
COMBINATORIAL LAPLACIANS OF MATROID COMPLEXESW. KOOK, V. REINER, AND D. STANTONAbstract. We combinatorially interpret the spectra of discrete Laplace oper-ators from the boundary maps in the simplicial complex of independent setsof a matroid. The interpretation follows from a surprising orthogonal decom-position of the simplicial chain groups. This decomposition is in general �nerthan the spectral decomposition. As a consequence, the spectra are integral.One corollary to our combinatorial interpretation may be paraphrased asstating that one can \hear" the characteristic polynomial of a matroid.1. IntroductionFor any �nite simplicial complex K, one can de�ne Laplace operators �i whichare combinatorial analogues of the Laplace operators on di�erential forms for aRiemannian manifold. The de�nition (as in [5]) is as follows. Let Ci be the R-vectorspace of (oriented) simplicial i-chains inK with real coe�cients, and @i : Ci ! Ci�1the usual simplicial boundary map. Endow Ci with an inner product by declaringthe oriented simplices to form an orthonormal basis of Ci, so that we may identifyCi with its dual C�i . The adjoint to @i with respect to this inner product is thetranspose @Ti or the coboundary map �i�1 : Ci�1 ! Ci. De�ne �i : Ci ! Ci by�i = �i�1@i + @i+1�i:The main result about combinatorial Laplacians is an analogue of a fact fromHodge theory, namely that the kernel or 0-eigenspace of �i is naturally isomorphicto the homology group Hi(K;R) [5, Proposition 2.1]. The computational advan-tage of considering �i is that one can compute numerical approximations to thespectrum of �i and �nd its 0-eigenspace relatively quickly, using well-establishedfast methods for spectra of real symmetric matrices [5].These methods are particularly e�ective if one knows that the spectra of the�i are integral, which is not often the case. However, the spectra are integral forthe well-studied chessboard complexes, as shown in [6]. There the authors usedthe symmetry groups acting on the complexes for a clever representation-theoreticcalculation, which gives the spectrum and in particular its integrality.The main result of this paper (Corollary 17) proves that the spectra of all theLaplacians are again integral when K is a matroid complex, that is when K is thecomplex of independent sets in a matroid. The result follows from a surprisingorthogonal decomposition of the chain groups Ci (Theorem 15) which is in general�ner than the eigenspace decomposition for the Laplacians. We remark that eventhough the combinatorial Laplacians have usually been de�ned only over �elds ofcharacteristic zero, all of our results are still true over the integers.Key words and phrases. matroid, matroid complex, Laplacian, internal activity, externalactivity.Second author supported by Sloan Foundation and Univ. of Minnesota McKnight Land GrantFellowships. Third author supported by NSF grant DMS-9400510.1



2 W. KOOK, V. REINER, AND D. STANTONOne corollary (Corollary 10) to our results is that for a matroid complex, onlya very small part of the information in the spectra of the Laplacians (namely themultiplicity of the largest eigenvalue in each �i) is su�cient to recover the char-acteristic polynomial of the matroid. This adds to the already large list (see e.g.[3]) of interpretations of the characteristic polynomial of a matroid, and can bewhimsically rephrased by saying that one can \hear" the characteristic polynomialof a matroid.The paper is structured as follows. Section 2 deals with some combinatorialpreliminaries that do not involve Laplacians, but are really the combinatorial man-ifestations that foreshadow Theorem 15. Section 3 introduces the combinatorialLaplacians and proves some easy basic facts about their behavior for matroid com-plexes. Section 4 contains the main results, which require a slightly deeper analysis,aided by the technique of exterior face rings for simplicial complexes [4]. Section 5discusses some well-known examples of matroids having large symmetry groups.2. Combinatorial preliminariesWe refer the reader to the excellent article [1] for almost all of the de�nitionsand notions from matroid theory and matroid complexes that we will use.Let M be a loopless matroid with a chosen linear ordering ! on its ground setE. In the usual way there is associated to M a rank function r(A) and a closureoperator A 7! A on subsets A � E, and the set of closed subsets or 
ats forms ageometric lattice denoted L(M).Recall that for a base B of M , an element b in B of M gives rise to a uniquebasic bond boM (B; b), and an element e in E�B gives rise to a unique basic circuitciM (B; e). We say that b is internally active in B if it is the !-smallest elementof boM (B; b), and e is externally active if it is the !-smallest element of ciM (B; e).The internal activity i(B) of the base B is the number of internally active elementsin B, and its external activity e(B) is de�ned similarly.Theorem 1. In any ordered matroid (M;!), every base B has a unique disjointdecomposition B = B1 tB2 with the following properties:� B1 is a base of internal activity 0 for the 
at V := B1 which it spans, and� B2 is a base of external activity 0 for the quotient matroid M=V .Proof. The existence of such a decomposition is provided by the following algorithm,which takes the base B as input, and produces such a pair (B1; B2).ALGORITHM:Step 1. Set B1 = B;B2 = ?.Step 2. Let V = B1.Step 3. Find an internally active element b for B1 as a base of the 
at V .If no such element b exists, then stop and output the pair (B1; B2).If such a b exists, then set B1 := B1�fbg; B2 := B2[fbg, and return to Step2.It is clear that the algorithm terminates, since each time one returns to Step 2,the cardinality of B1 has decreased. To see that the output is a decomposition as inthe theorem, note that B1 will be a base for V of internal activity 0 by construction,so the �rst property is clearly satis�ed.Therefore it remains to show the second property, i.e. that B2 is a base ofexternal activity 0 for M=V . For this we will show that given any e 2 E � V �B2



