SIMULTANEOUS MAJ STATISTICS

DoNGsu KiMm AND DENNIS STANTON

ABSTRACT. The generating function for words with several simultaneous
maj weights is given. New maj-like Mahonian statistics result. Some appli-
cations to integer partitions are given.

1. Introduction.

The usual maj statistic [2] on words w is defined by adding the location
of the descents of the word w,

maj(w) = Z i

LW >wigq

This definition presumes that the alphabet for the letters of w have been
linearly ordered, for example 2 > 1 > 0,

maj(1102201) = 2+ 5 = 7 = maj10(1102201).

However a similar definition can be made assuming any linear ordering o;
here we take 1 > 2> 0,0 =120, and 2 >0 > 1, o0 = 201

maji20(1102201) =245 =7, maj:(1102201) = 5 + 6 = 11.

In this paper we consider the generating function for several such simulta-
neous maj statistics (see Corollary 1). A more general generating function is
given (Theorem 3), and some applications to Mahonian statistics (Corollary
2) and integer partitions (Theorem 4) are stated.

We first give a 3 letter theorem, which motivates the general result (The-
orem 3). Let W(m,n, k) be the set of words of length m + n 4+ k with m 0’s,
n 1’s and k 2’s.

The first author is partially supported by KOSEF: 971-0106-038-2.
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Theorem 1. For any non-negative integers m, n, and k we have

Z mmajlgo(w)ymajgm(w)zmajmg(w) — xn—}-kyk |:mm+_n1+s —k]_:| 1
weW(m,n,k) 7o TYz

Jimm [m+n+k—1] L amtn [m+n+k—1] ‘
TYyz Tyz

m,n—1, k m, n, k—1

Proof. We prove a stronger statement, that the three terms in Theorem 1
are the generating functions for the words in W(m,n, k) ending in 0, 1, and
2 respectively.

We proceed by induction on m +n + k. If w ends in a 0, the penultimate
letter must be either 0, 1 or 2. Using induction we must verify that

vy [ m—1,n, k Iyz_x 4 m—2,n,k Iyz—l_

m+k—1zm—1[m‘|‘”‘|‘k‘—2

m+n+k—1
o m—l,n—l,k]ryz—l_

Yy

(xy)m—}-n—l—k—lzm—l—n—lxn |: m+n+k—2 :| ’
TYz

m-—1,n,k—1

which is the well-known recurrence formula [1] for the zyz-trinomial coeffi-
cient.
The other two cases are verified similarly. O

It should be noted that if any two of z,y, z are set equal to 1, then the
usual maj generating function as a ¢-trinomial coefficient results.

2. A T7-variable theorem.

Theorem 1 contains three free variables, z,y and z. In this section we
generalize Theorem 1 to Theorem 2, which contains seven free variables.
Then we indicate how to specialize Theorem 2 to obtain new explicit classes
of Mahonian statistics on words of 0’s, 1’s, and 2’s.

Suppose that the weights of the various possible ascents and descents in
position m +n + k — 1 of a word w of m 0’s, n 1’s, and k 2’s are given by

(wt10) a''a%ak for a descent 10,
( ) b b bE for a descent 21,
( ) ci' ek for a descent 20,
(wt01) do*d}~'dk for an ascent 01,
(wt12)
(wt02)

6316?62_1 for an ascent 12,
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Also suppose that the generating function for all such words w has the form

m—1,n

(2.1)

—|—P2(ma”){

—1 m+n+k—1
,k :|B+p1(k7m)|: m,

n—1,k ]B

m—l—n—l—k—l}
B

m,n, k—1

for some base B, and po(n,k) = pfapky, p1(k,m) = phipf. pa(m,n) =

P51P59-
which end in 0, 1, and 2 respectively.
Thus we have 25 free variables

We also assume that the three terms in (2.1) correspond to the w

U?:O{ahbhcivdiveiafivpilapﬂ} U {B}

These 25 variables are related by the three equations which we require by

induction

m+n+k—1

po(n,k)[ m—1,n,k

+ag' " tatag pi(k,m —1)

m—1 n k
+ey ¢ Cy P2(m

m+n+k—1

pl(k‘ym){ m.on—1, k }szl(kvm)

+bT BT bE py(myn — 1)

(2.2b) +ddT S po(n —1,k)

p2(m,n)

m+n+k—1
pZ(m7n)
B

m,n, k—1

e T po(nyk —1)

m _n _k—1

(2.2¢) +eg'eles  pi(k—1,m)

