
ZEROS OF GENERALIZED KRAWTCHOUK POLYNOMIALS

Laura Chihara* and Dennis Stanton**

Abstract. The zeros of generalized Krawtchouk polynomials are studied. Some
interlacing theorems for the zeros are given. A new infinite family of integral zeros
is given, and it is conjectured that these comprise most of the non-trivial zeros. The
integral zeros for two families of q-Krawtchouk polynomials are classified.

1. Introduction.

Given a sequence of orthogonal polynomials pn(x), it is well-known [5, p. 27] that
the zeros of pn(x) are real, simple and lie inside the interval of orthogonality. The
Krawtchouk polynomials are a finite sequence of orthogonal polynomials pn(x), 0 ≤
n ≤ N , whose interval of orthogonality is [0, N ]. In this paper we shall consider the
zeros of Krawtchouk polynomials, and in particular investigate the integral zeros.

The integrality of zeros for orthogonal polynomials has combinatorial impor-
tance. If the polynomials are naturally related to an association scheme, then the
location of the zeros is critical for combinatorial properties of the scheme. For
example, if the scheme has a configuration called a perfect e-code, then the polyno-
mial of degree e has e integral zeros [7, Chapter 5]. As another example, generalized
Radon transforms can be defined on association schemes [9]. Such a transform is
invertible if and only if the relevant polynomial does not have integral zeros.

The most important association scheme is the Hamming scheme of classical cod-
ing theory, and its polynomials are the Krawtchouk polynomials. Thus, the zeros
of these polynomials and their q-analogs are important. We give some elementary
interlacing properties of the zeros in §3. A new infinite family of integral zeros is
given in Theorem 4.6. Numerical evidence supports Conjecture 4.7 that asymp-
totically these are most of the non-trivial integral zeros. In Theorem 6.1 we show
that a family of q-Krawtchouk polynomials never has integral zeros. Finally in §6
we consider a second family of q-Krawtchouk polynomials, and classify its integral
zeros.

For the (generalized) Krawtchouk polynomials, we need to introduce the stan-
dard notation for (basic) hypergeometric series,

(1.1) r+1Fr

(

a1 a2 · · · ar+1; x
b1 b2 · · · br

)

=

∞
∑

j=0

(a1)j(a2)j · · · (ar+1)jx
j

(b1)j(b2)j · · · (br)jj!
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where

(1.2) (a)j = a(a+ 1) · · · (a+ j − 1)

and

(1.3) r+1φr

(

a1 a2 · · · ar+1; q, x
b1 b2 · · · br

)

=

∞
∑

j=0

(a1)j(a2)j · · · (ar+1)jx
j

(b1)j(b2)j · · · (br)j(q)j

where

(1.4) (a)j = (a; q)j = (1− a)(1− aq) · · · (1− aqj−1).

2. Preliminaries.

In this section we review the necessary facts about the Krawtchouk polynomials.
We refer the reader to [2] or [11] for more details.

We shall use notation for Krawtchouk polynomials which agrees with the Ham-
ming scheme H(N, q). The Krawtchouk polynomial kn(x, q,N) of degree n in x is

orthogonal on x = 0, 1, . . . , N with respect to the measure
(

N
x

)

(q − 1)x. We may
take q > 1, although q is integral for H(N, q). This defines the polynomials up to
a normalization constant. They may also be defined by the three-term recurrence
relation

(2.1) (n+1)kn+1(x) = [(N −n)(q−1)+n− qx]kn(x)− (q−1)(N −n+1)kn−1(x)

for n = 1, · · · , N − 1, with the initial conditions k0(x) = 1 and k1(x) = −qx +
N(q − 1). Their generating function is

(2.2)
N
∑

n=0

kn(x, q,N)zn = (1 + (q − 1)z)N−x(1− z)x.

From (2.2), it is easy to see

(2.3) kn(x, q,N) =
n
∑

j=0

(−1)j(q − 1)n−j

(

N − x

n− j

)(

x

j

)

and thus deduce

(2.4) kn(0, q,N) =

(

N

n

)

(q − 1)n.

