OPEN POSITIVITY CONJECTURES
FOR INTEGER PARTITIONS

D. STANTON

June 6, 1999

1. Introduction. The purpose of this report is to collect some open positivity
conjectures for integer partitions. The conjectures in §2-§3 are simple to state and
initially appear easy to do, but remain open. The conjectures in §4-§5 should be
related to representation theory, since they generalize known facts in this area.
The conjectures in §6 are speculative, and if true, would require new combinatorial
insight.

We will use standard notation found in [1] throughout. The ¢-shifted factorials
are defined by

n—1 k
(A = [ = Ad), (A1, Az, Ao = [[(Ai0)n
=0 i=1

The ¢-binomial coefficient, which is the generating function for integer partitions
which lie inside a k x (n — k) rectangle, is the polynomial in ¢ given by

HEEre

2. A simple rational function. In [6] the following problem was discussed.
Suppose that we consider all integer partitions whose parts lie in some fixed set P.
The generating function for these partitions is

We wish to classify those sets P such that the coefficients a,, weakly increase for
m > 1. This accomplished in [6, Th. 3.5], assuming the following conjecture.

Conjecture 1. Suppose that n > 3 is an odd integer. If

1 =  m
Fin i1, 2n-13(a) = (1= g1 —gnt) - (1 —g2n-1) D> amd"™,
m=0

then a,, is weakly increasing for m > 1.

Conjecture 1 has been verified by computer for n < 37. It is easy to see that a,,
increases for m large, by considering the dominant pole of (1—q)Fyy, y41,... 2n—1} ()
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There is a version for even values of n, which is somewhat more complicated.

A natural route of attack is to find an injection from the partitions of m with
parts {n,n+1,---,2n — 1}, to the partitions of m+1 with parts {n,n +1,--- ,2n — 1}.
This has been accomplished for n < 9, but the details are numerous and not illu-
minating. Savage [16] has also partial results in this direction.

One may also hope to find a polynomial version which generalizes Conjecture 1
and is easier to prove.

3. The + — — conjecture. P. Borwein has conjectured [2] the sign behavior of
the polynomial

n

(3.1) p(@) = (6,65 ) = [0 =21 = ¢* 1) = ) amg™

i=1
Conjecture 2. (The + — — conjecture) If an, is defined by (2.1), then for all m,
azm >0, azm4+1 <0, agmi2 <0.

It is clear that Conjecture 2 may be reformulated as the existence of an injection.
Let D, (m) be the set of integer partitions of m with distinct parts, and with no
parts congruent to 0 modulo 3. Let D™ (m) (D% (m)) denote those elements of
D,,(m) with an even (odd) number of parts. No one has been able to find injections

D% (31m) —DE"(3m),
D™ (3m + 1) — D2 (3m + 1),
D™ (3m, + 2) —D2%(3m + 2).

Another reasonable method is to use the g-binomial theorem to explicitly find
the polynomials A,,(q), By (q), and Cy,(q) such that

pn(q) = An(@®) — ¢Bn(d®) — *Cu(d?®).

It is easy to see [2] that

2n
(_l)k :| qk;(9k~|—1)/27
| n+ 3k .

k
[ 2n _
Bn(Q) = Z(_l)k n-+ 3k — 1:| qk(gk 5)/27
k - q
k

\k 2n k(9k+7)/2
(=1) n+ 3k + 1 qq )

and one could hope for a simple inductive proof if a recurrence for these polynomials
with positive coefficients can be found. None one has yet.

However, very closely related alternating sums of ¢-binomial coefficients are
known to be non-negative polynomials in ¢. It is known [3, Th.1], for example,
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that if o, 8, K, M, and N are positive integers, with a + 0 < 2K, f — K <
N — M < K — «, then

k| M+N | K2 (atB)/24+Kk(B—a)/2
(32) > i K

has non-negative coefficients. Moreover this polynomial is the generating function
for partitions inside an M x N rectangle, whose hook differences satisfy certain
inequalities involving «, 3, and K, see [3].

If M =N =n, and K = 3, solving for @ and  in (3.2) to obtain A4, (q), we
have o = 5/3, = 4/3. Thus if a combinatorial interpretation can be found for
these rational values of v and (3, Conjecture 2 is verified. A reasonable guess at
such an interpretation is to use the bijection [11, p. 83],[7, p. 2] between partitions
A and (Ao, p1, p2 13), where Ao is the 3-core of A and (u1, p2, p3) is the 3-quotient.
Perhaps the choices a = 5/3, 3 = 4/3 put restrictions on the hook differences, say
of u1 and ps. If this works it is clear that should be a conjecture for any modulus,
not just 3, which is the next conjecture.