—m+n—|—k‘ 2

2,
_m—l—n—l—k—Z
m—1,n—

(T m+nt+k—2

(T m4+nt+k—2

] — po(n, k) _m—l—n—l—k—Q]
B ’ L B

[ mant+k—2

m—2,n,k

Ui,

m—1,n—

1) m+n+k—2

m—l,n,k—l]B’

2, k

—m—l—n—l—k—Q]
B

7

B

—m—l—n—l—k—Q]
B

| om,n, k-2

,
18

m—1,n, k—

n—1k—

We do not know the general solution to the equations (2.2a-c). However, we
will give the general solution to (2.2a-c¢) if we make another assumption. If
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we specify that the coefficient of the second term on the the right side of
(2.2a) is B™~! times the coefficient of the first term, and the coefficient of
the third term is B™T"~! times the coefficient of the first term, then the
B-trinomial recurrence relation verifies (2.2a). These two equations are

m—1 n _k _k m—1
ag a4y G2P11P12 '=B P01P027

m—1 n k. _m—1_n m+n—1
€y C{Cypy; Pyy =B P01P02-

(2.3a)

Similarly, we assume the B-trinomial recurrence for (2.2b) and (2.2¢), which
become

—11k —1 — k
bor by T by Py, | =B" T ptipls,

(2.3b) _ -
d(’)”d’f ldlchgl 11702 =B"t* lplflpg-
and
k—1 k—1
93 fo f1 P81P02 =B P21P227
( : C) m n _k—1_k—1

k+m—1
eg €1€y Py Pia =B P31Pa-

Since these equations should hold for all m, n and k, each of these 6
equations contains 3 equations (one each in m, n, and k). Thus we have 18
equations in the 25 free variables, which are written in a matrix form, where
the first column comes from the equations in (2.3a):

P12ao  pa21bo fo B P12 P21
a p22bi poifi Po1 B P22
priaa by poafo | | po2  pu B
p2ico do  pizeo | B P12 pnB
pa2ci poidi e pnB B P22
c2  pozdz  piier po2 puB B

One may find the general solution to these 18 equations, leaving 7 free
variables

{a07a17a27b07b176273}'

The explicit solutions for the remaining 18 variables are given below. The
weights (wt) become (W):

(W10) o' 'alak  for a descent 10,

(W21) b7'67 'k for a descent 21,

(W20) (aobo)m_l(albl)"(agbg)k for a descent 20,

(W01) (B/ag)™(B/a1)""'(B/az)* for an ascent 01,
(W12) (

(W02) (

and

B/bo)™(B/b1)"(B/by)*1  for an ascent 12,
B/agbo)™(B/aib1)"(B/ayby)*~!  for an ascent 02,

po(n, k) = a?(ang)k, pi(k,m) = b’;(B/ao)m,
p2(m,n) = (B/agby)™ (B/b1)".
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Theorem 2. The generating function of all words w € W(m,n,k) with
weghts given by (W) is

" m+n+k—1 m|lm+n+k—1
al(a2b2)k{ m—1.n, k ] —|—b§(B/a0) [ m.n—1, k ] +
M) M) B M) 9 B

(B/agho)™ (B/by)" [m k- 1} -

m,n, k—1

Theorem 1 is the special case of Theorem 2 for which B = xyz,
agp = a; = az = x, and bg = by = by = y hold.

There are 7 other versions of Theorem 2. These 8 theorems arise by inde-
pendently replacing the pair of factors (B™~!, Bm+n=1) by (Bm+k=1 pm-1)
in equation (2.3a), (B"~1, B"**=1) by (B"*™~1 B"~1) in equation (2.3b),
and (B*~1 BFrm=1) Ly (BF+n=1 B*=1)in (2.3c). The B-trinomial recur-

rence still holds. For instance if we make a replacement in (2.3a),

m—1 _n k_k Bm—l—kl

) a1a2P11P12 P01P027
m—1 n k m—1_n

m—1
Co  €1C3DPyy Pay =B P01P027

(2.3a’)

then the explicit solutions to (2.3a’) and (2.3b-c) give the weight (W'):

(W'10) o' 'alak  for a descent 10,

(W'Ql) bmb" bk for a descent 21,

(W'20) (aobo)m Y(a1by/B)" (ang/B)k for a descent 20,
(W'01) (B/ag)™(B/a1)""'(B%/az)* for an ascent 01,
(W'12) (B/bo)™(B/by)"(B/b2)k~!  for an ascent 12,

(W'02) (B/aghy)™ (B/albl)"(BZ/asz)k_l for an ascent 02,

and the corresponding theorem is the following:

Theorem 2'. The generating function of all words w € W(m,n, k) with
weights given by (W') s

n m4+n+k—1 m | m+nt+k—1
“ (GQbZ/B)k{ m—1.n,k ] —I_blg(B/aO) [ m.n—1,k ] +
) ) B ) ) B

B [

We do not state the remaining 6 variations here.