LAPLACIANS OF MATROID COMPLEXES 3the circuit ciM=V (B2; e) contains an !-smaller element than e. Since ciM=V (B2; e)is a circuit in M=V , the set ciM=V (B2; e) [ B1 is dependent in M , and thereforecontains some circuit of M of the form ciM=V (B2; e) [ B01 where B01 � B1. Denoteby (B(i)1 ; B(i)2 ) the sets (B1; B2) at the ith stage of the above algorithm, so B(0)1 =B;B(0)2 = ?. Let i be such that ciM=V (B2; e)�feg � B(i)1 but ciM=V (B2; e)�feg 6�B(i+1)1 . This means that some element b2 of ciM=V (B2; e) � feg is thrown out ofB(i)1 and into B(i+1)2 at this stage because b2 is internally active for B(i)1 . Note thatciM=V (B2; e) � feg [ B01 � B(i)1 and consequently b2 2 ciM (B(i); e) with b2 being!-smaller than e.To show uniqueness of the decomposition, we de�ne a map f between two sets:� the set of triples (V;B1; B2) where V is a 
at of M , B1 is a base of internalactivity 0 for V , and B2 is a base of external activity 0 for M=V , and� the set of bases B of M .The map f sends the triple (V;B1; B2) to the base B := B1tB2. Uniqueness of thedecomposition is equivalent to injectivity of f , and since the above algorithm showsthat f is surjective, it su�ces to show that the two sets have the same cardinality,i.e. thatj bases of M j = X
ats V of M ���� bases B1 of Vwith internal activity 0���� � ���� bases B2 of M=Vwith external activity 0���� :(2.1)To see this, recall from [1, Theorem 7.8.4] that the number of bases of a ma-troid M having internal activity 0 is, up to sign, the (reduced) Euler characteristic~�(IN(M)) of the independence complex IN(M), and hence is equal to the alter-nating sumPI(�1)r(M)�jIj where I ranges over the independent sets ofM . Recallalso from [1, Proposition 7.4.7] that the number of bases of a matroid M havingexternal activity 0 is the absolute value of the M�obius function j�L(M)(0̂; 1̂)j for thegeometric lattice L(M). Therefore starting with the right-hand side in equation(2.1), we can manipulate as follows:X
ats V of M ���� bases B1 of Vwith internal activity 0���� � ���� bases B2 of M=Vwith external activity 0����= X
ats V of M0@ Xindependent sets I�V (�1)r(V )�jIj1A j�L(M=V )(0̂; 1̂)j= Xindependent sets I�E(�1)r(M)�jIj XI�V�1̂(�1)r(M)�r(V )j�L(M)(V; 1̂)j= Xindependent sets I�E(�1)r(M)�jIj XI�V�1̂�L(M)(V; 1̂)= Xindependent sets I with I=M(�1)r(M)�jIj= Xbases B of M(�1)r(M)�jBj= j bases of M j:



4 W. KOOK, V. REINER, AND D. STANTONHere we have used various facts, such as the de�ning recurrence for the M�obiusfunction, the fact that the M�obius function of the geometric lattice L(M) alternatesin sign, and the fact that the interval [V; 1̂j in L(M) is isomorphic to the lattice of
ats L(M=V ) for the quotient matroid M=V .Based on Theorem 1, we de�ne the spectrum polynomial of MSpecM (t; q) := Xindependent sets I tr(I)qjI1jwhere I1 denotes the output of the decomposition algorithm I 7! (I1; I2) when I isconsidered as a base for the 
at I it spans, and the ordering on the ground set inI is induced from the original ordering ! on E.The reason for the terminology \spectrum polynomial" is that SpecM (t; q) carriesthe same information as the spectra of the Laplacians for the matroid complex ofM (Corollary 17). The simpler fact that SpecM (t; q) does not depend on the chosenordering ! of the ground set is easy to see from the following alternate expression:SpecM (t; q) = X
ats V tr(V ) Xindependent sets I spanning V qjI1j= X
ats V tr(V ) X
ats V 0�V j~�(IN(V 0))j � j�L(M)(V 0; V )jqjV 0j(2.2)The last equality follows from the same facts used to show that the map f was abijection in the proof of Theorem 1.A straightforward consequence of the de�nition is that for a direct sumM1�M2of two matroids M1;M2, we haveSpecM1�M2(t; q) = SpecM1(t; q) � SpecM2(t; q);(2.3)a property reminiscent of the Tutte polynomial of a matroid. Recall that the Tuttepolynomial TM (x; y) may be de�ned byTM (x; y) := Xbases B of M xi(B)ye(B)where i(B); e(B) are the internal and external activity of the base B. The Tuttepolynomial plays an important role in matroid theory; see [3]. Since the Tuttepolynomial and spectrum polynomial are both related to the notions of internaland external activity, it is tempting to compare them.Question 2. How does the spectrum polynomial compare with the Tutte polyno-mial in distinguishing non-isomorphic matroids? Can two matroids have the samespectrum polynomial and di�erent Tutte polynomials?We know that there are non-isomorphic matroids that have same spectrum poly-nomial. For example, the matroidsM1;M2 represented in characteristic zero by thea�ne point con�gurations shown in Figure 1 have the same spectrum polynomial1 + 6t+ t2(13 + 2q4) + t3(8 + 2tq3 + 8q6)and the same Tutte polynomial [3, Problem 6.1(b)]x3 + y3 + 3x2 + 3y2 + 3xy + 4x+ 4y:On the other hand, there are non-isomorphic matroids that have the same Tutte
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4Figure 1. MatroidsM1 and M2 have the same Tutte polynomialand the same spectrum polynomial. Matroids M3 and M4 havethe same Tutte polynomial but di�erent spectrum polynomials.polynomial, but not the same spectrum polynomial. For example, the matroidsM3;M4 shown in Figure 1 have the same Tutte polynomial [3, Example 6.2.18]y4 + 3y3 + 2xy2 + x2y + x3 + 4y2 + 5xy + 3x2 + 2x+ 2y;but di�erent spectrum polynomialsSpecM3(t; q) =1 + t(6 + q2) + t2(11 + 3q2 + 2q3 + 4q4) + t3(6 + 2q2 + 2q3 + 4q4 + 10q7)SpecM4(t; q) =1 + t(6 + q2) + t2(11 + 4q2 + 5q4) + t3(6 + 3q2 + 5q4 + 10q7):We see no reason to expect that the spectrum polynomial determines the Tuttepolynomial, but we have no counterexamples.Since the Tutte polynomial is easy to compute by the deletion-contraction re-currence TM (x; y) = TM�e(x; y) + TM=e(x; y);the following question is natural:Question 3. Is there some way to use deletion-contraction to compute the spec-trum polynomial SpecM (t; q)?The examples M3;M4 above show that there can be no formula for SpecM (t; q)purely as a function of SpecM�e(t; q); SpecM=e(t; q), since M3 � e �= M4 � e andM3=e �= M4=e for the element e represented by the 7th column of the matricesin each case. Nevertheless, there might exist some more complicated procedurefor computing the spectrum polynomial of M from those of a deletion M � e andcontraction M=e, which somehow uses the way in which M � e and M=e \gluetogether" to produce M . 3. LaplaciansThe goal of this section is to de�ne the combinatorial Laplacians of matroidcomplexes, and prove some easy facts about them.Let IN(M) denote the independence complex of the matroidM , i.e. the simpli-cial complex on vertex set E whose simplices are the independent sets of M . LetCMi denote the ith (oriented) simplicial chain group of IN(M) with R coe�cients,@Mi : CMi ! CMi�1 the usual simplicial boundary map, and ~HMi the ith (reduced)homology group with R coe�cients. By choosing the standard inner product h�; �ion CMi in which the oriented simplices are an orthonormal basis, we can iden-tify CMi with its dual space of cochains. Then the simplicial coboundary map �Mi



