd}. These will be the irreducible representations we seek. Thus we need to find
how the spherical functions are related to the polynomials pi(x), and what kind of
orthogonality relation they have. To do this, we will use the projection matrices
Pr0, P r1, . . . , P rd, where Pri is the projection of L2(X) onto Vi. By definition we
have

(1) Ai =
d

∑

j=0

pi(λj)Prj ,

which we can invert to

(2) Prj =

d
∑

i=0

qj(i)Ai.

We use the orthogonality PrjPrk = Prjδjk, by expanding each Prj and Prk in
terms of the Ai’s, then multiplying the Ai by counting triangles in the graph of
given side lengths (call this number ctis), and equating coefficients of Al. The result
is

(3) qj(l)δjk =
∑

i,s

qj(i)qk(s)c
l
is.

Even though (3) is a double sum, it can easily reduce to a single sum. If l = 0,
then clearly c0is = 0 unless i = s. So we have

(4) qj(0)δjk =
∑

i

qj(i)qk(i)c
0
ii.

This is an orthogonality relation for qj(i), with weights c0ii, the sizes of a sphere
of radius i centered at any point of the graph. If qj(i) is a polynomial of degree j
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evaluated at some µi, then we call the graph Q-polynomial (see [2]). It is already
P -polynomial.

We now have two orthogonality relations for qj(i): (4) and the definition (2) of
qj(i) as the inverse matrix to pi(λj). Thus, up to constants (which can be explicitly
found), we can say that these two quantities are equal. The resulting orthogonality
for pi(λj) is

(5)
1

|X|

d
∑

j=0

pk(λj)pi(λj)dimVj = δikc
0
kk.

We also see that the multiplication formula for AiAj gives the following lin-
earization formula for the polynomials pi(x):

pi(λm)pj(λm) =
∑

k

ckijpk(λm).

If x0 ∈ X is fixed, and K is the stablizer of x0, then any function on X invariant
under K must be constant on the K orbits on X. They are

Ωj = {x ∈ X : d(x, x0) = j}.

Thus the orthogonality relation for spherical functions will be

d
∑

j=0

φm(Ωj)φm′(Ωj)|Ωj | = 0 if m 6= m′.

This appears to agree with (5). Thus the spherical functions φm(Ωj) should be
pj(λm). This is true, and can be verified from the eigenvalue equation

(6) (A1φ)(Ωj) = λmφ(Ωj).

(6) becomes precisely the three-term recurrence relation (II.(1)), and shows that
φm(Ωj) is a polynomial of degree j in λm. This proves that each Vm has a unique
spherical function, so is irreducible by the Proposition in §I.2. We summarize these
conclusions in the next theorem.

Theorem 2. Let X be a graph satisfying (*) of maximum distance d. Then the

permutation representation of G on X is multiplicity free, L2(X) =
d
⊕
m=0

Vm, where

Vm is the mth eigenspace of the adjacency matrix of X. Moreover, the spheri-
cal function φm(x) ∈ Vm is given by φm(x) = pj(λm), d(x, x0) = j, for a finite
orthogonal polynomial sequence pj(x).

The analogies between the finite case X and the classical case Sn−1 are summa-
rized in the following list as cases (a) and (b).

(1a) Any differential operator commuting with SO(n) is a polynomial in the
spherical Laplacian ∆S .

(1b) Any operator commuting with G is a polynomial in A1 − |Ω1|I.
(2a) The eigenvalues of ∆S are non-positive.
(2b) The eigenvalues of A1 − |Ω1|I are non-positive.
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(3a) ∆Sf = λf is a second order differential equation for f .
(3b) A1f = λf is a second order difference equation for f .
(4a) For f ∈ Harm(k), the mean value operator Tθ satisfies Tθf = pk(cos(θ))f .
(4b) For f ∈ Vk, the mean value operator Aj satisfies Ajf = pj(λk)f .
(5a) A limit of the mean value value operator, lim

θ→0
Tθ − I = c∆S .

(5b) A difference of the mean value operator is A1− |Ω1|I is the “closest” differ-
ence operator.

II.2 Krawtchouk polynomials.

We next give an appropriate graph X, find the eigenspaces Vj , realize the Krawt-
chouk polynomials Kj(x, 1/2, d) as spherical functions.

Let X be the d-dimensional cube: the vertices of X are all 2d d-tuples of 0’s
and 1’s, and two vertices are connected by an edge if they agree in all but one
coordinate. The distance between two vertices is the number of coordinates in
which they differ. The group G which acts on X is the hyperoctahedral group:
all d! permutations of the coordinates, and all 2d interchanges of 0’s and 1’s. This
group is a semidirect product of the symmetric group Sd and a product of d cyclic
groups of order 2. The conditions (*) are easily verified.