We can find Mahonian statistics by requiring that the generating function
in Theorem 2 is the B-trinomial via the B-trinomial recurrence. There are
six choices for this recurrence, one for each ordering of the 3 terms. So
Theorem 2 gives a total of 6 possible Mahonian statistics, one of which
(majo12), is found by setting ag = a; = az = bg = by = by = 1. Theorem 2’
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also gives a total of 6 possible Mahonian statistics, one of which is found by
setting ap = a1 = bp = by = by = 1, az = B. Similarly there are 6 possible
Mahonian statistics for each of other 6 versions of Theorem 2, for a total of
6 x 8 = 48. Six of them are the six possible maj, statistics, the remaining
42 come in 7 classes of six each, and they are all variations on maj. Each
class of size 6 consists of a maj variation, and 5 others which correspond to
5 non-trivial reorderings of {0,1,2} of that maj variation. We give below
one member of each class, eight in total.

We start with an example from Theorem 2'. If we set ag = a1 = by =
by = by =1, az = B in Theorem 2', the weight (W') reduces to
(W'10) B*  for a descent 10,
(W'21) 1 for a descent 21,
( ) B~  for a descent 20,
(W'01) B™tntk=1  for an ascent 01,
( ) BmtntE=l o for an ascent 12,
(W'02) B™+ntk=1  for an ascent 02.

Note that the above weight (W') is a perturbation of majg12 involving the
descents 10 and 20. We write it as majgi12 + So, where sg i1s defined in the
following way. We define sg by giving the non-zero values at adjacent letters.
One then adds these values to find sg. It is assumed that if w is truncated
after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.
so(w):

(1) & for an adjacent 10,

(2) —n  for an adjacent 20.

For example,

50(22012110201) = —0 43 — 3 = 0.

It turns out (we do not write down the details here) that the eight statis-
tics (including majoi2) can be defined by three independent perturbations
of majo12: so, $1, and sp. For any subset A C {0,1,2} put

1EA

Then the eight Mahonian statistics are majgi2 + sa. In fact the set A
indicates which replacements are made in (2.3a-c). For instance the above
(W') is majoi2 + s{o} and if we make replacements, say in (2.3b) and (2.3c),
then the corresponding statistics will be majo12 + sfq 23, and so on. We
define sy, sy analogously by giving the non-zero values at adjacent letters.
One then adds these values to find the statistic. It is assumed that if w is
truncated after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.
s1(w):

(1) m for an adjacent 21,

(2) —k for an adjacent 01.
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s2(w):
(1) n  for an adjacent 02,
(2) —m  for an adjacent 12.

For example,
$1(22012110201) = =241 -4 = =5, $2(22012110201) = -1+ 3 = 2.

Below is a table evaluating majgi2, So, $1, and sy at the 6 permutations of
012. Note that the majg12 generating function is 1 + 2B + 2B? + B3, which
is also the generating function for majgi2 + s4, for any subset A C {0, 1, 2}.

word majoiz  So  S1 S2

012 3 0 0 -1
021 1 0 1 0
102 2 0 0 1
120 1 -1 0 0
201 2 0 -1 0
210 0 1 0 0

We repeat that all 48 Mahonian statistics may be found from these 8 by
permuting the letters 0, 1, and 2. In this case majg12 becomes maj,, and
each s; 1s found by applying o to 0, 1, and 2 in the definition of s;.

3. N letters.

In this section we briefly generalize Theorem 2 to words with N letters
in Theorem 3. We state the N letter version of Theorem 1 in Corollary
1. There are N!'2N Mahonian statistics, which come in 2V families each
of size N!. We explicitly give the corresponding 2V Mahonian statistics in
Corollary 2.

Let W(ag,a1, -+ ,an—1) be the set of all words w with a; ¢’s, 0 < i <
N —1.

If the words w have N letters instead of 3 letters, then each adjacent pair
1j, © # 7, could be weighted by N variables, instead of 3 variables. Also the
coefficients p;, 0 < 1 < N — 1 would have N — 1 variables. Together with
the base B, we have a total of N(N2 —N)+ NN-1)4+1= N3 - N+1
variables. Each of the N recurrences required by induction gives N(N — 1)
equations in these variables. So N(N — 1) + 1 variables will be free in the
multivariable version of Theorem 2.

