COMBINATORIAL ORTHOGONAL EXPANSIONS

A. DE MEDICIS! AND D. STANTON?

ABSTRACT. The linearization coefficients for a set of orthogonal polynomials are
given explicitly as a weighted sum of combinatorial objects. Positivity theorems of
Askey and Szwarc are corollaries of these expansions.

1. Introduction. Given a set of orthogonal polynomials p,(x), the linearization
coefficients a* = are given by

P (@)pa(x) =Y af,pi(@).

k

Askey [1] and Szwarc [4,5] have given sufficient conditions on the three-term recur-
rence relation coefficients a,, 8,, and 7, in

(1.1) n1Pn+1(2) = (T — Bn)pn () — Yn—1Pn-1(2)

so that a®  is non-negative. In this paper we give in Theorem 1 and Theorem 2
explicit formulas for a*, as a polynomial in the s, Bjs and the v;s, which give
these theorems.

The idea is to represent ak, as a generating function of paths, whose weights
are products of differences. Monotonicity hypotheses on the coefficients force the
weights to be individually positive, these are the conditions in [1] and [4]. For

example, if p,(z) is monic; o, = 1, B, = by, and 7y, = A\,41, we have

azg =(bs —bo)(bs — b1)(bs — b2) + (bs — bo)As + (b3 — bo) (A3 — A2)+
(12) (b4 — bl))\4 + (bg — bz))\4 + (bQ — bl))\g + (b3 — bg)()\g — )\1)

If b; and \; > 0 are increasing, then a3, is non-negative, see [1].

2. The theorems. We first recall some terminology and results in [3] and [6].

We let L denote the positive definite linear functional on the space of polynomials
which corresponds to the orthogonal polynomials (1.1). So L(z"™) = u,, the nth
moment of a measure for p,(z). It is easy to see that

a]:nn = L(pmpnpk)/L(pkpk)'
Since L(prpr) =0 - Ye—1/a1 - - o > 0, we find instead L(pypnpk)-
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Viennot [6] gave a combinatorial interpretation for the polynomials p,(z) and
their moments p,,, in terms of pavings and Motzkin paths respectively. We review
these terms below.

A Motzkin path P is a lattice path in the plane, which lies at or above the r-axis,
and has steps of (1,0) (horizontal=H), (1,1) (up=U), or (1,—1) (down=D). The
weight of a path P, w(P), is defined by the product of the weights of its individual
edges,

(2.1) w(P)= T[] w(e).
edges e

A paving 7 of the integers {1, - - , k} is a collection of disjoint sets of cardinalities
1 (called monominos), and 2 (called dominos). The elements of a domino must be
consecutive integers. For example, {{2,3},{5},{6,7},{9}} is a paving of {1,--- ,9}.
Points not in any of the sets are called isolated. The weight of a paving is defined to
be the product of the individual weights of the monominos, dominos, and isolated
points.

For Askey’s theorem we need a special weight on edges e of a Motzkin path.
Suppose the path P begins at (0, m) and ends at (k,n). We define
(2.2)
(bj — b;) if the edge is H,
(Aj — Xit1) if the edge is D, and followed by U,
A; if the edge is D, and not followed by U,
1 if the edge is U.

Theorem 1. Suppose that o, =1, B, = by, and v, = Apy1. Then
L(pmpnpk) =X Z w(P),
P

w(edge starting at (4,7)) =

where P is a Motzkin path from (0,m) to (k,n), and w(P) is given by (2.1) and

For example, if Kk = m = n = 3 in Theorem 1, there are 7 Motzkin paths from
(0,3) to (3,3): HHH, HUD, HDU, UHD, UDH, DHU, DUH. The weights of
these 7 paths are the 7 terms in (1.2).

Proof of Theorem 1. One can prove that both sides in Theorem 1 have the same
recurrence relation, which is given in [1].

An alternative proof is to use Viennot’s combinatorial interpretation for
L(pmpnpr)/A1 -+ An, [6]. It is the generating function for ordered pairs (P, 7),
where P is a Motzkin path from (0,m) to (I,n), and 7 is a paving of the integers
{1,---,k} with [ isolated integers. The weight of (P, ) is the product of the weights
of P and . In P, an up edge starting at (¢, j) has weight 1, a down edge A;, and
an across edge b;. For m, a monomino at {i¢} has weight —b,_;, and a domino at
{i,7+ 1} has weight —\;.

Given (P, ) we create a unique path P’ by inserting in P, as the ith step of P’,
an H edge if 7 has a monomino in position ¢. If 7 has a domino starting in position
i, we insert two steps, DU, in P, for the ith and (i + 1)st steps of P’. The result
is a single path P’ from (0,m) to (k,n). The weight of the path is given by (2.2):
the negative terms correspond to the weight in 7, the positive terms to the weight
in P. O

It is easy to see that Theorem 1 implies Askey’s theorem.
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Corollary 1. If \; and b; are increasing, with \; > 0, then ak >0.

Proof. We can assume by symmetry that k& < n, Then it is clear that each vertex
(,7) in P satisfies ¢ < j. Thus all weights are non-negative if the b;’s and \;’s are
increasing. [

Theorem 1 can be restated in terms of walks of length m on the non-negative
integers, starting at k, and ending at n, with steps of size +1, —1, or 0.
We let p! (z) be another set of orthogonal polynomials satisfying

04;1+1p;z+1($) = (- 57/1)19%(55) - 7;—119;1—1(33)-

More generally, we consider

(2.3) Prn(@)P(x) = D bt ().

It is clear that b, = L(pmpypn)/L(pnpn). We will give an interpretation for
L(pmpj.pr), which is non-negative when b, is, since L is positive definite.

