COMBINATORIAL LAPLACIANS OF MATROID COMPLEXES

W. KOOK, V. REINER, AND D. STANTON

ABSTRACT. We combinatorially interpret the spectra of discrete Laplace oper-
ators from the boundary maps in the simplicial complex of independent sets
of a matroid. The interpretation follows from a surprising orthogonal decom-
position of the simplicial chain groups. This decomposition is in general finer
than the spectral decomposition. As a consequence, the spectra are integral.
One corollary to our combinatorial interpretation may be paraphrased as
stating that one can “hear” the characteristic polynomial of a matroid.

1. INTRODUCTION

For any finite simplicial complex K, one can define Laplace operators A; which
are combinatorial analogues of the Laplace operators on differential forms for a
Riemannian manifold. The definition (as in [5]) is as follows. Let C; be the R-vector
space of (oriented) simplicial i-chains in K with real coefficients, and 9; : C; — C;—1
the usual simplicial boundary map. Endow C; with an inner product by declaring
the oriented simplices to form an orthonormal basis of C;, so that we may identify
C; with its dual C. The adjoint to 0; with respect to this inner product is the
transpose (’BZT or the coboundary map §;—; : C;_1 — C;. Define A; : C; — C; by

Ay =0;-10; + 0i119;.

The main result about combinatorial Laplacians is an analogue of a fact from
Hodge theory, namely that the kernel or 0-eigenspace of A; is naturally isomorphic
to the homology group H;(K;R) [5, Proposition 2.1]. The computational advan-
tage of considering A; is that one can compute numerical approximations to the
spectrum of A; and find its 0-eigenspace relatively quickly, using well-established
fast methods for spectra of real symmetric matrices [5].

These methods are particularly effective if one knows that the spectra of the
A; are integral, which is not often the case. However, the spectra are integral for
the well-studied chessboard complezes, as shown in [6]. There the authors used
the symmetry groups acting on the complexes for a clever representation-theoretic
calculation, which gives the spectrum and in particular its integrality.

The main result of this paper (Corollary 17) proves that the spectra of all the
Laplacians are again integral when K is a matroid complez, that is when K is the
complex of independent sets in a matroid. The result follows from a surprising
orthogonal decomposition of the chain groups C; (Theorem 15) which is in general
finer than the eigenspace decomposition for the Laplacians. We remark that even
though the combinatorial Laplacians have usually been defined only over fields of
characteristic zero, all of our results are still true over the integers.
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One corollary (Corollary 10) to our results is that for a matroid complex, only
a very small part of the information in the spectra of the Laplacians (namely the
multiplicity of the largest eigenvalue in each A;) is sufficient to recover the char-
acteristic polynomial of the matroid. This adds to the already large list (see e.g.
[3]) of interpretations of the characteristic polynomial of a matroid, and can be
whimsically rephrased by saying that one can “hear” the characteristic polynomial
of a matroid.

The paper is structured as follows. Section 2 deals with some combinatorial
preliminaries that do not involve Laplacians, but are really the combinatorial man-
ifestations that foreshadow Theorem 15. Section 3 introduces the combinatorial
Laplacians and proves some easy basic facts about their behavior for matroid com-
plexes. Section 4 contains the main results, which require a slightly deeper analysis,
aided by the technique of exterior face rings for simplicial complexes [4]. Section 5
discusses some well-known examples of matroids having large symmetry groups.

2. COMBINATORIAL PRELIMINARIES

We refer the reader to the excellent article [1] for almost all of the definitions
and notions from matroid theory and matroid complexes that we will use.

Let M be a loopless matroid with a chosen linear ordering w on its ground set
E. In the usual way there is associated to M a rank function r(A) and a closure
operator A — A on subsets A C E, and the set of closed subsets or flats forms a
geometric lattice denoted L(M).

Recall that for a base B of M, an element b in B of M gives rise to a unique
basic bond bops(B,b), and an element e in E — B gives rise to a unique basic circuit
cip(B,e). We say that b is internally active in B if it is the w-smallest element
of borr (B, b), and e is externally active if it is the w-smallest element of ciyr(B,e).
The internal activity i(B) of the base B is the number of internally active elements
in B, and its external activity e(B) is defined similarly.

Theorem 1. In any ordered matroid (M,w), every base B has a unique disjoint
decomposition B = By U By with the following properties:

e B is a base of internal activity O for the flat V := B, which it spans, and

e B, is a base of external activity 0 for the quotient matroid M/V .

Proof. The existence of such a decomposition is provided by the following algorithm,
which takes the base B as input, and produces such a pair (By, B2).
ALGORITHM:

Step 1. Set By = B, By = @.

Step 2. Let V = B;.

Step 3. Find an internally active element b for B; as a base of the flat V.

If no such element b exists, then stop and output the pair (B;, B2).
If such a b exists, then set By := By — {b}, By := B2 U {b}, and return to Step
2.

It is clear that the algorithm terminates, since each time one returns to Step 2,
the cardinality of B; has decreased. To see that the output is a decomposition as in
the theorem, note that B; will be a base for V' of internal activity 0 by construction,
so the first property is clearly satisfied.

Therefore it remains to show the second property, i.e. that Bs is a base of
external activity 0 for M/V. For this we will show that given any e € E —V — By
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the circuit ciyr/y (B2, e) contains an w-smaller element than e. Since ciyy)y (B2, e)
is a circuit in M/V, the set ciyr v (Bz2,e) U By is dependent in M, and therefore
contains some circuit of M of the form ciys /v (B2, e) U By where B] C By. Denote
by (BY),Béi)) the sets (B1, B>) at the i'* stage of the above algorithm, so B§O) =
B, Béo) = @. Let i be such that ciy v (B2,e)—{e} C By) but cipgyv (B2, e)—{e} €

B This means that some element by of cipyv (B2, e) — {e} is thrown out of

Bfi) and into Bé”l) at this stage because by is internally active for BY). Note that
cipyv (Bz,e) — {ef U B] C By) and consequently by € cip (BY,e) with by being
w-smaller than e.