6 W. KOOK, V. REINER, AND D. STANTONwhich is the adjoint of @Mi may be thought of as a map CMi�1 ! CMi . De�ne theith combinatorial Laplacian to be the operator �Mi : CMi ! CMi given by�Mi := �Mi�1@Mi + @Mi+1�Mi :It is not hard to show [5] that the kernel or 0-eigenspace ker(�Mi ) is isomorphicto the homology ~HMi . In our case, there is not just an isomorphism but an equal-ity ker(�Mr(M)�1) = ~HMr(M)�1 since there are no (r(M) � 1)-dimensional bound-aries. Furthermore, since IN(M) is shellable [1, Theorem 7.3.3] and hence has only(r(M) � 1)-dimensional homology, we have that ker(�Mi ) = 0 for i < r(M) � 1, afact we will recover for di�erent reasons shortly (Corollary 7).It is easy to compute the following explicit description for �Mi . For each inde-pendent (i + 1)-set I of M , if we let [I ] denote the oriented simplex which placesthe elements of I in !-order, then�Mi [I ] = (jI j+ jE � I j) � [I ] + XI 0 = I � feg+ fe0gI 0 [ I dependent (�1)d(I;I0)[I 0](3.1)where d(I; I 0) is the number of elements in I [ I 0 which lie strictly between e; e0under the !-ordering.Remark 4. Apparently �Mi depends upon on !. However, one can check thatchanging ! only conjugates �Mi by a signed permutation matrix.First a few simple observations.Proposition 5. The chain group CMi and the operator �Mi decompose as a directsum CMi = Mrank (i+1) 
ats V CVi�Mi = Mrank (i+1) 
ats V ��Vi + jE � V j � IV � :Here CVi is the subspace of i-chains supported on independent sets I which are abase for the 
at V , and IV is the identity map on this subspace, while �Vi is theith Laplacian for the restricted matroid M jV .Proof. Looking at the explicit formula (3.1) for �Mi , one sees that the (I; I 0) o�-diagonal entry is non-zero only when I and I 0 are bases of the same 
at V . Fur-thermore, in this case the scalars jE � I j; jE � I 0j are both equal to jE � V j.As a consequence of the previous proposition, we really need only understandthe top Laplacian �Mr(M)�1 acting on CMr(M)�1.To this end, recall that the map B 7! E �B gives a bijection between the basesfor M and the bases for its dual matroid M�. Extend this bijection to a linearisomorphism P : CMr(M)�1 ! CM�r(M�)�1by sending the oriented simplex [B] to (�1)ranksum(B)[E�B] where ranksum(B) isthe sum of the ranks of the elements of B in the !-order.



LAPLACIANS OF MATROID COMPLEXES 7Proposition 6. �Mr(M)�1 + P�1�M�r(M�)�1P = jEj � IMwhere IM is the identity map on CMr(M)�1.Proof. Examining the explicit formula (3.1) for �Mi in the case i = r(M) � 1, wesee that the diagonal entries for �Mr(M)�1; P�1�M�r(M�)�1P are r(M); jEj � r(M)respectively. Consequently the assertion for the diagonal entries in the propositionis clear. For the o�-diagonal entries, one needs to check that for any bases B;B0 ofM satisfying B0 = B � feg [ fe0g we have(�1)ranksum(B)(�1)ranksum(B0)(�1)d(B;B0) + (�1)d(E�B;E�B0) = 0:This veri�cation is straightforward.Corollary 7. For every i, the spectrum of Laplacian �i is contained in the interval[0; jEj] of R, and will not contain 0 unless i = r(M)� 1.Proof. We know that �Mi is non-negative de�nite since it is a sum of the twooperators �Mi�1@Mi and @Mi+1�Mi , which are both non-negative de�nite since theyare of the form A�A (see [5, Proposition 2.1]). Therefore the spectrum of �Mi isnonnegative.If we look at the special case of i = r(M) � 1, then the previous propositionsays that the spectrum of �Mr(M)�1 is obtained from the (nonnegative) spectrum of�M�r(M�)�1 by subtraction from jEj. Therefore the assertion of the corollary holdsfor i = r(M) � 1. But then a glance at Proposition 5 shows that it also holds forthe remaining i.Proposition 6 shows that the spectrum of the top Laplacian �Mr(M)�1 completelydetermines the spectrum of the dual �M�r(M�)�1. This suggests the following ques-tion:Question 8. Is the same true for the lower-dimensional Laplacians �Mi , or dothere exist two matroids M1;M2 for which �M1i and �M2i have the same spectra forall i, but some �M�1j and �M�2j have di�erent spectra?This also suggests a stronger question to which we also do not know the answer:Question 9. To what extent does the top spectrum determine the lower spectra?For a real number �, let (�Mi )� denote the �-eigenspace for the operator �Mi .Corollary 7 shows that the largest possible value of � is the cardinality of the groundset jEj. Our next result gives an interesting interpretation for the multiplicities ofthis largest eigenvalue in the various Laplacians �Mi .Recall that the characteristic polynomial of the matroid is de�ned by�M (t) := XV 2L(M)�L(M)(0̂; V )tr(M)�r(V )where �L(M) is the M�obius function for the geometric lattice L(M). The nextcorollary has the whimsical interpretation that you can \hear" the characteristicpolynomial ofM , if by analogy with vibrating drums, we imagine that the spectra ofthe various Laplacians �Mi are heard in the frequencies emitted when one \bangs"a matroid complex!