Also

(2.5) kn(x, q,N) = kn(N − x, q/(q − 1), N)(1− q)n.

The Krawtchouk polynomials can also be expressed as a 2F1

(2.6) kn(x, q,N) =

(

N

n

)

(q − 1)n2F1

(

−n −x; q
−N q − 1

)

.
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Because a 2F1 is a symmetric function of the two numerator parameters, if x = i
is integral we have the self-dual relation

(2.7)

(

N

i

)

(q − 1)ikn(i, q,N) =

(

N

n

)

(q − 1)nki(n, q,N) n, i = 0, 1, . . . N.

Clearly the three-term relation (2.1) and the self-dual relation (2.7) imply the dif-
ference equation
(2.8)
(q−1)(N−x)kn(x+1, q,N)−[(q−1)(N−x)+x−qn]kn(x, q,N)+xkn(x−1, q,N) = 0.

In later sections we will need the following propositions. Proposition 2.1 follows
from the generating function (2.2), and Proposition 2.2 follows from parts (1) and
(2) of Proposition 2.1.

Proposition 2.1. For 0 ≤ n ≤ N ,

(1) kn(x, q,N + 1) = kn(x, q,N) + (q − 1)kn−1(x, q,N)
(2) kn(x, q,N + 1) = kn(x− 1, q,N)− kn−1(x− 1, q,N)
(3) kn(x, q,N)− kn(x− 1, q,N) + (q− 1)kn−1(x, q,N) + kn−1(x− 1, q,N) = 0.
(4) kn(x, q,N)− kn(x+ 1, q,N) = qkn−1(x, q,N − 1)

Proposition 2.2. If kr(s, q,N) = 0, where s is real, then

(1) kr(s, q,N + 1) = (q − 1)kr−1(s, q,N)
(2) kr+1(s, q,N + 1) = kr+1(s, q,N)
(3) kr(s+ 1, q,N + 1) = −kr−1(s, q,N)

Finally we need a special proposition for the q = 2 case.

Proposition 2.3. We have

kr(x, 2, N)− kr(x+ 2, 2, N) = 4kr−1(x, 2, N − 2).

Proof. From Proposition 2.1(4) we obtain the two equations

kr(x, 2, N)− kr(x+ 1, 2, N) = 2kr−1(x, 2, N − 1)

kr(x+ 1, 2, N)− kr(x+ 2, 2, N) = 2kr−1(x+ 1, 2, N − 1)

Adding these two equations together yields

kr(x, 2, N)− kr(x+ 2, 2, N) = 2[kr−1(x, 2, N − 1) + kr−1(x+ 1, 2, N − 1)]

= 2[−kr(x+ 1, 2, N − 1) + kr(x, 2, N − 1)]

= 2[2kr−1(x, 2, N − 2)]

where the second equality follows from Proposition 2.1(3) and the third equality
follows from Proposition 2.1(4). �

3. Interlacing of the zeros.

In this section we concentrate on properties of the zeros which do not involve
integrality. Let xN

n,1 < xN
n,2 < · · · < xN

n,n denote the zeros of kn(x, q,N). Recall

that 0 < xN
n,1 < xN

n,n < N , there is some integer in any open interval (xN
n,k, x

N
n,k+1)

[16], and that the zeros of kn(x, q,N) and kn−1(x, q,N) interlace [16]. First we give
an interlacing theorem which is analogous to [10, Th.4] for Hahn polynomials.
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Theorem 3.1. The zeros of kn(x, q,N) and kn(x, q,N + 1) interlace,

xN
n,i < xN+1

n,i < xN
n,i+1 < xN+1

n,i+1, for i = 1, . . . , n− 1.

Proof. This follows from the interlacing property for kn(x, q,N) and kn−1(x, q,N)
and Proposition 2.1(1). The details are similar to the proof of Theorem 3.2. �

We now have two zeros, xN+1
n,i and xN

n−1,i, which lie in the interval [xN
n,i, x

N
n,i+1].