To show uniqueness of the decomposition, we define a map f between two sets:

e the set of triples (V, By, Bs) where V is a flat of M, B is a base of internal
activity 0 for V, and B, is a base of external activity 0 for M/V, and
e the set of bases B of M.

The map f sends the triple (V, By, B2) to the base B := By Ll By. Uniqueness of the
decomposition is equivalent to injectivity of f, and since the above algorithm shows
that f is surjective, it suffices to show that the two sets have the same cardinality,
i.e. that

(2.1)

| bases of M | =

Z bases By of V bases B of M/V
with internal activity 0 with external activity 0|

flats V of M

To see this, recall from [1, Theorem 7.8.4] that the number of bases of a ma-
troid M having internal activity 0 is, up to sign, the (reduced) Euler characteristic
X(IN(M)) of the independence complex IN(M), and hence is equal to the alter-
nating sum Y, (—1)"™) =1 where I ranges over the independent sets of M. Recall
also from [1, Proposition 7.4.7] that the number of bases of a matroid M having
external activity 0 is the absolute value of the M&bius function |y, (ar) (0,1)] for the
geometric lattice L(M). Therefore starting with the right-hand side in equation
(2.1), we can manipulate as follows:

Z bases B; of V ‘ ‘ bases By of M/V

with internal activity 0 with external activity 0
flats V of M

> > (=D ) g gy 0, D)

flats V of M \independent sets ICV

= > (=D=M (1) O Y gy (V)

independent sets ICE I<v<i
_ r(M)—|I 1
= E (—1)rn-Il E prny (Vi 1)
independent sets ICE I<v<i

_ Z (_1)T(M)—\I\

independent sets I with I=M

- Z (_1)T(M)—|B\

bases B of M
= | bases of M |.
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Here we have used various facts, such as the defining recurrence for the Mobius
function, the fact that the Mobius function of the geometric lattice L(M ) alternates
in sign, and the fact that the interval [V, 1] in L(M) is isomorphic to the lattice of
flats L(M/V) for the quotient matroid M /V. O

Based on Theorem 1, we define the spectrum polynomial of M

Specy(t,q) := > gt

independent sets I

where I; denotes the output of the decomposition algorithm I +— (I3, I5) when I is
considered as a base for the flat I it spans, and the ordering on the ground set in
1 is induced from the original ordering w on E.

The reason for the terminology “spectrum polynomial” is that Spec,,(t, ¢) carries
the same information as the spectra of the Laplacians for the matroid complex of
M (Corollary 17). The simpler fact that Spec,, (t,¢) does not depend on the chosen
ordering w of the ground set is easy to see from the following alternate expression:

Spec,, (t,q) = Z V) Z g

(2 2) flats V' independent sets I spanning V'
= > Y RENE) - ppon (V)Y
flats V' flats V/CV

The last equality follows from the same facts used to show that the map f was a
bijection in the proof of Theorem 1.

A straightforward consequence of the definition is that for a direct sum M; & M,
of two matroids My, Ms, we have

(23) SpecM1 DM (ta q) = SpecM1 (ta q) ) SpecM2 (ta q);

a property reminiscent of the Tutte polynomial of a matroid. Recall that the Tutte
polynomial Ty (x,y) may be defined by

Tuy)= Y Oy
bases B of M

where i(B),e(B) are the internal and external activity of the base B. The Tutte
polynomial plays an important role in matroid theory; see [3]. Since the Tutte
polynomial and spectrum polynomial are both related to the notions of internal
and external activity, it is tempting to compare them.

Question 2. How does the spectrum polynomial compare with the Tutte polyno-
mial in distinguishing non-isomorphic matroids? Can two matroids have the same
spectrum polynomial and different Tutte polynomials?

We know that there are non-isomorphic matroids that have same spectrum poly-
nomial. For example, the matroids M, M- represented in characteristic zero by the
affine point configurations shown in Figure 1 have the same spectrum polynomial

1+ 6t +t2(13 + 2¢*) + t3(8 + 2t¢® + 8¢%)
and the same Tutte polynomial [3, Problem 6.1(b)]
o2+ % + 307 + 3y + 3wy + 4o + 4.

On the other hand, there are non-isomorphic matroids that have the same Tutte
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FiGure 1. Matroids M; and M> have the same Tutte polynomial

and the same spectrum polynomial. Matroids M3 and M, have
the same Tutte polynomial but different spectrum polynomials.

polynomial, but not the same spectrum polynomial. For example, the matroids
M3, My shown in Figure 1 have the same Tutte polynomial [3, Example 6.2.18]

y* 4+ 3y% + 20y® + 2Py + 2% + 4y + Say + 327 + 22 + 2y,

but different spectrum polynomials

Specyy, (t,q) =1+ (6 + ¢%) + t*(11 + 3¢* + 2¢° + 4¢*) + t*(6 + 2¢° + 2¢° + 4¢* + 10¢")
Specyy, (t,q) =1+ (6 + ¢*) + t*(11 + 4¢” + 5¢*) + 3(6 + 3¢° + 5¢* + 10¢").

We see no reason to expect that the spectrum polynomial determines the Tutte
polynomial, but we have no counterexamples.

Since the Tutte polynomial is easy to compute by the deletion-contraction re-
currence

TM('T:y) = TM_G(I,y) + TM/e(xay)v

the following question is natural:

Question 3. Is there some way to use deletion-contraction to compute the spec-
trum polynomial Spec,,(t,q)?