Conjecture 3. Fiz relatively prime positive integers a, K, with a < K/2. Let

n

pn(Q) — (qa7qK—a;qK)n — H(l . qa—l—(i—l)K)(l - in—a) — Z amqm.
] m=0

If K s odd, we have

am < 0 if m = +aj mod K, for some positive odd integer j < K/2,
am > 0 if m = +aj mod K, for some non-negative even integer j < K /2.
If K is even, we have (—1)™a,, > 0.

The case n = oo of Conjecture 3 may be established by sieving the Jacobi triple
product identity. For K odd we have

(K-1)/2
—a r T _ar
(6" % )= Y (—1)7gK(F)
r=(1-K)/2
Kt —a K)Y—Kr+a
(3.3) « (K2 +Er—0) (K((5)-Kra) oK' (K
("¢ ) oo
Thus we see that (3.3) is
(K—1)/2
(3.4) (0" %)= D (=) f(d5),
r=(1-K)/2

where f,.(¢%) is a power series in ¢& with non-negative coefficients. So (3.4) verifies
Conjecture 3 for K odd and n = co.
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For K even we similarly have

K—1
(qa, qK—a; qK)OO _ Z (_l)rqK(g)+ar
r=0
(—gX () Ko _gK(G)+Krta) oK gk
(35) X ’
(@"54%) oo
so that we again obtain (3.4). Here K is even and a is odd, so ar will be odd
modulo K if, and only if, r is odd modulo K.

One may try to prove Conjecture 2 by proving (3.3) for K = 3 by an involution,
and then restricting the part sizes to be at most 3n — 1.

Bressoud [4] has conjectured the positivity an appropriate fractional version of
(3.2). It implies Conjecture 3. Some of the fractional cases for K = 2 have been
verified by Greene [9].

These conjectures involving alternating sums of ¢g-binomial coefficients are closely
related to representations of the Virasoro algebra [12] and statistical mechanics [5].

Andrews found a beautiful generalization of Conjecture 2.

Conjecture 4. (Andrews) If fmn(2) = (¢,4% ¢*)n(2q, 2¢%;¢®)m, then for any t
the coefficient of 2* is a polynomial in ¢ whose sign behavior is + — — modulo 3.

P. Borwein [2] had two other conjectures.
Conjecture 5. (P. Borwein) The sign behavior of (q,q% ¢3)2 is + — — modulo 3.

Conjecture 6. (P. Borwein) The sign behavior of (q,q?%,¢%, ¢* ¢°)p is + — — — —
modulo 5.

4. Unimodality conjectures. A polynomial p(q) of degree N with real coeffi-
cients

N
p(a) =Y amq™
m=0

is called wunimodal if there is some k such that
ap < a1 <ax < <Ak > 0gy1 200 2 AN

It is called symmetric if a,,, = an_,, for all m. We could restate unimodality as a
positivity condition by considering (1 — q)p(q).

The g¢-binomial coefficient is known [1, p. 48] to be a symmetric, unimodal
polynomial in q. A general method [18] for proving that polynomials have this
property is to realize them as formal characters of sls representations. This method
works for the g-binomial coefficient, and was generalized to certain differences of
¢-binomial coefficients in [15]. For example

R (4l P B S i [ 1)

is symmetric and unimodal if n is odd and 2k +1 < n. A more general theorem
involves differences of Schur functions. Motivated by rigged configurations, we
made the following conjecture which is (4.1) if r = 1.
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Conjecture 7. If n is odd, and r and k are non-negative integers with n > 2rk —
4r + 3, then

n—1 _ . n—2rk+4r—3 n—1—|—4(r—1)
By, k-2

1s a symmetric, unimodal polynomial in q with non-negative coefficients.

It even takes some effort to verify that for ¢ = 1, this difference is a non-negative
integer.
n

k

erating function of all partitions which lie inside a k x (n— k) rectangle. For a shape
A, let Y (q) be the generating function for all partitions whose Ferrers diagram fit
inside A. Y)(g) is not always unimodal [19], but special choices besides rectangles
should be. If A = (n,n —1,---, 1), the staircase shape, it is well-known that Y, (q)
is a g-analog of a Catalan number related to the Rogers-Ramanujan identities.