These zeros also interlace.

Theorem 3.2. The zeros of kn−1(x, q,N) and kn(x, q,N + 1) interlace,

xN+1
n,i < xN

n−1,i < xN+1
n,i+1, for i = 1, . . . , n− 1.

Proof. We must show that xN+1
n,i < xN

n−1,i, so we first consider the i = 1 case.

Clearly the interlacing property for kn(x, q,N) and kn−1(x, q,N), and Proposition

2.1(1) imply that xN+1
n,1 6= xN

n−1,1. So assume that xN
n−1,1 < xN+1

n,1 . Because the

leading terms of kn(x, q,N) and kn(x, q,N +1) have the same sign, kn(x, q,N) and
kn(x, q,N + 1) have opposite signs at xN

n−1,1. This contradicts Proposition 2.2(2).
The proof continues by induction on i noting that kn(x, q,N) and kn(x, q,N+1)

have opposite signs on the interval (xN
n,i, x

N+1
n,i ). So the assumption xN

n−1,i < xN+1
n,i

would contradict Proposition 2.2(2). �

The next theorem shows that the interlacing in Theorem 3.1 is “close”.

Theorem 3.3. For 1 ≤ i ≤ n ≤ N, xN
n,i − xN+1

n,i < 1.

Proof. Since kn(x
N
n,i, q,N) = 0, Proposition 2.2(1) implies

kn(x
N
n,i, q,N + 1) = (q − 1)kn−1(x

N
n,i, q,N)

and Proposition 2.2(2) implies

kn(x
N
n,i + 1, q,N + 1) = −kn−1(x

N
n,i, q,N).

Thus, we have

kn(x
N
n,i, q,N + 1) = −(q − 1)kn(x

N
n,i + 1, q,N + 1),

and if q > 1, then kn(x, q,N + 1) must have a zero between xN
n,i and xN

n,i + 1. �

If q = 2, we can say more about the distance between consecutive zeros. Levit
[10, Th.3] has a similar result for Hahn polynomials.

Theorem 3.4. Let x1 < x2 be consecutive zeros of kr(x, 2, N) and suppose r <
N/2. Then

x1 + 2 < x2.

Proof. First we note that the difference equation (2.8) when q = 2 is

(3.1) (N − 2r)kr(x) = (N − x)kr(x+ 1) + xkr(x− 1).
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Assume that x1 is not an integer (the argument for x1 an integer is similar).
Suppose there is only one integer s separating x1 and x2, that is s − 1 ≤ x1 <
s < x2 ≤ s+ 1. (Recall that the open interval between two consecutive zeros of
an orthogonal polynomial must contain at least one spectral point.) Then we must
have

sgn(kr(s− 1)) = sgn(kr(s+ 1)) = −sgn(kr(s))

which contradicts (3.1) if x = s. This contradiction forces there to be at least two
integers in the interval (x1, x2), or x2 > x1 + 1.

Now suppose x2 ≤ x1 + 2, and let x = x1 + 1 in (3.1). Then

(N − 2r)kr(x1 + 1) = (N − x1 − 1)kr(x1 + 2)

which implies

(3.2) sgn(kr(x1 + 1)) = sgn(kr(x1 + 2)).

Then (3.2) and x1 + 1 < x2 ≤ x1 + 2 implies that there must be another zero of
kr(x) between x2 and x1+2. But from the previous paragraph, we know then that
(x2, x1 + 2) must contain at least two integers, thus giving us four integers in the
interval (x1, x1 + 2). This is clearly impossible; thus x2 > x1 + 2. �

The condition r < N/2 in Theorem 3.4 cannot be relaxed because the zeros of
kN (x, 2, 2N) are 1, 3, . . . , 2N − 1.

There is a discrete form of Markoff’s theorem [16, p. 115] which states the follow-
ing. If the weight function w(x, q) is purely discrete, and the logarithmic derivative
wq(x, q)/w(x, q) is increasing, then the ith of the corresponding orthogonal polyno-
mials is an increasing function of q. For the Krawtchouk polynomials we then have
the following theorem.