First we find the three-term recurrence relation of Proposition 1. Let x0 =
00 · · · 0 be fixed, and let x = 1 · · · 10 · · · 0 be fixed vertex which is distance i from
x0, so that x has i 1’s. There are d vertices which are distance 1 from x: i of them
are distance i− 1 from x0, and d− i of them are distance i+ 1 from x0. We find

(1) λpi(λ) = ipi−1(λ) + (d− i)pi+1(λ).

Equation (1) for i = d determines the eigenvalues λj = d − 2j. These can be
derived independently by explicitly finding the eigenspaces Vj . For 1 ≤ i ≤ d, let
xi be the ith coordinate function on X defined by xi(0) = −1, and xi(1) = 1. Let
Vj be the span of all square free monomials of degree j in the xi’s. It is easy to see

that these monomials are orthogonal, so that dimVj =
(

d
j

)

. We now verify that

(2) A1x1x2 · · ·xj = (d− 2j)x1x2 · · ·xj ,

so that d− 2j is the eigenvalue of A1 on Vj . To see this, evaluate both sides of (2)
at an arbitrary vertex y of X. If we change one of the first j entries of y, then the
value of the monomial changes sign. If we change one of the last d− j entries of y,
the value of the monomial remains the same. So the eigenvalue is d− 2j.

Next we find an explicit formula for the spherical functions (the Krawtchouk
polynomials) as a 2F1. What monomial in Vj is fixed by the subgroup K of G fixing
x0? Clearly K = Sd, the symmetric group of the coordinates, so the only polyno-
mial in Vj invariant under Sd is the elementary symmetric function ej(x1, x2, . . . , xd)
of degree d. We must evaluate this polynomial at a vertex which is distance i from
x0, y = 1 · · · 10 · · · 0. The function ej(x1, x2, . . . , xd) can be thought of as the
sum over all subsets S of {1, 2, . . . , d} of size j. Let |S ∩ {1, 2, . . . , i} = k|, and
|S ∩{i+1, i+2, . . . , d} = j− k|. The value of the monomial corresponding to S at
y is (−1)j−k, so we have

φj(Ωi) = constant ·

j
∑

k=0

(

i

k

)(

d− i

j − k

)

(−1)j−k.
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This is equivalent (by a 2F1 transformation) to (Kr).

The weight function for φj(Ωi) is |Ωi| =
(

d
i

)

= dimVi. Note that if the spherical
function is normalized to be 1 at i = 0, it is symmetric under the interchange of i
and j. This always occurs if the group G is a semidirect product with an abelian
normal subgroup.

The Krawtchouk polynomials Kj(i, k/(k + 1), d) are the spherical functions for
the graph of all d-tuples of 0’s, 1’s, . . . , k’s [8].

II.3 Hahn polynomials.

Next we give an appropriate graph X for the Hahn polynomials.
Let X be the set of all n-subsets of {1, 2, . . . , v}, so that |X| =

(

v
n

)

. two subsets
A and B are connected by an edge if |A∩B| = n−1. If we assume that 2n ≤ v, then
the maximum distance is n, which occurs if two subsets are disjoint. In general,
d(A,B) = n− |A ∩B|. The symmetric group Sv acts on X and the conditions (*)
are satisfied.

First we find the size of the spheres of radius j, which are the weights of the spher-
ical functions. Fix x0 = {1, 2, . . . , n}. The number of n-subsets B of {1, 2, . . . , v}
such that |x0 ∩B| = n− j is

(

n

n− j

)(

v − n

j

)

.

These are the weights for the Hahn polynomials (see (Ha)) with α = n − v − 1,
β = −n− 1, since then

(

α+ j

j

)(

β + n− j

n− j

)

=

(

n

n− j

)(

v − n

j

)

.

The three term recurrence relation is easily found as

λpi(λ) = i2pi−1(λ)+(n− i)(v − n− i)pi+1(λ)

+ [n(v − n)− i2 − (n− i)(v − n− i)]pi(λ).

This is the second order difference equation for Hahn polynomials, or the three
term recurrence relation for the dual Hahn polynomials.

To define the eigenspaces Vj , 0 ≤ j ≤ n, we define monomial functions on X by

xi1xi2 · · ·xij (A) =

{

1 if {i1, i2, · · · , ij} ⊂ A

0 otherwise.

(These functions are called sections of the zeta function in the theory of posets.) Let
Hom(j) be the span of all monomials of degree j, and let D = ∂/∂x1+ · · ·+∂/∂xv
be the “down” operator. G acts on Hom(j), but the action is not irreducible. Since
D commutes with the action of G, G also acts on Harm(j) = Hom(j) ∩ kerD.