Another unimodality conjecture concerns the interpretation of [ } as the gen-
q

Conjecture 8. If A= (n,n—1,---,1), then Y\(q) is a unimodal polynomial in q.
Perhaps more speculatively, I have made the following conjecture [19].

Conjecture 9. If X is self-conjugate, then Yx(q) is a unimodal polynomial in q.
Conjecture 9 has been verified for all partitions A of all integers less than 125.

5. t-cores. A partition A is called a t-core if none of the hook numbers of A\ are
multiples of t. For example, the only partitions which are 2-cores are the staircase
partitions. We let a¢(n) denote the number of partitions of n which are ¢-cores. A
celebrated result of Granville and Ono [8] is that ¢-cores exist for ¢ > 4, that is,
at(n) > 01if t > 4.

It is possible to give explicit formulas for as(n), as(n), and az(n) [7], from the
generating function

- n (¢ d)k
nz:%at(n)q (@D

However, numerical evidence indicates that the following (possibly rash) conjecture
may hold.

Conjecture 10. Ift > 4, then

at(n) < agy1(n), forn>t+1.

6. Gaussian posets. A finite partially ordered set P is called Gaussian if the

generating function for all order reversing maps o : P — {0,1,---,m} is
|P| h,
1 _ qm+ i
6.1 ol =TT ——,

for some set of positive integers h;. If P is just a chain with k elements, then an
order reversing map o can be considered as an integer partition with at most k parts,
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largest part < m. So the generating function (6.1) is the g-binomial coefficient, or
Gaussian polynomial, thus the term Gaussian.
It turns out that each connected Gaussian poset must be ranked, with level

numbers ai, a9, - - ,a, and that the generating function above simplifies to
k .
" 1 — qm—i—z a; .
(6.2) Sd =TT — Famg).
o 1=1 (1 -4 ) '

If each a; = 1, (6.2) is a g-binomial coefficient.

It is an open problem [17, p. 271] to classify all connected Gaussian posets.
All of the known examples [14] are related to miniscule representation of simple
Lie algebras. Nonetheless, MacMahon [13, Chap. V] considered products of the
form (6.2), and classified, for a given sequence, a1, as, - - - , ax, when the product is a
polynomial in q. For connected Gaussian posets we also have the symmetry relation
a; = ap+1—; for all i. Let us call a sequence of positive integers @ = (a1, -- ,ax)
a fake Gaussian sequence if it is symmetric and the rational function (6.2) is a
polynomial for all non-negative integers m.

The conjectures in this sequence are speculative, but supported by numerical
evidence.

Conjecture 11. If (a1,--- ,ar) is a fake Gaussian sequence, then the coefficients
of the polynomial F(d, m,q) in q are non-negative for all non-negative integers m.

Using the geometry computer package Porta, Conjecture 11 was verified [20]
for all fake Gaussian sequences with at most 10 parts. A stronger conjecture was
verified, that the coefficients in the polynomial W(d, ¢) in the expansion

A m+ay + +a S
. 1+ k— .
F(d,m,q)= Y { Gt tar W (a@,q)
s=0 q

are non-negative if @ is a symmetric fake Gaussian sequence.

Haglund [10] has interpreted Conjecture 11 in terms of rook theory. He has a
more general conjecture concerning g-hit numbers of Ferrers boards.

A more speculative positivity conjecture in [20] involves a possible generalization
of the g-multinomial coefficient.

Conjecture 12. Suppose that (a1, az,--- ,ar) is a sequence of positive integers. If
g~ TEE 0 )
Y n y .
[Lio (1 —g")

is a polynomial in q, then the coefficients of g(d, q) are non-negative.

If @ is a decreasing sequence, then ¢(d,q) is a g-multinomial coefficient, and
Conjecture 12 is verified. It has also been verified for all sequences @ whose sum is
at most 18, and all @ with at most 10 parts satisfying the hypotheses of Conjecture
11.

Conjecture 12 would indicate a way to generalize multiset permutations, presum-
ably to a set with an appropriate statistic, which generalizes inv or maj. However,
I do not have a combinatorial interpretation of Conjecture 12 for ¢ = 1.
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