8 W. KOOK, V. REINER, AND D. STANTONCorollary 10. �M (�t) = tr(M)�1 r(M)�1Xi=�1 dimR(�Mi )jEjt�iProof. (�t)r(M)�1 r(M)�1Xi=�1 dimR(�Mi )jEj(�t)�i= (�t)r(M)�1 r(M)�1Xi=�1 X
ats V :r(V )=i+1 dimR(�Vi )jEj(�t)�i= X
ats V dimR(�Vr(V )�1)jEj (�t)r(M)�r(V )= X
ats V dimR(�V �r(V �)�1)0 (�t)r(M)�r(V )= X
ats V dimR ~Hr(V �)�1(IN(V �))(�t)r(M)�r(V )= X
ats V j�L(V )(0̂; 1̂)j(�t)r(M)�r(V )= XV 2L(M)�L(M)(0̂; V )tr(M)�r(V )The �rst equality uses Proposition 5. The second equality is just interchanging theorder of summation. The third equality uses Proposition 6. The fourth equality usesthe fact the 0-eigenspace for the top Laplacian is the same as the top homology ofthe independence complex. The �fth equality uses the fact from [1, Theorem 7.8.1]that this top homology has dimension equal to M�obius number for the geometriclattice of the dual matroid. The sixth equality uses the fact that the M�obiusfunction for the geometric lattice L(M) alternates in sign.It is well-known that the Tutte-polynomial TM (x; y) also specializes to the char-acteristic polynomial: �M (t) = (�1)r(M)TM (1� t; 0):The generating function Xindependent sets I in M tjIj = tr(M) TM (1 + t�1; 1)is another specialization of the Tutte polynomial which is clearly recoverable fromthe spectra of the various �Mi . This prompts the following question:Question 11. How much can one \hear" of the Tutte polynomial of a matroid, i.e.how much of TM (x; y) is recoverable from knowledge of the spectra of the variousLaplacians �Mi ?This question will turn out to be equivalent to Question 2 via Corollary 17.



LAPLACIANS OF MATROID COMPLEXES 94. Orthogonal decomposition of CMr(M)�1 and the exterior face ringThe goal of this section is to probe deeper into the spectra of the Laplacians�Mi , which by Proposition 5 reduces to understanding �Mr(M)�1. We will show thatall of its eigenvalues are integers, and explain how the eigenspace decompositionof CMr(M)�1 with respect to �Mr(M)�1 is re�ned by a more fundamental orthogonaldecomposition (Theorem 15) whose combinatorial manifestation is Theorem 1. Asa consequence, we will deduce our main result (Corollary 17) that the spectrumpolynomial SpecM (t; q) is essentially the generating function for the spectra of�Mi ; i = �1; : : : ; r(M)� 1.Our primary tool will be the exterior face ring ^M of IN(M) [4]. Let W be anR-vector space with basis fvege2E indexed by the ground set E of M . Let ^W bethe exterior algebra on W , having basis vS := ve1 ^ � � � ^ ves indexed by subsetsS = fe1; : : : ; esg � E. The exterior face ring ^M is the quotient^M := ^W=(vS : S is dependent in M):As an R-vector space, we will identify ^M = Lr(M)i=0 ^iM with the direct sumof the oriented chain groups Lr(M)�1i=�1 CMi . As a consequence, this direct sum ofchain groups is endowed with an R-algebra structure; under this identi�cation thecoboundary maps �i correspond to multiplication on the left by the �xed elementof degree one �M := Pe2E ve. Furthermore, for any subset S � E, let �S denotethe element of degree one Ps2S vs. The inner product on Li CMi corresponds toone on ^M in which the fvIg are declared to form an orthonormal basis. Withrespect to this inner product, the boundary maps @i may be thought of as a singlemap @M which is adjoint to left multiplication by �M , i.e.hx; @Myi = h�M ^ x; yi:One crucial (and easy to check) property of @M is that it is almost a (graded)derivation on the algebra ^M . We have@M (x ^ y) = @M (x) ^ y + (�1)jxjx ^ @M (y)(4.1)for any x 2 ^jxjM , and y having the property that no vS ; vT appearing in x; yrespectively have vS ^ vT = 0.We will mostly be dealing with the top dimensional Laplacian, which for shorternotation we will denote �M rather than �Mr(M)�1. Similarly let CM replace thenotation CMr(M)�1 for the top dimensional chain group. Notice that since there isno chain group in dimension r(M) we have�M (x) = �M ^ @M (x)for all x 2 ^r(M)M . As a consequence of this fact and our use of R coe�cients,Hr(M)�1(IN(M)) is a subspace of the 0-eigenspace (�M )0. In fact these two spacesare equal since they have the same dimension.Note that if V is a 
at ofM then we can consider V as a matroid by restriction,and ^V is naturally a subalgebra of ^M , so we can think of elements of ^V asbeing in ^M . Also ^M=V is naturally a quotient of ^M , and by abuse of notation,we can consider elements of ^M=V as elements of ^M in the following way: ifS � E � V is independent in M=V then identify vS 2 ^M=V with the elementvS 2 ^M .



10 W. KOOK, V. REINER, AND D. STANTONLemma 12. If x 2 ^r(V )V and y 2 ^r(M=V )M=V satisfy�V (x) = � � x�M=V (y) = � � yfor some real constants �; �, then�M (x ^ y) = (�+ �) � x ^ y + �E�V ^ @M (x) ^ yProof. Starting with the left-hand side, we perform a series of manipulations whichare justi�ed below�M (x ^ y)= �M ^ @M (x ^ y)= �M ^ @M (x) ^ y + (�1)jxj�M ^ x ^ @My= (�V + �E�V ) ^ @M (x) ^ y + (�1)jxj(�V + �E�V ) ^ x ^ @My= �V ^ @M (x) ^ y + �E�V ^ @M (x) ^ y + x ^ �V ^ @My + x ^ �E�V ^ @My= � � x ^ y + �E�V ^ @M (x) ^ y + 0 + x ^ �E�V ^ @My= � � x ^ y + �E�V ^ @M (x) ^ y + x ^ (� � y + y0)where y0 2 ^r(M=V ) satis�es x^ y0 = 0 (to be justi�ed below). Assuming this, thenthe last expression is equal to the right-hand side in the lemma.Now, the justi�cations. The �rst two equalities are by de�nition of �M andthe derivation property of @M (equation (4.1)). The third and fourth equalitiescome from decomposing the sum �M = �V + �E�V and distributing over the wedgeproduct. The �fth equality comes from the facts that�V ^ @M (x) = �V ^ @V (x)(= � � x)x ^ �V = 0which follow since x is supported on bases of V . The last equality comes from thefact that �M=V ^ @M=V y = � � y in ^M=Vimplies �E�V ^ @My = � � y + y0where y0 is supported on subsets of E � V which are dependent in M=V . Howeverall the terms in y0 will die in ^M when one wedges with x, since x is supported ona set of bases of V .Corollary 13. With the same conditions and notation of the previous lemma,(1) if � = 0, then �M (x ^ y) = � � x ^ y:(2) if r(V ) = r(M)� 1 and y = �E�V then � = jE � V j and�M (x ^ y) = (�+ jE � V j) � x ^ y:Proof. To prove (1), note that � = 0 implies x is in the 0-eigenspace of �V , whichimplies that @V (x) = 0. On the other hand, @V (x) = @M (x) since x is supportedon bases of V , so the extra term �E�V ^ @M (x) ^ y in the right-hand side of thelemma dies.