In order to fully describe the resulting theorem, some care must be taken
with notation.

The N(N — 1) + 1 free variables may be taken to be the base B along
with the N weights of the adjacent pairs (¢ + 1)z, for 1 = 0,--- , N — 2, for
which we use the variables

(Ii07$i17"'7$i]\7—1)7 0§Z§N_2
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Suppose that w ends in an adjacent pair 77, ¢ # j, and that there are ng
k’s preceding the last letter j of w. The weight of the pair ij is given by

N—-1 i1—1
H <H :L'lk)nk lf] < i,
k= =7

(4.2) N—Ol ’]_1
1B/ Izu)™ ifi<i.
k=0 =1

As usual, we multiply the weights of adjacent pairs to find the weight of the
word w.

Theorem 3. The generating function of all words w € W(ag, a1, -+ ,an—1)
with weights given by (4.2) s

N-—-1
ZP‘(GO ai, -+ ,aN—1) [ do o han—i 1 }
where
i—1 i—1 N—-1 [—i-1
pi(ao, a1, -+ ,an-1) = (H(B/ 11 Q?i—k,l)al)( IT ¢ T1 $i+k,l)al)-
=0 k=1 I=i14+1 k=0
Note that p; in Theorem 3 is independent of a;.
The multivariable version of Theorem 1 occurs if
Tio=Tjn = =TiN1=2;, 0<1<N—=2,
and B = xgz1 - -- xn—1. Then the weights (4.2) become
(3;]. .. wi_l)n0+"'+nN—1 if j <1,

(zo -+ Timraj - ay—q) T TN < g,

and the next corollary holds.
Corollary 1. We have

N—-1

Z H x;naji+1...(N_1)o1wi(w) —

wEW(ag, - ,an—_1) =0

N-—1

ap+ - +any-1—1
Zpi(a()vala"' 7aN—1) 0
1=0

ag, - ,a; — 1.+ an— ToTN_1
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where
i—1 N-1

Pi(amGl, T 7CLN—1) = (H(% R B R CL‘N—1)‘”>< H (iﬂz e Il-l)“)-
I=0 I=i+1

We next give the 2V Mahonian statistics which follow from Theorem 3.

Again they may be classified by perturbations of majgy...ny—1. For any subset
AcC{0,1,--- N — 1}, define

1EA
The individual statistics s;(w) only depend upon the subwords of w ending
in ¢, as in §2. For any given ¢ € w, suppose that ¢ is preceded by n; j’s,
0 <3 < N—1. Extend the definition of n; to be periodic mod N: n;4n = n;
for all 5. If the letter preceding ¢ is i + k&, the contribution to s;(w) is positive
on the circular interval [i + k + 1,7 — 1] and negative on the circular interval

L+ 1,04+ k—1],
(3.1)  (Migrg1 +Nigkgz + -+ n(i—l)) — (nig1 + g2 + -+ Nigr—1).

We add the contributions of (3.1) over all ¢ € w to find s;(w). There is
no contribution if & = 0; that is, for a repeated 2. For example,

51(41241012411312301) = 0+ (—1) + (—=3) + (1 — 2) + (4 — 2) + (-8) = —11.

Corollary 2. For any set A C {0,1,--- , N —1}, the statistic major..N—1+
s4 18 Mahonian on W(ag, a1, -+ ,an—1).

These Mahonian statistics are examples of splittable statistics [3].
One may also allow weights on the adjacent letters 00, 11, and 22 for a
more general version of Theorem 3.

4. Applications to partitions.
In this section we apply Theorem 1 and Theorem 3 to integer partitions.
The special case k =0, z =1, x = y = q of Theorem 1 is

majio(w)tmajor(w) _ | M0 4"
41 > g - [ . } e = fman.g)
wEW(m,n,0) g

MacMahon [4, p. 139] previously gave (4.1).
The following generating function (using standard notation found in [1])
follows from (4.1),

(z9)™ ()" (2y4*;¢") oo
2 m%:zof(m’nm (@ Dmtn (T4YG Do
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One way to see (4.2) is to consider the generating function for pairs of par-
titions (A, p) with distinct parts, weighted by

l’# of parts of )\y# of parts of uq|)\|—|—|u|

which is
k k

- zq yq (2% 4%
H <1 + 1 — gk + 1— k) T . :
bt zq vq (74, Y45 @)oo
To prove (4.1), we must find a weight preserving bijection ¢ from the set
of such (A, p), # parts of A = m, # parts of ;1 = n, to the set of ordered
pairs (w, ), where w € W(m,n,0), and v is a partition with m + n parts.
To define w, order the m + n parts of A U p into a partition 6, and let
w; =016, € A\, w; =11f 6; € u. This is well defined since the parts of A
and p are distinct. To define v, let ¢; be the number of descents or ascents

to the right of position ¢ in the word w. Then we let v = 6 — ¢t. For example
if

A= 7742, u = 88661,

then

6 = 887766421, w = 110011001, ¢ = 443322110, v = 444444311.