The examples Mj, M, above show that there can be no formula for Spec,,(t,q)
purely as a function of SpecM_e(t,q),SpecM/e(t,q), since M3 —e = My — e and
M;z/e = My/e for the element e represented by the 7" column of the matrices
in each case. Nevertheless, there might exist some more complicated procedure
for computing the spectrum polynomial of M from those of a deletion M — e and
contraction M /e, which somehow uses the way in which M — e and M/e “glue
together” to produce M.

3. LAPLACIANS

The goal of this section is to define the combinatorial Laplacians of matroid
complexes, and prove some easy facts about them.

Let IN (M) denote the independence complex of the matroid M, i.e. the simpli-
cial complex on vertex set E whose simplices are the independent sets of M. Let
CM denote the i'" (oriented) simplicial chain group of IN (M) with R coefficients,
OM . CM — OM, the usual simplicial boundary map, and HM the i** (reduced)
homology group with R coefficients. By choosing the standard inner product (-, -)
on CM in which the oriented simplices are an orthonormal basis, we can iden-
tify CM with its dual space of cochains. Then the simplicial coboundary map 6
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which is the adjoint of 8 may be thought of as a map CM, — CM. Define the
ith combinatorial Laplacian to be the operator AM : CM — CM given by

N

It is not hard to show [5] that the kernel or 0-eigenspace ker(AM) is isomorphic
to the homology fNIzM . In our case, there is not just an isomorphism but an equal-
ity ker(ANy,y 1) = ﬁ%M)fl since there are no (r(M) — 1)-dimensional bound-
aries. Furthermore, since IN (M) is shellable [1, Theorem 7.3.3] and hence has only
(r(M) — 1)-dimensional homology, we have that ker(AM) =0 fori < r(M) —1,a
fact we will recover for different reasons shortly (Corollary 7).

It is easy to compute the following explicit description for AM. For each inde-
pendent (i 4+ 1)-set I of M, if we let [I] denote the oriented simplex which places
the elements of I in w-order, then

(31 AN = +|E-T) 1]+ > (=11

I'=1-{e}+{e}
I' U I dependent

where d(I,I') is the number of elements in I U I' which lie strictly between e,e’
under the w-ordering.

Remark 4. Apparently AM depends upon on w. However, one can check that
changing w only conjugates AM by a signed permutation matrix.

First a few simple observations.

Proposition 5. The chain group CM and the operator AM decompose as a direct

sum
M _ \4
cM = P C,
rank (i+1) flats V

AM = P (AY +|E-V| Iv).
rank (i+1) flats V

Here CY is the subspace of i-chains supported on independent sets I which are a
base for the flat V', and Iy is the identity map on this subspace, while AZV is the
it" Laplacian for the restricted matroid M|y .

Proof. Looking at the explicit formula (3.1) for AM | one sees that the (I,1') off-
diagonal entry is non-zero only when I and I' are bases of the same flat V. Fur-

thermore, in this case the scalars |E — I|,|E — I'| are both equal to |[E —V|. O

As a consequence of the previous proposition, we really need only understand
the top Laplacian A%M)fl acting on C%M)il.

To this end, recall that the map B — E — B gives a bijection between the bases
for M and the bases for its dual matroid M*. Extend this bijection to a linear
isomorphism

P: C%M)—l — C%M*)—

1
by sending the oriented simplex [B] to (—1)"2sun(B)[E — B] where ranksum(B) is
the sum of the ranks of the elements of B in the w-order.
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Proposition 6.
Ay + PANyo P = |E|- Iy
where I is the identity map on C%M)_l.

Proof. Examining the explicit formula (3.1) for AM in the case i = r(M) — 1, we
see that the diagonal entries for A%M)_l,P_lAT(;/[*)_lP are (M), |E| — r(M)
respectively. Consequently the assertion for the diagonal entries in the proposition
is clear. For the off-diagonal entries, one needs to check that for any bases B, B’ of
M satistying B' = B — {e} U {e'} we have

(_l)ranksum(B)(_l)ranksum(B’)(_l)d(B,B’) + (_l)d(E—B,E—B’) —0.
This verification is straightforward. O

Corollary 7. For every i, the spectrum of Laplacian A; is contained in the interval
[0,|E|] of R, and will not contain 0 unless i = r(M) — 1.

Proof. We know that AM is non-negative definite since it is a sum of the two
operators 62,0M and 0,6}, which are both non-negative definite since they
are of the form A*A (see [5, Proposition 2.1]). Therefore the spectrum of AM is
nonnegative.

If we look at the special case of ¢ = r(M) — 1, then the previous proposition

says that the spectrum of A% )1 is obtained from the (nonnegative) spectrum of
Af,v([ ;\4*)71 by subtraction from |E|. Therefore the assertion of the corollary holds

for i = (M) — 1. But then a glance at Proposition 5 shows that it also holds for
the remaining . O

Proposition 6 shows that the spectrum of the top Laplacian A% M)—1 completely
determines the spectrum of the dual Af,v([ v

tion:

-1 This suggests the following ques-
Question 8. Is the same true for the lower-dimensional Laplacians AM,
there exist two matroids My, Mo for which Aﬁvh and Aﬁvb have the same spectra for

all i, but some Aj-wl* and A;-VIZ* have different spectra?

or do

This also suggests a stronger question to which we also do not know the answer:
Question 9. To what extent does the top spectrum determine the lower spectra?

For a real number A, let (AM), denote the A-eigenspace for the operator AM.
Corollary 7 shows that the largest possible value of ) is the cardinality of the ground
set |E|. Our next result gives an interesting interpretation for the multiplicities of
this largest eigenvalue in the various Laplacians AM.