LAPLACIANS OF MATROID COMPLEXES 11To prove (2), the fact that �M=V (y) = jE � V j y when r(V ) = r(M) � 1 andy = �E�V is easy to check. Also note that the extra term �E�V ^ @M (x) ^ y diesbecause �E�V ^ �E�V = 0.Given a 
at V of M , we next de�ne a map hVhV : (�V )0 
 (�M=V )jE�V j ! CMx 
 y 7! x ^ ywhere we recall that (�M )� denotes the �-eigenspace for the operator �M . If welet E(V ) denote the image of hV in CM , then item (1) in Corollary 13 shows thatE(V ) lies in the jE � V j-eigenspace for �M . Since �M is a self-adjoint operator,this implies that E(V ); E(V 0) are orthogonal whenever V; V 0 are 
ats of di�erentcardinalities. Our goal will be to show more generally that E(V ); E(V 0) are alwaysorthogonal, and that they give an orthogonal decomposition of the chain groupCM .To achieve this goal, and for later purposes, it will be useful to know generatorsfor the eigenspace (�M )jEj. Given any maximal 
agF : 0̂l V1 l � � �l Vr(M)�1 lMin the geometric lattice L(M), de�ne yF 2 ^M byyF :=  Xe2V1 ve! ^ Xe2V2�V1 ve! ^ � � � ^0@ Xe2E�Vr(M)�1 ve1A :Using induction with item (2) in Corollary 13 shows that yF lies in the eigenspace(�M )jEj. We will not only show that these elements yF span (�M )jEj, but we willalso relate them to the top cohomology group ~Hr(M)�2(L(M)) of the geometriclattice L(M) (here we are abusing notation by using L(M) to denote both thegeometric lattice and the order complex of chains in the proper part of this lattice).Let Cr(M)�2(L(M)) denote the top cochain group over R for the order complex ofthe proper part of L(M), and given a 
ag F in L(M), let F � denote the cochainwhich assigns the value 1 to F and 0 to all other 
ags.Theorem 14. The map p : Cr(M)�2(L(M))! (�M )jEj sending F � 7! yF inducesan isomorphism p� : ~Hr(M)�2(L(M))! (�M )jEj.Proof. First we must verify that p de�ned as above on the cochains actually givesa well-de�ned map on cohomology, i.e. p takes (r(M) � 1)-coboundaries to 0.Since the (r(M) � 1)-coboundaries are spanned by the coboundaries of F � whereF runs over all 
ags in L(M) that miss only a single rank, it su�ces to showthat p(�(F �)) = 0 for all such 
ags F . If F is such a 
ag, and it misses rank i, letVi�1; Vi+1 be its i�1; i+1-dimensional 
ats respectively. One can quickly check thecomputation p(�(F �)) = 0 then amounts to a computation in the rank 2 geometriclattice L(Vi+1=Vi�1), where it can be easily veri�ed to always work.Since we have seen before that the dimensions of ~Hr(M)�2(L(M)); (�M )jEj areboth equal to j�L(M)(0̂; 1̂)j, it only remains to show that p� is injective. To dothis we will show that a particular basis for ~Hr(M)�2(L(M)) is mapped to a set oflinearly independent elements in (�M )jEj.



12 W. KOOK, V. REINER, AND D. STANTONGiven a base B ofM having external activity 0, let b1 < � � � < br be the elementsof B in their !-ordering, and let F (B) be the complete 
agfbrgl fbr; br�1gl � � �l fbr; br�1; : : : ; b2; b1g:In [1, x7.6] it is shown that these 
ags are exactly the ones having decreasinglabel sets with respect to a certain EL-labelling of the Hasse diagram of L(M).Combining this with [1, 7.6.3, 7.6.4, 7.7.2] and the fact that the Kronecker pairinggives an isomorphism ~Hr(M)�2(L(M)) �= ~Hr(M)�2(L(M)), the cocycles fF (B)�g asB runs over all bases of M of external activity 0 give a basis for ~Hr(M)�2(L(M)).Since p sends F (B)� to yF (B), it would su�ce to show the following (cf. [1, proofof Theorem 7.8.4]): for any two bases B;B0 of external activity 0, the coe�cientof B in yF (B) is �1, while the coe�cient of B0 is 0. In proving this, we will usethe following two observations, whose straightforward veri�cations are left to thereader:(a) If B is a base of external activity 0, then any non-empty subset B0 � B isa base of external activity zero for the 
at B0 (with respect to the orderinginduced from !).(b) If B = fb1; : : : ; brg is a base of external activity 0, as above, and we setBi = fbr; br�1; : : : ; bi+1; big, then bi is the !-smallest element of Bi �Bi+1.A typical term in the expansion of yF (B) corresponds to a sequence (xr; : : : ; x1)with xj 2 Bj � Bj+1 for 1 � j � r. We wish to show that fxr; : : : ; x1g is abase of external activity 0 if and only if xj = bj for all j. Using induction onj and fact (a) above, it su�ces to show that given any x 2 Bj � Bj+1, the setX = fbr; br�1; : : : ; bj+1; xg is not a base of external activity 0 for Bj . But thisfollows from fact (b) since x 2 ciBj (X; bj).We can now prove one of our main results. Recall that E(V ) is de�ned to bethe image of hV .Theorem 15. The map h :=LV hVM
ats V (�V )0 
 (�M=V )jE�V j ! CMis an isomorphism. Moreover M
ats V of M E(V ) = CMis an orthogonal direct sum decomposition.Proof. By Theorem 1, the dimensions of the two spaces are the same, and thereforeit su�ces to show that h is injective. For this we will show that(a) for every 
at V , the maphV : (�V )0 
 (�M=V )jE�V j ! CMis injective, and(b) for any two di�erent 
ats V; V 0, the subspaces E(V ); E(V 0) are orthogonal.Assertion (a) follows from the fact that hV is a restriction of the injective map^jV jV 
 ^jE�V jM=V ! ^jEjM