Theorem 3.5. Let xN
i,n(q) be the ith zero of kn(x, q,N). Then xN

i,n(q) is an in-
creasing function of q, for q > 1.

4. Integral zeros.

We next consider the number theoretic conditions which are necessary for a
Krawtchouk polynomial to have an integral zero. We also give a non-trivial family
of integral zeros in Theorem 4.6.

Theorem 4.1. If kr(s, q,N) = 0, s an integer, then q divides
(

N
r

)

.

Proof. From Proposition 2.1(4), we have

kr(0, q,N)− kr(1, q,N) = qkr−1(0, q,N − 1)

kr(1, q,N)− kr(2, q,N) = qkr−1(1, q,N − 1)

...

kr(s− 1, q,N)− kr(s, q,N) = qkr−1(s− 1, q,N − 1)

The telescoping sum yields

kr(0, q,N) = q

s−1
∑

j=0

kr(j, q,N − 1).

Recalling (2.4) yields the desired conclusion, since kr(j, q,N − 1) is integral. �

If q is a prime number, the value of
(

N
r

)

(mod q) is well-known from Lucas’
Theorem [6,p. 65], and we have the following corollary.
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Corollary 4.2. Let r1 · · · ra and N1 · · ·Nb be the base q representations of r and
N respectively. If q is a prime number and kr(s, q,N) = 0 for some integer s, then
for some i, ri > Ni.

The divisibility condition in Theorem 4.1 can be improved if q = 2.

Theorem 4.3. If s is a positive integer and kr(s, 2, N) = 0, then

kr(s (mod 2t), 2, N) ≡ 0 (mod 2t+1),

for any integer t ≥ 1.

Proof. Proposition 2.3 immediately gives the result for t = 1. It also shows

(4.1) kr(x, 2, N)− kr(x+ 4, 2, N) = 4[kr−1(x, 2, N − 2) + kr−1(x+ 2, 2, N − 2)].

If x is integral, then Proposition 2.3 implies that kr−1(x, 2, N − 2) and kr−1(x +
2, 2, N − 2) are the same modulo four, so the left side of (4.1) ≡ 0 (mod 8). Again
a telescoping sum shows that this is the t = 2 case. The general case follows from
kr(x, 2, N)−kr(x+2t, 2, N) being the sum of 2t−1 terms, all of which are the same
modulo four. �

We next consider the integral zeros of kn(x, 2, N). By symmetry in n and x we
can assume that n ≤ x. From (2.5), we can clearly take x ≤ N/2. There is another
set of zeros to which we will refer as trivial. For n odd, (2.5) also implies that
x = N/2 is an integral zero for N even.

For polynomials of small degree n, the non-trivial integral zeros (n, x,N), 1 ≤
n ≤ x ≤ N/2, can be found explicitly (see [9]).

Proposition 4.4. The integral zeros for degrees 1, 2, and 3 are

(1) (1, k, 2k), k ≥ 1,
(2) (2, k(k − 1)/2, k2), k ≥ 3,
(3) (3, k(3k ± 1)/2, 3k2 + 3k + 3/2± (k + 1/2)), k ≥ 2.

Strictly speaking, (1) consists of trivial zeros. Note that the pentagonal numbers
appear as the integral zeros in (3).

Even though the zeros can be given for degree four, it is a difficult number the-
oretic problem to classify when these zeros are integral. Graham and Diaconis [9]
give non-trivial values of (4, 7, 17), (4, 10, 17), (4, 30, 66), (4, 36, 66), (4, 715, 1521),
(4, 806, 1521), (4, 7476, 15043), (4, 7567, 15043), along with the trivial values (4, 1, 8),
(4, 3, 8), (4, 5, 8), (4, 7, 8). They conjecture that this is the complete list for degree
four. Laurent Habsieger has shown that any other possible value of N must have
at least 1000 digits. We can use Theorem 4.3 to restrict the possible values of N .
The following corollary takes t = 2.