Recall that the characteristic polynomial of the matroid is defined by

XM(t) = Z fiL( ) (O,V)tT(M)_T(V)
VeL(M)

where ppar) is the Mobius function for the geometric lattice L(M). The next
corollary has the whimsical interpretation that you can “hear” the characteristic
polynomial of M, if by analogy with vibrating drums, we imagine that the spectra of
the various Laplacians AM are heard in the frequencies emitted when one “bangs”
a matroid complex!
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Corollary 10.

r(M)—1
Xar(—t) = "D N dimp (AM) it~
i=—1

Proof.

r(M)—1
(=) 071 37 dima (AN (=)
r(M)—1
= (=)0t Y- Y. dimp(A]) (-1

t=—1 flats V:r(V)=i+1

Z dimg (AY () 1) (—t)r 0=V
flats V

= ) dimg(AY.) 4)o (=)=
flats V'

= Y dimgH, () (IN(V*))(=t)" )=V
flats V'

= Z |HL(V)(6;i)|(—t)r(M)7T(V)
flats V

= Z HL(M)(GaV)tT(M)fr(V)
VEeL(M)

The first equality uses Proposition 5. The second equality is just interchanging the
order of summation. The third equality uses Proposition 6. The fourth equality uses
the fact the 0O-eigenspace for the top Laplacian is the same as the top homology of
the independence complex. The fifth equality uses the fact from [1, Theorem 7.8.1]
that this top homology has dimension equal to Mébius number for the geometric
lattice of the dual matroid. The sixth equality uses the fact that the Mobius
function for the geometric lattice L(M) alternates in sign. O

It is well-known that the Tutte-polynomial T (xz,y) also specializes to the char-
acteristic polynomial:

xar(t) = (=1)" Ty, (1 = ¢,0).
The generating function
> =D 7y (1 4¢71,1)
independent sets I in M

is another specialization of the Tutte polynomial which is clearly recoverable from
the spectra of the various AM. This prompts the following question:

Question 11. How much can one “hear” of the Tutte polynomial of a matroid, i.e.
how much of Th(x,y) is recoverable from knowledge of the spectra of the various
Laplacians AM ?

This question will turn out to be equivalent to Question 2 via Corollary 17.
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4. ORTHOGONAL DECOMPOSITION OF C%M)—l AND THE EXTERIOR FACE RING

The goal of this section is to probe deeper into the spectra of the Laplacians
AM which by Proposition 5 reduces to understanding Af,v([ )1+ We will show that
all of its eigenvalues are integers, and explain how the eigenspace decomposition
of C%M)fl with respect to A%M)fl is refined by a more fundamental orthogonal
decomposition (Theorem 15) whose combinatorial manifestation is Theorem 1. As
a consequence, we will deduce our main result (Corollary 17) that the spectrum
polynomial Spec,,(t,q) is essentially the generating function for the spectra of
AM = —1,...,r(M) - 1.

Our primary tool will be the exterior face ring AM of IN (M) [4]. Let W be an
R-vector space with basis {v. }.cr indexed by the ground set E of M. Let AW be
the exterior algebra on W, having basis vg := ve, A -+ A wve, indexed by subsets
S ={e1,...,es} C E. The exterior face ring AM is the quotient

AM = AW /(vs : S is dependent in M).

As an R-vector space, we will identify AM = @f%) A'M with the direct sum
of the oriented chain groups @:i]\ﬁ_l CM. As a consequence, this direct sum of
chain groups is endowed with an R-algebra structure; under this identification the
coboundary maps d; correspond to multiplication on the left by the fixed element
of degree one 6M := > cck Ve Furthermore, for any subset S C E, let 85 denote
the element of degree one Y s vs. The inner product on @; C}M corresponds to
one on AM in which the {v;} are declared to form an orthonormal basis. With
respect to this inner product, the boundary maps 9; may be thought of as a single
map OM which is adjoint to left multiplication by 6, i.e.

(@,0My) = (O™ Aa,y).

One crucial (and easy to check) property of @M is that it is almost a (graded)
derivation on the algebra AM. We have

(4.1) Mz Ay) =M () Ay + (=1)Ilz A M (y)

for any 2 € Al*IM, and y having the property that no vs,vy appearing in z,y
respectively have vg A vy = 0.

We will mostly be dealing with the top dimensional Laplacian, which for shorter
notation we will denote AM rather than A%M)q- Similarly let CM replace the

notation C’%M)_l for the top dimensional chain group. Notice that since there is
no chain group in dimension (M) we have

AM () = 6™ A OM (1)

for all z € A"(M) DM, As a consequence of this fact and our use of R coefficients,
H™M)=1(IN(M)) is a subspace of the O-eigenspace (AM),. In fact these two spaces
are equal since they have the same dimension.

Note that if V' is a flat of M then we can consider V' as a matroid by restriction,
and AV is naturally a subalgebra of AM, so we can think of elements of AV as
being in AM. Also AM/V is naturally a quotient of AM, and by abuse of notation,
we can consider elements of AM/V as elements of AM in the following way: if
S C E —V is independent in M/V then identify vg € AM/V with the element
vs € ANM.
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Lemma 12. Ifz € A"V and y € A"M/VIM/V satisfy
AV(z) =Xz
AMIV(y) = -y
for some real constants A\, i, then
AMaE Ay =A+p)-zAy+62V AdM(z) Ay
Proof. Starting with the left-hand side, we perform a series of manipulations which
are justified below
AM(z A y)
=0M AM(z Ay)
=M AOM(z) Ay + (—1)=eM Az A My
=6V +0FVYA M (@) Ay + (=1)FIEY + 0BV ) Az A My
=0V ANOM@)Ay+ 6V AN (@) Ay +x A ANOMy ATV AOMy
=Xz Ay+0EVAM@) Ay +0+zAETV AOMy
=XaAy+0EVAM@)Ay+aA(n-y+y)
where y' € AT(M/V) satisfies £ Ay’ = 0 (to be justified below). Assuming this, then
the last expression is equal to the right-hand side in the lemma.