We generalize Szwarc’s theorem by finding a combinatorial interpretation for
L(pmpipn) in (2.3). A generalized Motzkin path allows a fourth type of edge: HH
(across by two units). We define a weight v(P) on generalized Motzkin paths from
(0,m) to (k,n) again as a product of weights of edges,

(2.4)

(B — B;) if the edge is H,

(7; — o) if the edge is U, and preceded by D,
«y; if the edge is U, and not preceded by D,
v(edge starting at (4,j)) = ¢ (o — o) if the edge is D, and preceded by U,
«a; if the edge is D, and not preceded by U,

(aj + ;5 — o — vj)ajy, if the edge is HH, preceded by U or D,

(aj + 5 —vi)eg,, if the edge is HH, not preceded by U or D.

Theorem 2. We have

Y0 V-1
L(pmpnp;ﬁ) = al e a 0/1 o« .. a;g Z U(P)7
m P

where P is a generalized Motzkin path from (0,m) to (k,n), and v(P) is given by
(2.1) and (2.4).

Proof. Again we will use Viennot’s interpretation for L(p,,pnp), )1 -« 0m /Y0 -+ Vh—1-
The weights on the edges, monominos, and dominos slightly change. Let P’ denote
the Motzkin path and 7’ the paving. In P’ the U, D, H edges starting at (i, j) have
weights v;, «;, and j; respectively. In 7, a monomino {i} has weight —f;_, /o, a
domino {4,741} has weight —v;_,;/(ajaj, ), and an isolated point i has weight
1/a). Note that every paving has a factor of 1/c/ ---«j,. We therefore disregard
the denominators of the weights of the pavings, and put this constant factor in the
statement of Theorem 2.
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As in Theorem 1, we will merge pavings «’ with the paths P’ to create a gener-
alized Motzkin path P whose weights are given by (2.1) and (2.5)

(B — B;) if the edge is H,

; if the edge is U,
(2.5) u(edge starting at (i,j)) = & 1 & 1
o if the edge is D,

—v;, if the edge is HH.

The basic idea is to insert certain edges into P’ to create P, while simultaneously
deleting all monominos and dominos in «’. This is done by inserting an H edge
in P’ starting at (¢,7), if 7’ has the monomino {i + 1}. We insert an HH edge in
P’ starting at (i,7), if 7’ has the domino {i + 1,7 + 2}. We obtain a multiset of
generalized Motzkin paths P : (0,m) — (k,n), from which the multiplicities are
eliminated by using the weight (2.5).

Let S be the set of all generalized Motzkin paths from (0,m) to (k,n). We
just found that the linearization coefficients are, up to a constant, the generating
function for S with weight (2.5). We want weight (2.4) instead of (2.5). We will do
this via an involution.

The (2.4) weights of the edges of P € S are not monomials, instead they are
sums of monomials. Thus we can consider the multiset M; of paths P € S, where
the multiplicity of P in M; is the product of the number of monomials in the weight
of the edges e # H of P. The weight of any element of M; is the product of a
choice of monomials for each edge. On M; we will construct a weight-preserving
sign-reversing involution, whose fixed point set consists of all paths P exactly once,
with weights (2.5).

It remains to give the involution ® on the multiset M7 of paths P. Note that we
want to eliminate all weights in the edges that include o/, except for the —vyjo;,
term in HH. Scan the path P from right to left, and find the first such term in
the choice of monomials for the weights. Suppose the edge containing this term is
HH, preceded by U or D. From (2.5), the weight we need to eliminate is one term
from (a; +v; — o)aj ;. If the preceding edge is D, replacing the HH edge by a
pair UD will cancel the (v; — aj)aj,, terms, while replacing the HH edge by DU
will cancel the oo | term. Similarly, if the preceding edge to HH is U, replacing
HH by UD and DU will cancel the ;o and (a; — aj)a;,; terms, respectively.
If the first edge containing o’ is HH, not preceded by U or D, we must eliminate
(aj + vj)aj ;. This time replacing HH by DU and UD eliminates a single term
each.

This defines ®(P) = @, when the first appropriate o edge of P is HH. If the
first appropriate o edge of P is not HH, then o/ must be a choice of weight from a
DU or UD. Then we invert the previous case. It is easy to check that the involution
® is well defined on M7, with the stated fixed points. [

Corollary 2 generalizes [4, Theorem 2].

Corollary 2. If ay,,vi,7: >0, B; > Bl, a; > af, aj +v; > o +7}, v > af,
for j > i, and k < maz{m,n}, then b*, > 0.

Proof. Assume k < n. The inequalities insure that the individual weights in Theo-
rem 2 are positive, since the indices of the primed variables cannot be greater than
the indices of the unprimed variables. By symmetry we obtain the k£ < max{m,n}
case. [J
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The connection coefficient problem is the m = 0 special case of Theorem 2. Non-
zero coefficients occur only for & > n. In this case, along our path P, vertices (i, )
satisfy ¢ > j, so we assume the inequalities of Corollary 2 hold in this range. This
implies Askey’s theorem in [2].

The theorems in [5] can also be generalized, for example:

Corollary 3. If 3; = B; = 0, oy, a5, vi,7; > 0, agj > ag;, agjp1 > ab; iy, Goj +

/ / !/ / / / . .
Yoj = Qi+ Vo Q21 H V2541 2 Qi FVaiq1s V25 = Oy, Vol = Qg for j >,
m is even, and k < n, then b7, > 0.

Proof. Under the assumption that m is even, and all 8’s = 0, all vertices (i, ) on
the path P of Theorem 2 have the property that ¢ and j have the same parity. [
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