Corollary 4.5. Suppose k4(x, 2, N) = 0, for some integer x.

(1) If x ≡ 0 (mod 4), then N ≡ 0, 1, 2, or 3 (mod 32).
(2) If x ≡ 1 (mod 4), then N ≡ 1, 2, 3, or 8 (mod 32).
(3) If x ≡ 2 (mod 4), then N ≡ 0, 2, 3, or 17 (mod 32).
(4) If x ≡ 3 (mod 4), then N ≡ 2, 3, 8, or 17 (mod 32).
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Proof. Use the explicit form of k4(i, 2, N) = 0, 0 ≤ i ≤ 3, as a polynomial of degree
i in N and Theorem 4.3. �

Using MACSYMA we found all of the non-trivial integral zeros for q = 2 and
N ≤ 700. The data suggested the following theorem, for an infinite family of
non-trivial zeros.

Theorem 4.6. For any integer h ≥ 1,

k2h(4h− 1, 2, 8h+ 1) = 0.

Proof. This theorem can be proven using the theory of hypergeometric series in
[1]. Instead we give a simple proof from the q = 1 version of (6.6) below. Let
N = 2n+ t in (6.6), and assume that x is even. If t = 3 the two allowed values of r
in (6.6) are r = x/2 and r = x/2− 1. If these two terms sum to zero, we find that
x = (n+ 1)/2 = 2h, so that n = 4h− 1 and N = 8h+ 1. �

Using MACSYMA we found all of the non-trivial integral zeros for q = 2 and
N ≤ 700. The following table lists all non-trivial integral zeros for q = 2, N ≤ 700,
and 1 ≤ n ≤ x ≤ N/2, which do not follow from Proposition 4.4 or Theorem 4.6.

(5, 14, 36) (23, 31, 67) (31, 103, 214) (34, 254, 514)
(5, 22, 67) (14, 47, 98) (5, 133, 289) (84, 286, 576)
(5, 28, 67) (19, 62, 132) (6, 155, 345)
(6, 31, 67) (61, 86, 177) (44, 230, 465)

Note that many of these zeros have N = 2n + t, for small values of t. In
fact, with Laurent Habsieger we have found five more infinite families of zeros, for
t = 4, 5, 6, and 8. These families contain all of the zeros in the table, except
for (5, 22, 67), (5, 28, 67), (5, 133, 289), and (6, 155, 345). The details will appear
elsewhere. Nevertheless, these zeros are more sparse than those in Theorem 4.6,
and we make the following conjecture.

Conjecture 4.7. The number of non-trivial integral zeros of Krawtchouk polyno-
mials kn(x, 2,M) for M ≤ N is asymptotic to N/8.

One may also look for families of integral zeros of kn(x, q,N), q ≥ 3. In this case
we may assume 1 ≤ n ≤ min(x,N − x). Again using MACSYMA this was done for
q ≤ 20 and N ≤ 100.

Proposition 4.8. The integral zeros (n, x,N) of kn(x, q,N) for n ≥ 3, N ≤ 100,
and 3 ≤ q ≤ 20 are

(1) (3, 14, 28), (5, 16, 30), (4, 35, 57), (4, 65, 93), for q = 3,
(2) (3, 55, 66), (5, 55, 68), for q = 4,
(3) (4, 66, 80) for q = 5, and
(4) (4, 52, 66) for q = 6.

5. Summation theorems.

In this section we give a few summation theorems for Krawtchouk polynomials
which follow from the recurrence relations in §2.