Now, the justifications. The first two equalities are by definition of AM and
the derivation property of ™ (equation (4.1)). The third and fourth equalities
come from decomposing the sum §7 = §" + §£~V and distributing over the wedge
product. The fifth equality comes from the facts that

Y ANOM(z) =6V AV (z)(= X )
A6V =0
which follow since x is supported on bases of V. The last equality comes from the
fact that
SMIVAMVy =y in ANM|V
implies
SV NOMy =y +y
where y' is supported on subsets of E —V which are dependent in M/V. However
all the terms in y' will die in AM when one wedges with x, since z is supported on
a set of bases of V. |

Corollary 13. With the same conditions and notation of the previous lemma,
(1) if A=0, then
AM@EAy)=p-zAy.
(2) ifr(V)=r(M)—1andy =65V then u=|E - V| and
AM@Ay) = A+ |E-V]) -z Ay.
Proof. To prove (1), note that A = 0 implies z is in the 0-eigenspace of AV, which
implies that 8V (z) = 0. On the other hand, 8" (z) = O™ (x) since x is supported

on bases of V, so the extra term d#~Y A 9™ (z) Ay in the right-hand side of the
lemma dies.
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To prove (2), the fact that AM/V(y) = |E — V|y when r(V) = r(M) — 1 and
y = 0¥~V is easy to check. Also note that the extra term 6¥—Y A 0™ (z) Ay dies
because 6~V A §F~V = 0. O

Given a flat V' of M, we next define a map hy

hv: (AV) @ (AMV)p .y - O
T ® Y = TAY

where we recall that (AM), denotes the A-eigenspace for the operator AM. If we
let E(V) denote the image of hy in C*, then item (1) in Corollary 13 shows that
E(V) lies in the |E — V|-eigenspace for AM. Since AM is a self-adjoint operator,
this implies that E(V'), E(V') are orthogonal whenever V, V' are flats of different
cardinalities. Our goal will be to show more generally that E(V'), E(V') are always
orthogonal, and that they give an orthogonal decomposition of the chain group
cM.

To achieve this goal, and for later purposes, it will be useful to know generators
for the eigenspace (AM) 5. Given any maximal flag

F:6<V1<"'<VT(M),1<M

in the geometric lattice L(M), define yr € AM by

yF;:<Zve>A< 3 U6>A...A T .

eeVy ecVa—V1 e€E—V,(my—1

Using induction with item (2) in Corollary 13 shows that yp lies in the eigenspace
(AM) . We will not only show that these elements yr span (AM)| g, but we will
also relate them to the top cohomology group H"M)=2(L(M)) of the geometric
lattice L(M) (here we are abusing notation by using L(M) to denote both the
geometric lattice and the order complex of chains in the proper part of this lattice).
Let C"(M)=2(L(M)) denote the top cochain group over R for the order complex of
the proper part of L(M), and given a flag F' in L(M), let F* denote the cochain
which assigns the value 1 to F' and 0 to all other flags.

Theorem 14. The map p : C"M)=2(L(M)) — (AM) | sending F* — yp induces
an isomorphism p, : H"™M=2(L(M)) = (AM).

Proof. First we must verify that p defined as above on the cochains actually gives
a well-defined map on cohomology, i.e. p takes (r(M) — 1)-coboundaries to 0.
Since the (r(M) — 1)-coboundaries are spanned by the coboundaries of F* where
F runs over all flags in L(M) that miss only a single rank, it suffices to show
that p(6(F*)) = 0 for all such flags F. If F is such a flag, and it misses rank 4, let
Vi—1,Viy1 beits i —1,¢+ 1-dimensional flats respectively. One can quickly check the
computation p(§(F*)) = 0 then amounts to a computation in the rank 2 geometric
lattice L(V;y+1/Vi—1), where it can be easily verified to always work.

Since we have seen before that the dimensions of H")=2(L(M)), (AM) | are
both equal to |ur () (0, i)|, it only remains to show that p. is injective. To do

this we will show that a particular basis for H"(M)=2(L(M)) is mapped to a set of
linearly independent elements in (AM) .
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Given a base B of M having external activity 0, let b; < --- < b, be the elements
of B in their w-ordering, and let F'(B) be the complete flag

{b.} <{b.,b,1}<---<{bp,br_1,...,b2,01}.

In [1, §7.6] it is shown that these flags are exactly the ones having decreasing
label sets with respect to a certain EL-labelling of the Hasse diagram of L(M).
Combining this with [1, 7.6.3, 7.6.4, 7.7.2] and the fact that the Kronecker pairing
gives an isomorphism }NI,,(M),Z(L(M)) >~ gr(M)=2(1,(M)), the cocycles {F(B)*} as
B runs over all bases of M of external activity 0 give a basis for H"(M)=2(L(M)).

Since p sends F'(B)* to yp(s), it would suffice to show the following (cf. [1, proof
of Theorem 7.8.4]): for any two bases B, B’ of external activity 0, the coefficient
of B in yp(p) is £1, while the coefficient of B’ is 0. In proving this, we will use
the following two observations, whose straightforward verifications are left to the
reader:

(a) If B is a base of external activity 0, then any non-empty subset By C B is
a base of external activity zero for the flat By (with respect to the ordering
induced from w).

(b) If B = {by1,...,b,} is a base of external activity 0, as above, and we set
B; = {b,,b, _1,... ,bi11,b;}, then b; is the w-smallest element, of B; — B;,1.

A typical term in the expansion of yz(g) corresponds to a sequence (z,... ,1)
with z; € Bj — Bj4; for 1 < j < r. We wish to show that {z,,...,z1} is a
base of external activity 0 if and only if ; = b; for all j. Using induction on
j and fact (a) above, it suffices to show that given any x € B; — Bj;1, the set
X = {br,br—1,.-. ,bj+1,7} is not a base of external activity 0 for B;. But this
follows from fact (b) since z € ciB—j(X, b;). O

We can now prove one of our main results. Recall that E(V') is defined to be
the image of hy .