LAPLACIANS OF MATROID COMPLEXES 13given by x
 y 7! x^ y. To see that the latter map is injective, note that it maps aset of basis vectors for the domain into a subset of a basis for the range (the lattersubset consisting of all vB indexed by bases B of M which contain a base of V ).Assertion (b) is a bit trickier, and uses the Laplacian �M in a fundamental way.Let V; V 0 be two di�erent 
ats of M , and let z = x ^ y; z0 = x0 ^ y0 be elements ofE(V ); E(V 0) respectively (so x; x0 are in the eigenspaces of (�V )0; (�V 0)0 respec-tively, and y; y0 are in the eigenspaces (�M=V )jE�V j; (�M=V 0)jE�V 0j respectively).We wish to show hz; z0i = 0.If V; V 0 are 
ats of di�erent cardinality, then we are done since then z; z0 lie indi�erent eigenspaces of the self-adjoint operator �M .If jV j = jV 0j, then without loss of generality, by Theorem 14 we may assumethat y; y0 are of the form yF ; yF 0 for some complete 
ags F; F 0 in L(M=V ); L(M=V 0)respectively. De�ne a new matroid ~M to be the principal extension of M along the
at V by a new element p; in the notation of [2], ~M := M +V p. We recall acrucial property of principal extensions: any base B of M still forms a base in ~M .In this new matroid ~M , we have two 
ats ~V := V [ fpg and ~V 0 = V 0 which havedi�erent cardinalities, and hence have E( ~V ) orthogonal to E( ~V 0) because they liein di�erent eigenspaces for � ~M . We can still think of x; x0 as elements of ^ ~M , andit is easy to see that they will still lie in the eigenspaces (� ~V )0; (� ~V 0)0 because theyare killed by @ ~M . Furthermore, when we think of yF as an element of ^ ~M= ~V , it isstill in the eigenspace (� ~M= ~V )jE�V j because ~M= ~V = M=V . On the other hand,if we consider the chain of 
ats F 0 as a chain ~F 0 of 
ats in L( ~M), it generates anew element y ~F 0 . One can check that y ~F 0 di�ers from yF 0 only in some bases thatcontain p, and hence we havehz; z0iM = hx ^ yF ; x0 ^ yF 0iM= hx ^ yF ; x0 ^ y ~F 0i ~M= 0:The only tricky equality here is the second, which relies on the fact that x^yF willnot be supported on any bases that contain p.Question 16. Is there any natural way to write down orthogonal projectors�V : CM ! E(V )for each 
at V of a matroid M?In answering this question, we would consider choosing some arbitrary orthonor-mal basis for each E(V ) as not \natural" enough.We can now state the main corollary to Theorem 15, interpreting the spectra ofthe Laplacians �Mi . Recall that (�Mi )� denotes the �-eigenspace of �Mi .Corollary 17. All Laplacians �Mi for any matroid M have integral spectra. Fur-thermore, the generating function for these spectra is given explicitly byX�2R;i��1dimR(�Mi )� tiq� = t�1qjEj SpecM (t; q�1):



14 W. KOOK, V. REINER, AND D. STANTONProof. Beginning with the left hand side of the corollary, we perform a sequence ofmanipulations which are justi�ed below.X�2R;i��1dimR(�Mi )�tiq�= X
ats V of M tr(V )�1X�2RdimR(�Vr(V )�1)� q�+jE�V j= X
ats V of M tr(V )�1 X
ats V 0�V dimR(�V 0r(V 0)�1)0 � dimR(�V=V 0r(V=V 0)�1)jV�V 0j qjV�V 0j+jE�V j= X
ats V of M tr(V )�1 X
ats V 0�V j~�(IN(V 0))j � j�L(M)(V 0; V )j qjE�V 0j= t�1qjEj SpecM (t; q�1)The �rst equality above is justi�ed by Proposition 5, the second equality by The-orem 15 and Corollary 13, the third equality by the same facts from [1] that wereused in the proof of Theorem 1, and the last equality by equation (2.2).5. Symmetric examplesIn [6], the analysis of the eigenspaces of the Laplacians for the chessboard com-plexes necessarily also entailed a description of these eigenspaces as representationsfor the symmetry groups present. Similarly, we can ask for such a description forthe eigenspaces of the Laplacians of a matroid complex whenever there are non-trivial automorphisms of the matroid. This section is devoted to some examples ofthis nature.We begin with a reduction. Combining Theorem 15 and Proposition 5 gives theisomorphismCMi �= M
ats V with r(V )=i+1 M
ats V 0�V (�V 0r(V 0)�1)0 
 (�V=V 0r(V=V 0)�1)jV�V 0j�= M
ats V with r(V )=i+1 M
ats V 0�V ~Hr(V 0)�1(IN(V 0))
 ~Hr(V=V 0)�2(L(V=V 0))(5.1)
Let G be a group of automorphisms of the matroid M . Note that G permutesthe chains of 
ats V 0 � V , and the stabilizerStabG(V 0; V ) := fg 2 G : gV 0 � V 0; gV � V gacts on ~Hr(V 0)�1(IN(V 0)) and ~Hr(V=V 0)�2(L(V=V 0)). Since the map h in Theo-rem 15 is easily checked to be G-equivariant, equation (5.1) leads immediately tothe following result:Theorem 18. Let G be a group of automorphisms ofM . Then as G-representationswe have isomorphismsCMi �= M(V 0;V ) IndGStabG(V 0;V ) ~Hr(V 0)�1(IN(V 0))
 ~Hr(V=V 0)�2(L(V=V 0))(5.2)as (V 0; V ) runs over a set of representatives of all G-orbits of chains of 
ats V 0 � Vhaving r(V ) = i+ 1.