From Proposition 2.1(4) we can deduce the following identity for the Krawtchouk
polynomials

(5.1)
N
∑

j=0

kr(j, q,N) =
1

q
[(q − 1)r+1 + (−1)r]

(

N + 1

r + 1

)

.
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This can be generalized for q = 2 by using Lemma 4.3 to find
if N is even and r odd,

(5.2)

N/2
∑

j=0

kr(2j, 2, N) = 0 =

N/2
∑

j=1

kr(2j − 1, 2, N),

if N and r are both even,

(5.3)

N/2
∑

j=0

kr(2j, 2, N) =
N + 2

2(N − r + 1)

(

N + 1

r + 1

)

N/2
∑

j=1

kr(2j − 1, 2, N) =
N − 2r

2(N − r + 1)

(

N + 1

r + 1

)

,

if N and r are both odd,

(5.4)

N−1

2
∑

j=0

kr(2j, 2, N) =
1

2

(

N + 1

r

)

= −

N+1

2
∑

j=1

kr(2j − 1, 2, N),

and if N is odd and r is even

(5.5)

N−1

2
∑

j=0

kr(2j, 2, N) =
1

2

(

N + 1

r + 1

)

=

N+1

2
∑

j=1

kr(2j − 1, 2, N).

From (5.1) and the product formula for Krawtchouk polynomials it is easy to
see that

(5.6)

N
∑

k=0

kr(k, 2, N)ks(k, 2, N) =

N/2
∑

m=0

(

N − 2m
r+s
2 −m

)(

2m
r−s
2 −m

)(

N + 1

2m+ 1

)

.

The binomial coefficients in (5.6) which have non-integral arguments are defined to
be zero.

6. q-analogs.

There are two families of orthogonal polynomials which have been called q-
Krawtchouk polynomials. In this section we shall consider the zeros of these poly-
nomials, and compare the results to §4.

The first family has been called the affine q-Krawtchouk polynomials, because
it arises from association schemes with natural translations [14, 15],

(6.1) KAff
n (x, a,N, q) = νn 3φ2

(

q−x q−n 0 ; q, q
q−N a

)

, for 0 ≤ n ≤ N,

where νn is non-zero. Clearly (6.1) implies that KAff
n (x, a,N, q) is a polynomial

in q−x of degree n. The three cases for which these polynomials are realized from
association schemes all have q equal to a prime power. They are

(A1) KAff
n (x, q−M , N, q), M integral and N ≤ M,

(A2) KAff
n (x, q2⌊(N+1)/2⌋−1, ⌊N/2⌋, q2), and

(A3) KAff
n (x,−(−q)−N , N,−q).
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Note that the effect of the greatest integer functions in (2) is just to put q−N

and q1−N as denominator parameters in the 3φ2. Note also that if νn is defined
appropriately,

lim
q→1

KAff
n (x, a,N, q) = kn(x, 1/a,N).

However this limit does not apply to the three cases above, because the value of a
depends upon q.

The other family of q-Krawtchouk polynomials is a q-analog of the binary Krawtchouk
polynomials (the q = 2 case in §2). It is

(6.2) Kn(x, c,N, q) = νn 3φ2

(

q−x q−n −qn−N−c ; q, q
q−N 0

)

, for 0 ≤ n ≤ N,

where νn is non-zero. These polynomials arise from six association schemes [13],
giving five sets of polynomials

(B1) Kn(x, 0, N, q)
(B2) Kn(x, 1, N, q)
(B3) Kn(x, 2, N, q)
(B4) Kn(x, 1/2, N, q2)
(B5) Kn(x, 3/2, N, q2).

This time
lim
q→1

Kn(x, c,N, q) = kn(x, 2, N).

if νn is defined appropriately. There are also group theoretic reasons [14] for con-
sidering these polynomials as the correct q-analogs of kn(x, 2, N).

First we consider the affine q-Krawtchouk polynomials (A1)-(A3). Surprisingly,
the next theorem states that these polynomials are never zero at integral values of
x. It had previously been shown [4] that at least one zero must be non-integral.

Theorem 6.1. Let pn(x) be one of the affine q-Krawtchouk polynomials (1)-(3),
where q is a prime power. Then

(1) pn(i) 6= 0 for i, n = 0, 1, . . . , N , for (1) and (3),
(2) pn(i) 6= 0 for i, n = 0, 1, . . . , ⌊N/2⌋, for (2).