Theorem 15. The map h := @y, hy
@ (AV)o ® (AMV) gy - cM
flats V
is an isomorphism. Moreover
b EeByv)=c“
flats V. of M

s an orthogonal direct sum decomposition.

Proof. By Theorem 1, the dimensions of the two spaces are the same, and therefore
it suffices to show that & is injective. For this we will show that

(a) for every flat V', the map
hy : (AV)O ® (AM/V)‘E_V‘ e CM

is injective, and
(b) for any two different flats V, V', the subspaces E(V'), E(V') are orthogonal.
Assertion (a) follows from the fact that hy is a restriction of the injective map

AVIV @ AE=VIM v — AEIM
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given by x ® y — x Ay. To see that the latter map is injective, note that it maps a
set of basis vectors for the domain into a subset of a basis for the range (the latter
subset consisting of all v indexed by bases B of M which contain a base of V).

Assertion (b) is a bit trickier, and uses the Laplacian A in a fundamental way.
Let V, V' be two different flats of M, and let z =z Ay,z’ = 2’ Ay’ be elements of
E(V), E(V') respectively (so x, ' are in the eigenspaces of (AV)g, (AV")o respec-
tively, and y,y’ are in the eigenspaces (AM/V) 5y, (AM/V’)‘E,W‘ respectively).
We wish to show (z,z') = 0.

If V,V' are flats of different cardinality, then we are done since then z,z’ lie in
different eigenspaces of the self-adjoint operator AM.

If |V| = |V'|, then without loss of generality, by Theorem 14 we may assume
that y,y" are of the form yr, yp: for some complete flags F, F' in L(M/V'), L(M/V")
respectively. Define a new matroid M to be the principal extension of M along the
flat V' by a new element p; in the notation of [2], M [ := M +y p. We recall a
crucial property of principal extensions: any base B of M still forms a base in M.
In this new matroid M, we have two flats V := V U {p} and V' = V' which have
different cardinalities, and hence have E(V') orthogonal to E(V') because they lie
in different eigenspaces for AM We can still think of @, @' as elements of AM, and
it is easy to see that they will still lie in the eigenspaces (AV)O, (AV )o because they
are killed by oM. Furthermore, when we think of y; as an element of AMIV it s
still in the eigenspace (AM/V)‘E_W because M /V = M/V. On the other hand,
if we consider the chain of flats F' as a chain F" of flats in L(M), it generates a
new element yz . One can check that y differs from ys only in some bases that
contain p, and hence we have

(2,2"Ym = (& Ayp, 2 Nyp)m
(93 ANyr,« Nyg) i

The only tricky equality here is the second, which relies on the fact that z Ayp will
not be supported on any bases that contain p. O

Question 16. Is there any natural way to write down orthogonal projectors
my  CM = B(V)
for each flat V' of a matroid M ?

In answering this question, we would consider choosing some arbitrary orthonor-
mal basis for each E(V) as not “natural” enough.

We can now state the main corollary to Theorem 15, interpreting the spectra of
the Laplacians AM. Recall that (AM), denotes the \-eigenspace of AM.

Corollary 17. All Laplacians AM for any matroid M have integral spectra. Fur-
thermore, the generating function for these spectra is given explicitly by

> dimp(AM)5 g = t71q!P  Specy, (t, 7).
AERi>—1
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Proof. Beginning with the left hand side of the corollary, we perform a sequence of
manipulations which are justified below.

Z dimR(Agw))\tiqA

AER,i>—1
= Z pr(V)—1 Z dimR(A)«/(V)_l)A g HEVI
flats V of M AER

— . ' . v/vV' ! _
- Z r(V)=1 Z dlmR(AY(V,)il)o -dlmR(Ar(/V/V’)—J\V*V'\ V=V IHIB=V
flats V of M flats V/CV

= > T Y RUNE) - e an (VL V) g

flats V of M flats V/CV
=t "¢ Specy, (t,g )

The first equality above is justified by Proposition 5, the second equality by The-
orem 15 and Corollary 13, the third equality by the same facts from [1] that were
used in the proof of Theorem 1, and the last equality by equation (2.2). O

5. SYMMETRIC EXAMPLES

In [6], the analysis of the eigenspaces of the Laplacians for the chessboard com-
plexes necessarily also entailed a description of these eigenspaces as representations
for the symmetry groups present. Similarly, we can ask for such a description for
the eigenspaces of the Laplacians of a matroid complex whenever there are non-
trivial automorphisms of the matroid. This section is devoted to some examples of
this nature.

We begin with a reduction. Combining Theorem 15 and Proposition 5 gives the
isomorphism

(5.1)
~ ' vV
C = D D @hyaee (Ar(/V/V’)fl)|V—V'|
flats V with r(V)=i+1 flats V'CV
= Q%) D  Hn(UINV) & H VYLV

flats V with r(V)=i+1 flats V'CV
Let G be a group of automorphisms of the matroid M. Note that G permutes
the chains of flats V' C V', and the stabilizer
Stabg(V',V) :={9€G:gV' CV' gV CV}

acts on I:I'T(Vr)_l(IN(V’)) and H"V/V)=2(L(V/V")). Since the map h in Theo-
rem 15 is easily checked to be G-equivariant, equation (5.1) leads immediately to
the following result:

Theorem 18. Let G be a group of automorphisms of M. Then as G-representations
we have isomorphisms

(5:2) O = @ WdGu, ) Hevy 1IN V) @ H VI (LVV!))
(V,v)

as (V', V) runs over a set of representatives of all G-orbits of chains of flats V! CV
having r(V) =i+ 1.
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In the statement of Theorem 18, Indgmbc(v,y)W denotes the induction of a rep-
resentation W of the subgroup Stabg(V', V) to the group G.