This correspondence is the desired bijection ¢.

The natural analog of ¢ on triples (A, p,6) without pairwise common
parts produces a word w € W(m,n, k) and a partition v. The ¢-statistic on
the word w again counts all ascents and descents of w by their positions.
However, in Theorem 1, we see that the six possible ascents/descents in w
are weighted differently by position:

01 by yz,
02 by z,
10 by =z,
12 by xz,
20 by zxy,
21 by y.

So if we choose z = ¢%, y = ¢°, = = ¢°, an occurrence of 01 in positions
j and j + 1 of w contributes a weight of ¢/(®*¢). This in turn implies that
the bijection ¢ must be modified so that the part in A corresponding to w;
must be at least b + ¢ larger than the part in p corresponding to wjy;. We
need six different inequalities for the six possible juxtapositions of parts. Let
®a,b,c be the modified bijection.
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For example,if m =k =2, n =1, a =2, b= ¢ =1, then the juxtaposed
parts sizes must differ by

2 for A,
1 for A6,
2 for pA,
3 for u6,
3 for G\,
1 for 6p.

The three possible triples (\, u1, 8) whose weight is ¢'? are given below, along
with result of the bijection ¢ ;1 1:

(22,6,11) — (10022,31111),
(32,5,11) — (10022,22111),
(43,1,22) — (00221,21111).

Corollary 3. Let a, b and ¢ be positive integers. The generating function
for all triples of partitions (X, u, 0) without pairwise common parts, such that
A has m parts, p has n parts, and 6 has k parts, and any adjacent parts in
the partition AU p U 8 of type

(1) A differ by b+ ¢,
(2) A6 differ by c,
(3) pA differ by a,
(4) pb differ by a + ¢,
(5) 6N differ by a+ b,
(6) 6u differ by b,

18 given by

gtk <qa(n+k)+bk {m +n+k— 1}
(Q§ Q)m+n+k m — 17 n, k gatbte

m,n, k—1

b(m+k)+cm | +n+k—1
q m,n—1,k
Y 9 qa+b-|—c

+ qc(n—l—m)—l—an |:m +n+k— 1:| )
a+b+te

In Theorem 3, if all x; = ¢, the following theorem results. All subscripts
are taken mod N.

Theorem 4. The generating function for all N-tuples of integer partitions
(A, -+, AN) without pairwise common parts, such that
(a) A; has a; parts, 1 <i < N,
(b) if the partition \q U XAy U --- U AN has adjacent parts be, for b € \;
and ¢ € \j, thenb—c¢ > (i —j) mod N,
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18 qiven by

(a)g [ a1, san SNt

where f =ay; +az+---+an, and €; = a; + 2a;41 + -+ (N — Va4 n—2.
5. Remarks.

MacMahon [5, §30] defined a statistic related to maj, denoted here by
M AJ, which weights each descent by the amount of the descent. For exam-

ple,

N .,
(Zf |:CL1‘|‘""|‘CLN:| Zi:1Q’
qN

MAJ(20211201) =2+ 1+ 1%3+2%6 =17,

because the descent 20 in positions 1,6 are weighted by 2 — 0 = 2, while
the descent 21 in position 3 is weighted by 2 — 1 = 1. Let MIN denote the
analogous statistic using the ascents. Then MacMahon alludes [5, §40] to
the following theorem for words with three letters.

Theorem 5. For any non-negative integers m, n, and k we have

Z G MAT(w) MIN(w) _ nt2k [m—l—n—l—k—l} {m—l—k—l}
Ty (zy)?

weW(m,n,k) " m =1
Lyt {m+n+k—1} [m+k} (zy)** + (zy)™t*
n—1 syl ™ L@y 1H (zy)mtk
Ty [ n m )
Ty (zy)?

If x =y, y=1or z =1, the three terms in Theorem 5 sum to a single
product (see [5, §38, §40]). The proof of Theorem 5 is identical to the proof
of Theorem 1. We do not know a multivariable version of Theorem 5.
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