LAPLACIANS OF MATROID COMPLEXES 15In the statement of Theorem 18, IndGStabG(V 0;V )W denotes the induction of a rep-resentation W of the subgroup StabG(V 0; V ) to the group G.Note that all 
ats (V 0; V ) in a single G-orbit will have V 0 of the same cardinality,and therefore their corresponding spaces ~Hr(V 0)�1(IN(V 0))
 ~Hr(V=V 0)�2(L(V=V 0))will lie in the same eigenspace of �Mi . This implies that the decomposition of G-representations in Theorem 18 is still �ner than the decomposition into eigenspacesof �Mi .The previous result suggests that we concentrate attention on understandingthe G-action on the homology of the matroid complex IN(M). The actions on thecohomology of the geometric lattice L(M) tend to have been studied earlier, or wecan always use the isomorphism~Hr(M)�2(L(M)) �= (�M )jEj �= (�M�)0 �= ~Hr(M�)�1(IN(M�))(5.3)to reduce to the study of IN(M�) when this is convenient.Notice that in general one can write down the G-action on Hr(M)�1(IN(M)) asa virtual character using the Euler characteristic:~Hr(M)�1(IN(M)) �= Xi��1(�1)r(M)�i�1CMi :(5.4)However it is not always clear why this expression gives a genuine character ratherthan just a virtual one.Example 1. Uniform matroids U(r,n)The uniform matroid M = U(r; n) of rank r on ground set [n] := f1; 2; : : : ; ng hasas independent sets all subsets of cardinality at most r. Flats, quotients, and dualsof uniform matroids are all again uniform.The symmetric group G = Sn acts on U(r; n) by permuting the ground set [n],and the G-orbits of chains of 
ats V 0 � V are determined by the cardinality ofthe sets V 0; V . In light of this discussion, it su�ces to determine the Sn action onIN(U(r; n)). We can use equation (5.4), once we determine the Sn-action on CMi .The space CMi is the span of all oriented i-simplices [j0; : : : ; ji]. These i-simplicesall lie in a single Sn-orbit. The stabilizer of a �xed oriented i-simplex is a subgroupisomorphic to Si+1 � Sn�i�1, and we observe that the stabilizer acts on the 1-dimensional space spanned by this �xed oriented i-simplex by the sign charactersgn of Si+1 tensored with the trivial character 1 of Sn�i�1. We conclude thatCMi �= IndSnSi+1�Sn�i�1sgn
 1:Using the Littlewood-Richardson rule [8, x4.9] along with equation (5.4) thenshows that IN(U(r; n)) carries the irreducible Sn-representation indexed by thepartition shape (n� r; 1r) (see [8, Chapter 2]).Example 2. Finite projective spaces Pn�1FqLet Fq be the �nite �eld with q elements, for q a prime power, and Fnq an n-dimensional space over Fq . The projectivization of this space forms a matroidM = Pn�1Fq whose ground set is the set of lines through the origin in Fnq , and wherea subset of lines is independent if and only if they contain a set of representingvectors which are linearly independent in the usual sense. Flats and quotients of�nite projective spaces are again isomorphic to �nite projective spaces. One mightsuspect from the terminology that dual matroids of �nite projective spaces are



16 W. KOOK, V. REINER, AND D. STANTONagain isomorphic as matroids to �nite projective spaces (for the dual space), butthis is not true as shown by simple examples.The �nite general linear group GLn(Fq ) acts on Pn�1Fq in the obvious way andthe G-orbits of chains of 
ats V 0 � V are determined by the dimension of V 0; V assubspaces. In light of this discussion, it su�ces to determine the GLn(Fq ) actionon ~Hn�1(L(Pn�1Fq )) and on ~Hn�1(IN(Pn�1Fq )). The �rst task is relatively easy sinceL(Pn�1Fq ) is the �nite vector space lattice, whose order complex is the Tits buildingfor the usual BN -pair structure on GLn(Fq ). Here the GLn(Fq )-representation onthe top (co-)homology group ~Hn�1(L(Pn�1Fq )) is the well-known Steinberg character[9], an irreducible representation of GLn(Fq ) of dimension q(n2).To describe the GLn(Fq )-representation on IN(Pn�1Fq ), we can try to be moreexplicit in equation (5.4), by describing the GLn(Fq )-action on CMi . The space CMiis the span of all oriented i-simplices [l0; : : : ; li], for sets fl0; : : : ; lig of independentlines through the origin. Such i-simplicies all lie in a single GLn(Fq )-orbit, and thestabilizer of a �xed oriented i-simplex is a subgroup H isomorphic to the followingsubgroup of 2� 2 block upper-triangular matrices:�A B0 C�Here A must be an (i+ 1)� (i+ 1) monomial matrix, i.e. it has exactly one non-zero entry in each row and column, B is an arbitrary (i+1)�(n�i�1) matrix, andC is an invertible (n�i�1)�(n�i�1) matrix. Elements of the stabilizer H act onthe oriented simplex which they �x by the sign of the permutation associated to themonomial matrix A, so call this character �. We conclude that CMi �= IndGLn(Fq)H �,and equation (5.4) gives an expression for ~Hn�1(IN(Pn�1Fq )) as a virtual characterof dimension Xi��1(�1)n�1�i [n]q[n� 1]q � � � [n� i]q(i+ 1)! q(i+12 )(5.5)where [n]q := 1+ q+ q2+ � � �+ qn�1. We do not see how to simplify the expression(5.4) for ~Hn�1(IN(Pn�1Fq )) as a virtual character.Example 3. The graphic matroid for a complete graphLet MAn be the graphic matroid associated to the complete graph on vertex set [n].In other words, MAn has as ground set E the set of all possible edges fi; jg with1 � i < j � n, and a set of edges is independent if it contains no cycles.The symmetric group Sn acts on MAn by permuting the vertex set [n], andhence also permuting the edges fi; jg. Flats in MAn correspond to partitions� = B1jB2j � � � jBr of [n] into blocks Bi, and one can check that if V is the 
atcorresponding to the partition � then as a matroid V �= LiMAjBij. The latticeL(MAn ) is the well-known lattice of set partitions of [n], usually denoted �n. Fur-thermore, if V 0 is a 
at contained in V , then V 0 corresponds to a partition �0 whichre�nes �, and L(V=V 0) is isomorphic to a product of lattices of the form �ni forsome ni < n.In light of this discussion, it su�ces to determine the Sn-action on ~Hn�3(�n)and on ~Hn�2(IN(MAn )). The �rst task is relatively easy since the Sn-action on~Hn�3(�n) has been well-studied by many authors, see e.g. [10, x7]. It is known