Note that all flats (V’, V) in a single G-orbit will have V' of the same cardinality,
and therefore their corresponding spaces H,.(y+ 1 (IN (V') @ H"V/V)=2(L(V/V"))
will lie in the same eigenspace of AM. This implies that the decomposition of G-
representations in Theorem 18 is still finer than the decomposition into eigenspaces
of AM,

The previous result suggests that we concentrate attention on understanding
the G-action on the homology of the matroid complex I N(M). The actions on the
cohomology of the geometric lattice L(M) tend to have been studied earlier, or we
can always use the isomorphism

(5.3) H™ 72 (L(M)) 2 (AM) g = (AM)g = H gy 1 (IN(M7))

to reduce to the study of IN(M*) when this is convenient.
Notice that in general one can write down the G-action on H,.(pr)—1(IN(M)) as
a virtual character using the Euler characteristic:

(5.4) Hyy A(IN(M)) 2 3 (=)D =i=1 oM,

i>—1

However it is not always clear why this expression gives a genuine character rather
than just a virtual one.

Example 1. Uniform matroids U(r,n)
The uniform matroid M = U(r,n) of rank r on ground set [n] := {1,2,... ,n} has
as independent sets all subsets of cardinality at most r. Flats, quotients, and duals
of uniform matroids are all again uniform.

The symmetric group G = S,, acts on U(r,n) by permuting the ground set [n],
and the G-orbits of chains of flats V' C V are determined by the cardinality of
the sets V', V. In light of this discussion, it suffices to determine the S, action on
IN(U(r,n)). We can use equation (5.4), once we determine the S,,-action on CM.
The space CiM is the span of all oriented i-simplices [jo,... ,Ji]. These i-simplices
all lie in a single S,-orbit. The stabilizer of a fixed oriented ¢-simplex is a subgroup
isomorphic to S;11 X Sp—i;—1, and we observe that the stabilizer acts on the 1-
dimensional space spanned by this fixed oriented i-simplex by the sign character
sgn of S;y1 tensored with the trivial character 1 of S,,_;_1. We conclude that

oM ~ Indgfﬂxsn,i,ﬁg” ® 1.

Using the Littlewood-Richardson rule [8, §4.9] along with equation (5.4) then
shows that IN(U(r,n)) carries the irreducible S,,-representation indexed by the
partition shape (n —r,1") (see [8, Chapter 2]).

Example 2. Finite projective spaces ]P’g;l

Let F, be the finite field with ¢ elements, for ¢ a prime power, and Fy an n-
dimensional space over F,. The projectivization of this space forms a matroid
M = ]P’gq_1 whose ground set is the set of lines through the origin in Fy/, and where
a subset of lines is independent if and only if they contain a set of representing
vectors which are linearly independent in the usual sense. Flats and quotients of
finite projective spaces are again isomorphic to finite projective spaces. One might
suspect from the terminology that dual matroids of finite projective spaces are
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again isomorphic as matroids to finite projective spaces (for the dual space), but
this is not true as shown by simple examples.

The finite general linear group GL,(F,) acts on ]P’g;l in the obvious way and
the G-orbits of chains of flats V' C V are determined by the dimension of V',V as
subspaces. In light of this discussion, it suffices to determine the GL,(F,) action
on H" ! (L(Pg ")) and on H,_, (IN(Pg")). The first task is relatively easy since
L(]Pg;l) is the finite vector space lattice, whose order complex is the Tits building
for the usual BN-pair structure on GL,(F,;). Here the GL,(F,)-representation on
the top (co-)homology group I;[”’l(L(EDthl)) is the well-known Steinberg character

[9], an irreducible representation of GL, (F;) of dimension q(;‘)

To describe the G L, (F,)-representation on IN(IF’gq_l), we can try to be more
explicit in equation (5.4), by describing the GL, (F,)-action on C¥. The space CM
is the span of all oriented i-simplices [lo, ... ,[;], for sets {lp, ... ,{;} of independent
lines through the origin. Such i-simplicies all lie in a single G Ly, (F;)-orbit, and the
stabilizer of a fixed oriented i-simplex is a subgroup H isomorphic to the following
subgroup of 2 x 2 block upper-triangular matrices:

(© o)

Here A must be an (i + 1) x (i + 1) monomial matrix, i.e. it has exactly one non-
zero entry in each row and column, B is an arbitrary (i +1) x (n —i — 1) matrix, and
C is an invertible (n —i—1) x (n —i —1) matrix. Elements of the stabilizer H act on
the oriented simplex which they fix by the sign of the permutation associated to the
monomial matrix A, so call this character x. We conclude that CM = IndeL"(]F")X,
and equation (5.4) gives an expression for I:[n,l(IN(IF’gq_l)) as a virtual character

of dimension

n—1—1i [n]q[n - ]-]q T [n — Z]q i-|2;1
(5.5) > (-1 E /(5

i>—1

where [n], :=14+qg+¢*+---+¢" 1. We do not see how to simplify the expression
(5.4) for ﬁn,l(IN(ED]’F‘q_l)) as a virtual character.

Example 3. The graphic matroid for a complete graph

Let M2 be the graphic matroid associated to the complete graph on vertex set [n].
In other words, M;:‘ has as ground set E the set of all possible edges {i,j} with
1<i<j<n,and a set of edges is independent if it contains no cycles.

The symmetric group S, acts on M/ by permuting the vertex set [n], and
hence also permuting the edges {i,j}. Flats in M;;l correspond to partitions
m = Bi1|By|---|B, of [n] into blocks B;, and one can check that if V' is the flat
corresponding to the partition 7 then as a matroid V' = @, M‘%i‘. The lattice

L(M?) is the well-known lattice of set partitions of [n], usually denoted II,,. Fur-
thermore, if V' is a flat contained in V/, then V' corresponds to a partition 7’ which
refines 7, and L(V/V') is isomorphic to a product of lattices of the form II,,, for
some n; < n.