Proof. We shall prove case (2), and leave the other two cases to the reader. By
symmetry we can assume that i ≥ n ≥ 1 and pn(i) = 0. Multiply the definition
(6.1) of pn(i) by (q−N ; q2)n(q

−N+1; q2)n(q
2; q2)nq

2nN to obtain

n
∑

j=0

(q2n; q−2)j(q
2i; q−2)j(q

N−2j ; q−2)n−j(q
N−1−2j ; q−2)n−j

× (q2j+2; q2)n−jq
(N−2n)j+(N−2i)j+2n2−n+j

=
n
∑

j=0

cj(q) = 0.

(6.3)

For each j, cj(q) is a polynomial in q with integer coefficients. The lowest power of
q that appears in cj(q) is (N −2n)j+(N −2i)j+2n2−n+ j and the highest power
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of q that appears is 2Nn+ n(n+ 1)− j2 + j. Since i, j ≤ ⌊N/2⌋, (6.3) implies that

the lowest power of q appearing is q2n
2−n. Thus, if we divide both sides by q2n

2−n,
we obtain 0 ≡ 1 (mod q). This contradiction implies that pn(i) 6= 0 for i ≥ n. �

Next we turn to the q-Krawtchouk polynomials Kn(x, c,N, q). These polynomi-
als are not symmetric in n and x. We shall need the generating function [13]

(6.4)
N
∑

x=0

Kn(x, c,N, q)zx = (z)n(−qcz)N−n,

which implies the following q-analog of (2.3) via the q-binomial theorem [1]

(6.5) Kn(x, c,N, q) =
x
∑

j=0

(−1)j
[

n
j

]

q

[

N − n
x− j

]

q

q(
x

2)+(c−j)(x−j).

We first give the q-analog of the trivial zeros of x odd for kN (x, 2, 2N).

Proposition 6.2. If x is an odd integer satisfying 1 ≤ x ≤ 2N , then KN (x, 0, 2N, q) =
0.

Proof. This is clear from (6.4) and (z)N (−z)N = (z2; q2)N . �

Finally, the argument of Theorem 6.1 implies that these polynomials are other-
wise non-zero.

Theorem 6.3. If q is a prime power, the following values of q-Krawtchouk poly-
nomials are non-zero

(1) Kn(i, 0, N, q) for 0 ≤ i, n ≤ N, 2n 6= N ,
(2) Kn(i, 1, N, q) for 0 ≤ i, n ≤ N ,
(3) Kn(i, 2, N, q) for 0 ≤ i, n ≤ N ,
(4) Kn(i, 1/2, N, q2) for 0 ≤ i, n ≤ N ,
(5) Kn(i, 3/2, N, q2) for 0 ≤ i, n ≤ N ,

Proof. First we take c = 0 and assume that 2n < N , so that the generating function
is (z2; q2)n(−zqn; q)N−2n. Then the q-binomial theorem [1] implies

(6.6)

Kn(x, 0, N, q) =
∑

r

[

n
r

]

q2
q2(

r

2)
[

N − 2n
x− 2r

]

q

q(
x−2r

2 )+n(x−2r)(−1)r

=
∑

r

cr(q),

where cr(q) is a polynomial in q with integral coefficients. The degree of the lowest
degree term in cr(q) is

L(r) = nx+ x2/2− x/2 + 3r2 − 2rx− 2rn.

As a function of r, L(r) has its minimum value at r = (x + n)/3. Thus there is
a unique term in (6.6) containing the smallest power of q, and as in Theorem 6.1,
this implies Kn(x, 0, N, q) 6= 0. The 2n > N case can be done similarly.
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The proof for c = 1 (c = 2) is similar, this time two (three) terms naturally
occur in the sum that corresponds to (6.6). Nevertheless, again there is a unique
term with the term of minimum degree.

For c = 1/2 or c = 3/2, we can use (6.5), for which

L(r) = x2/2− x/2 + r2 − rx− rc+ cx.

The minimum value for L(r) occurs at r = (x + c)/2. If c = 1/2 or c = 3/2, this
insures a unique term in (6.5) of minimum degree. Note that this argument also
does the c = 0 case with x even, but not for x odd. �
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