LAPLACIANS OF MATROID COMPLEXES 17that as an Sn-representation,~Hn�3(�n) �= sgn
 IndSnCn�where sgn is the 1-dimensional sign representation, Cn is the cyclic group in Sngenerated by an n-cycle, and � is the 1-dimensional representation of Cn whichsends a generator to a primitive nth root of unity [10, Theorem 7.3]. It is alsoknown that if we let Sn�1 denote the subgroup of Sn which �xes n, thenResSnSn�1 ~Hn�3(�n) �= R[Sn�1 ]i.e. the restriction to Sn�1 is isomorphic to the regular representation of Sn�1 [10,Corollary 7.6]. Consequently, this representation has dimension (n� 1)!.The Sn-action on ~Hn�2(IN(MAn )) has only been studied more recently in [7].The description of the Sn-representation is not known in general, although equation(5.4) can be used to decompose it into Sn-irreducibles via a character computationwhen n is small. On the other hand, one can construct an explicit basis for thehomology which is permuted by the action of Sn�1 and which shows the following:Theorem 19. [7, Theorem 3.6.3] As an Sn�1-representation ~Hn�2(IN(MAn )) isisomorphic to the permutation action on forests of edge-rooted trees on [n � 1]tensored with the sign character sgn.Here a forest of edge-rooted trees is a graph on [n� 1] in which every connectedcomponent is a tree, along with a speci�ed edge of each tree (so in particular, everyvertex in [n� 1] lies in a tree having at least two vertices). We give a brief proof ofthis result here, relying on results of [1].First, choose the ordering ! of the edges in the complete graph as follows: anedge fi; jg with i < j is earlier in ! than fi0; j0g if j > j0 or if j = j0 and i > i0. Inother wordsfn� 1; ng <! � � � <! f1; ng <! fn� 2; n� 1g <! � � � <! f2; 3g <! f1; 3g <! f1; 2g:Bases of MAn correspond to spanning trees T on [n], and it is straightforward tocheck the following characterization of the bases of internal activity 0:Lemma 20. A spanning tree T on [n] has internal activity 0 if and only if forevery tree of the forest T j[n�1], the vertex connecting this tree to n does not havethe maximum label in the component.Here T j[n�1] denotes the restriction of the tree T to its edges which only containvertices in [n� 1].If we let T1; : : : ; Tr denote the trees of internal activity 0, then [1, Theorem7.7.2] implies that there is a basis of cycles z1; : : : ; zr for ~Hn�2(IN(MAn )) uniquelydetermined as homology classes by the condition that the coe�cient of Ti in zjis 1 if i = j and 0 else. These cycles fzig turn out not to be permuted by theSn�1-action, however they are upper-triangularly related to a set of cycles whichare so permuted, and which we now de�ne.Given a forest F of edge-rooted trees on [n� 1], let F1; : : : ; Fs be its componentedge-rooted trees, let the distinguished edge in tree Fr be fir; jrg, and for any otheredge e 6= fir; jrg in Fr let  (e) be the vertex in this edge which lies farthest fromthe root edge. See Figure 2 for some examples.
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eFigure 2. Example of an edge rooted-forest along with some non-root edges e and their corresponding vertices  (e).De�ne z0F to be the following product in the exterior face ring ^MAn :z0F := ŝr=10@@(virjr ^ virn ^ vjrn) ^ ^edges e6=fir ;jrg in Fr @(ve ^ v (e);n)1AWe next describe a bijection � between the forests of edge-rooted trees on [n� 1]and the trees of internal activity 0 on [n]. Given such a forest F let �(F ) be thetree on [n] obtained as follows: for each edge-rooted tree Fr of F , assume that thelabelling ir; jr of the distinguished edge has been chosen so that ir is farther thanjr is from the maximum labelled vertex of Fr . Then �(F ) is obtained by adding allthe edges fir; ng for 1 � r � s to F . It is easy to see that �(F ) �ts the descriptionof Lemma 20, and so has internal activity 0. The inverse map ��1 starts with a treeT of internal activity 0, removes all edges involving the vertex n leaving a foreston [n � 1], and for each vertex i that used to be connected to n it distinguishesthe edge containing i in the forest which is the �rst edge on the path toward themaximum labelled vertex of i's component tree.We now come to the crucial point. Given two forests Fi; Fj of edge-rooted trees,having corresponding trees Ti; Tj of internal activity zero, if the cycle z0Fi containsthe tree Tj , then one can easily check that:(a) as a forest, Fi contains all the edges in Fj , and furthermore(b) if Fi and Fj have exactly the same set of edges as forests, then in each oftheir component trees, the distinguished edge for Fj lies on the shortest pathconnecting the distinguished edge for Fi to the maximum labelled vertex inthat component.Consequently, if we linearly order the forests of edge-rooted trees by any linearextension of the partial order expressed in items (a), (b) above, we have the followingproperty: when one restricts the matrix expressing the cycles z0Fi 's in terms of treeson [n] to the trees of internal activity 0, the result is a square upper-triangularmatrix U with �1's on the diagonal. By [1, Theorem 7.7.2], this implies the cyclesfU�1z0F g must induce the exact same homology classes as the basis fzig mentionedearlier for ~Hn�2(IN(MAn )). The next corollary is then immediate:Corollary 21. The cycles fz0Fg as F ranges over all forests of edge-rooted treesform a basis for ~Hn�2(IN(MAn )).It is easy to see that permutations in Sn�1 permute the cycles fz0F g (up to sign)in the same way that they permute the forests of edge-rooted trees. Furthermore,it is not hard to check that if F is a forest of edge-rooted trees which is �xed bysome permutation � in Sn�1, then we also have �(z0F ) = sgn(�) � z0F . This provesTheorem 19.
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