In light of this discussion, it suffices to determine the S,-action on H™~3(II,,)
and on H,_(IN(M?)). The first task is relatively easy since the S,-action on
H"3(I1,,) has been well-studied by many authors, see e.g. [10, §7]. It is known
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that as an S,-representation,
H"3(I1,) = sgn ® Indé:(

where sgn is the 1-dimensional sign representation, C,, is the cyclic group in S,
generated by an n-cycle, and ( is the 1-dimensional representation of C),, which
sends a generator to a primitive n‘® root of unity [10, Theorem 7.3]. It is also
known that if we let S,,—; denote the subgroup of S,, which fixes n, then

Resg»  H"3(IL,) = R[S,_1]

i.e. the restriction to S,—; is isomorphic to the regular representation of S,_1 [10,
Corollary 7.6]. Consequently, this representation has dimension (n — 1)

The S,-action on H, »(IN(MZ2)) has only been studied more recently in [7].
The description of the S, -representation is not known in general, although equation
(5.4) can be used to decompose it into Sp-irreducibles via a character computation
when n is small. On the other hand, one can construct an explicit basis for the
homology which is permuted by the action of S,,_; and which shows the following;:

Theorem 19. [7, Theorem 3.6.3] As an S,_;-representation H,_o(IN(M2)) is
isomorphic to the permutation action on forests of edge-rooted trees on [n — 1]
tensored with the sign character sgn.

Here a forest of edge-rooted trees is a graph on [n — 1] in which every connected
component is a tree, along with a specified edge of each tree (so in particular, every
vertex in [n — 1] lies in a tree having at least two vertices). We give a brief proof of
this result here, relying on results of [1].

First, choose the ordering w of the edges in the complete graph as follows: an
edge {i,j} with ¢ < j is earlier in w than {i',j'}if j > j' orif j =j  and i > i'. In
other words

{n_]-:n} <w - <uw {Ln} <w {n_27n_1} <w - <w {273} <w {173} <w {1a2}

Bases of M;;l correspond to spanning trees 7' on [n], and it is straightforward to
check the following characterization of the bases of internal activity 0:

Lemma 20. A spanning tree T on [n] has internal activity 0 if and only if for
every tree of the forest T'|j,_y), the vertex connecting this tree to n does not have
the mazximum label in the component.

Here T'|[,—1) denotes the restriction of the tree T to its edges which only contain
vertices in [n — 1].

If we let T,...,T,. denote the trees of internal activity 0, then [1, Theorem
7.7.2] implies that there is a basis of cycles 21,... , 2z, for H, o(IN(M)) uniquely
determined as homology classes by the condition that the coefficient of T; in z;
is 1 if 4 = j and 0 else. These cycles {z;} turn out not to be permuted by the
Sn—1-action, however they are upper-triangularly related to a set of cycles which
are so permuted, and which we now define.

Given a forest F' of edge-rooted trees on [n — 1], let Fy,... , F, be its component
edge-rooted trees, let the distinguished edge in tree F, be {i,, j. }, and for any other
edge e # {ir,jr} in F, let ¢(e) be the vertex in this edge which lies farthest from
the root edge. See Figure 2 for some examples.
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FIGURE 2. Example of an edge rooted-forest along with some non-
root edges e and their corresponding vertices 1 (e).

Define 2z}, to be the following product in the exterior face ring AM/':

S

2= /\ O(Vi, j, A i,n Nj.n) A /\ A(ve A vy(e)n)
r=1 edges e#{ir,jr} in F,

We next describe a bijection ¢ between the forests of edge-rooted trees on [n — 1]
and the trees of internal activity 0 on [n]. Given such a forest F' let ¢(F') be the
tree on [n] obtained as follows: for each edge-rooted tree F, of F, assume that the
labelling ¢,, 7, of the distinguished edge has been chosen so that i, is farther than
Jr is from the maximum labelled vertex of F;.. Then ¢(F') is obtained by adding all
the edges {i,,n} for 1 <r < sto F. It is easy to see that ¢(F) fits the description
of Lemma 20, and so has internal activity 0. The inverse map ¢! starts with a tree
T of internal activity 0, removes all edges involving the vertex n leaving a forest
on [n — 1], and for each vertex i that used to be connected to n it distinguishes
the edge containing i in the forest which is the first edge on the path toward the
maximum labelled vertex of i’s component tree.

We now come to the crucial point. Given two forests Fj, F; of edge-rooted trees,
having corresponding trees 7}, 7; of internal activity zero, if the cycle zj, contains
the tree T, then one can easily check that:

(a) as a forest, F; contains all the edges in Fj, and furthermore

(b) if F; and Fj have exactly the same set of edges as forests, then in each of
their component trees, the distinguished edge for Fj lies on the shortest path
connecting the distinguished edge for F; to the maximum labelled vertex in
that component.

Consequently, if we linearly order the forests of edge-rooted trees by any linear
extension of the partial order expressed in items (a), (b) above, we have the following
property: when one restricts the matrix expressing the cycles 2 ’s in terms of trees
on [n] to the trees of internal activity 0, the result is a square upper-triangular
matrix U with £1’s on the diagonal. By [1, Theorem 7.7.2], this implies the cycles
{U'2;} must induce the exact same homology classes as the basis {z;} mentioned
earlier for H,_o(IN(M?)). The next corollary is then immediate:

Corollary 21. The cycles {z} as F ranges over all forests of edge-rooted trees
form a basis for H, »(IN(M2)).

It is easy to see that permutations in S,,_; permute the cycles {2} } (up to sign)
in the same way that they permute the forests of edge-rooted trees. Furthermore,
it is not hard to check that if F' is a forest of edge-rooted trees which is fixed by
some permutation 7 in S,_1, then we also have 7(z}) = sgn(w) - 5. This proves
Theorem 19.
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