Again to show Harm(j) = Vj , i.e. Harm(j) is irreducible, we show that
Harm(j) has a unique spherical function φj , and compute what φj is. The sub-
group fixing x0 is K = Sn × Sv−n. This time the K-invariant polynomials in
Hom(j) are spanned by a product of elementary symmetric functions

es(x1, · · · , xn)ej−s(xn+1, · · · , xv), 0 ≤ s ≤ j.
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We find which linear combination is annihilated by D using

Des(x1, · · · , xn) =(n− s+ 1)es−1(x1, · · · , xn)

Dej−s(xn+1, · · · , xv) =(v − n− j + s+ 1)ej−s−1(xn+1, · · · , xv)

Suppose

(1) D(

j
∑

s=0

cses(x1, · · · , xn)ej−s(xn+1, · · · , xv)) = 0.

From (1) we see that cs+1(−s+ n) = (v − n− j + s+ 1)cs, so

cs =
(v − n− j + 1)s

(−n)s
c0.

This proves that the K-invariant functions in Harm(j) are 1-dimensional, so
Harm(j) is irreducible.

To evaluate φj(Ωi), fix A = {1, · · · , n− i, n+ 1, · · · , n+ i} ∈ Ωi. To evaluate

es(x1, · · · , xn)ej−s(xn+1, · · · , xv)(A)

we count the number of pairs of subsets (B,C), where |B| = s, B ⊂ {1, · · · , n− i},

|C| = j − s, C ⊂ {n+ 1, · · · , n+ i}. This number is
(

n−i
s

)(

i
j−s

)

, so

φj(Ωi) = constant

j
∑

s=0

(v − n− j + 1)s
(−n)s

(

n− i

s

)(

i

j − s

)

.

This 3F2 is equivalent to (Ha) with α = n − v − 1 and β = −n − 1 by a 3F2

transformation. From i = 1 we find λj = n(v − n)− j(v + 1− j).
Finally the L2 norm of the polynomials can be found from dimVj=

(

v
j

)

−
(

v
j−1

)

.

II.4 q-Hahn polynomials.

Next we give a very short introduction to a q-analog of Hahn polynomials, whose
explicit formula is in terms of basic hypergeometric series (see Rahman’s paper [15]
in this volume).

The main idea is that q-binomial coefficients
[

n
k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

will replace the binomial coefficients that were used in §II.3. Thus we need to know

what

[

n
k

]

q

counts instead of
(

n
k

)

, and how q is involved. The answer is:

[

n
k

]

q

is

the number of k-dimensional vector spaces of an n-dimensional vector space over a
finite field of order q.

We let X be the set of all n-dimensional vector spaces of an v-dimensional vector
space over a finite field of order q. We let the edges of X be pairs of subspaces A-B
such that dim(A ∩B) = n− 1. The group G = GLv(q) satisfies the (*) condition.
The distance between two subspaces A and B is d(A,B) = n− dim(A ∩ B). How
many subspaces are distance i from a fixed subspace? The answer is

[

n
n− i

]

q

[

v − n
i

]

q

qi
2

,

the weights for q-Hahn polynomials.
We state, and do not give the details (see [7],[17]) for the calculation of the

spherical function.
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Theorem. The spherical function φj(Ωi) is a q-Hahn polynomial

Qj(q
−i, qn−v−1, q−n−1;n|q) = 3φ2

(

q−j , qj−v−1, q−i; q; q
q−n, qn−v

)

.

There are also natural q-analogs of the Krawtchouk polynomials. These again
are related to classical groups over fields of order q, whose Lie algebra is of type Bn,
Cn, and Dn. Details occur in [17]. All known infinite families, whose maximum
distance d → ∞ are related to these groups (or their Weyl groups). It is believed
that this is it [2].

III. Remarks.

There are many applications of the discrete orthogonal polynomials in §II to
coding theory and the theory of designs. The location of the zeros of the polynomials
is critical. Bannai’s paper [2] in this volume contains many of these results. An
example of an analytic theorem motivated by combinatorial constraints is Leonard’s
theorem. This theorem states that if pi(λj) = qj(µi) for another finite set of
orthogonal polynomials qj(x), then pi(x) must be a special or limiting case of the
Askey-Wilson 4φ3 polynomials.

The continuous version of the groups and graphs in §II. are called rank one
symmetric spaces of compact type. They have been classified [20], and the spherical
functions are all Jacobi polynomials. There is also work on rank k symmetric spaces,
and orthogonal polynomials in several variables. Bannai [2] contains references to
this work.

An exciting recent area of research is the relationship of quantum groups to q-
orthogonal polynomials. Koornwinder’s paper in this volume [10] surveys the work
to this day. The quantum groups are not groups, but algebras with a multiplication
that in a sense is dual to group multiplication. For SU(2), the irreducible repre-
sentations of this algebra are analogous to the polynomial representations in §I.3.
Explicit calculations can be made, using a form of the binomial theorem for letters
A and B which satisfy BA = qAB,

(A+B)n =
n
∑

k=0

[

n
k

]

q

AkBn−k.

When the analogous expansion to (I.3(1)) is made, the matrix elements are 2φ1’s
instead of 2F1’s.
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