
MOMENT DUALITY FOR ORTHOGONAL POLYNOMIALS

MOURAD E.H. ISMAIL AND DENNIS STANTON

Abstract. The Laguerre, Charlier, and Meixner polynomials are polynomials in two
variables: in x they are classical orthogonal polynomials, and in a parameter b they
are type RI orthogonal polynomials. Thus they have two types of orthogonality rela-
tions. Remarkably, the type RI moments are identified as the orthogonal polynomial
moments for another set of classical polynomials. A general notion of moment duality
is introduced for polynomials in two variables. This program is continued for two and
three parameter Askey-Wilson polynomials. The equality of the moments is equivalent
to the equality of two continued fractions.

Dedicated to George Andrews and Bruce Berndt for their 85th birthdays

1. Introduction

The classical orthogonal polynomials, for example Jacobi, Gegenbauer, Laguerre,
Meixner, and Charlier, depend upon parameters besides the polynomial variable x (see
[1]). They may be considered as polynomials in two variables: x and one of the pa-
rameters. In the variable x they satisfy classical orthogonality relations. As monic
polynomials in a parameter they may satisfy another type of orthogonality relation:
type RI orthogonality.

We will consider orthogonal polynomials in x, pn(x, b), which depend on a parameter
b. If the recurrence coefficients bn and λn in (2.1) are linear polynomials in b, then the
moments L(xn) are also polynomials in b. Additionally, pn(x, b) is a degree n type RI

polynomial in b which depends on a parameter x. The type RI moments are polynomials
in x.

We introduce moment duality for these polynomials in two variables.

Definition 1.1. Suppose that {pn(x, b)}n≥0 and {Pn(b, x)}n≥0 are both polynomials in
x and b of degree n. Suppose that pn(x, b) is orthogonal in x and type RI orthogonal in
b, while Pn(b, x) is orthogonal in b and type RI orthogonal in x. We say pn(x, b) and
Pn(b, x) have moment duality if

(1) the type RI moments in b of pn(x, b) equal the moments in b of Pn(b, x),
(2) the type RI moments in x of Pn(b, x) equal the moments in x of pn(x, b).

The R1 and RII biorthogonal rational functions were introduced by Ismail and Mas-
son [8] through continued fractions which extended the T-fractions of Thron, [9]. Later
Zhedanov [14] showed that the RI and RII biorthogonal polynomials arise through the
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generalized eigenvalue problem AX = λMX, where M is a positive definite matrix.
When M is the identity matrix, we have orthogonal polynomials. M. Derevyagin [4]
formulated and explored the connection between spectral theory of operators and the
multipoint diagonal Pade approximation through the theory of R-fractions. Cooper,
Jones, and Thron studied the orthogonal Laurent polynomials associated with the log-
normal distribution, see [3].

The purpose of this paper is to identify five examples of classical polynomials which
have moment duality: Laguerre, Charlier, Meixner, Al-Salam-Chihara, and continuous
dual q-Hahn, and find the explicit linear functional for their type RI orthogonality.

2. Orthogonal polynomials and type RI polynomials

Monic orthogonal polynomials pn(x) satisfy the three-term recurrence relation [2, The-
orem 4.1 p. 18]

(2.1) pn+1(x) = (x− bn)pn(x)− λnpn−1(x), n ≥ 0, p−1(x) = 0, p0(x) = 1.

Proposition 2.1. There is a linear functional L, [2, (1.9)], defined on the vector space
of polynomials in x which satisfies

L(pn(x)pm(x)) = 0, n 6= m.

The moments µn = L(xn) are non-negative polynomials in the three-term recurrence
coefficients {bk}k≥0 and {λk}k≥1. For example

µ2 = b20 + λ1.

For the classical orthogonal polynomials an explicit representing measure dµ(x) is known
for L,

L(xn) =

∫ ∞
−∞

xndµ(x).

For example for the Laguerre polynomials Lan(x), a ≥ −1, we have dµ(x) = xae−xdx on
[0,∞) and µn = (a + 1) · · · (a + n) = (a + 1)n. We will use the linear functional rather
than explicit measures in this paper.

The Pochhammer notation for shifted factorials and the q-shifted factorials found in
[6],[7] will be used.

The moment generating function has a continued fraction expansion, [5],[13].

Proposition 2.2. The moment generating function for orthogonal polynomials, as a
formal power series in t, satisfies

∞∑
n=0

µnt
n =

1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− b2t−
λ3t

2

· · ·

Type RI polynomials Pn(x) [8, (1.1)] allow a more general recurrence.
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Proposition 2.3. Monic type RI orthogonal polynomials Pn(x) satisfy the three term
recurrence

Pn+1(x) = (x−Bn)Pn(x)− (Anx+ Λn)Pn−1(x), n ≥ 0, P−1(x) = 0, P0(x) = 1.

We assume An 6= 0, and let

Dn(x) = cn

n∏
k=1

(Akx+ Λk)

for an appropriately chosen constant cn. We also assume the non-degeneracy condition
Pn(−Λn/An) 6= 0.

Let V be the vector space

V = span{1, x, · · · , xn, · · · , 1/D1(x), 1/D2(x), · · · }.
Note that V contains r(x)/Dn(x) for any polynomial r(x), see [10, Corollary 2.5].

The type RI polynomials also have an orthogonality relation [8, Theorem 2.1].

Proposition 2.4. There is a linear functional L on V such that

L

(
Pk(x)

Pn(x)

Dn(x)

)
= 0, 0 ≤ k ≤ n− 1.

The linear functional L acts on a larger vector space than polynomials, but the mo-
ments L(xn) still exist.

Proposition 2.5. The moments L (xn) are polynomials in Bk, Ak, and Λk and may be
found recursively [10, Corollary 3.12, m = 0] from

L(Pn(x)) = A1A2 · · ·An.

The value of the linear functional L
(

1
Dn(x)

)
may be found recursively from

L

(
Pn(x)

Dn(x)

)
= 0, n ≥ 1.

For example,

L(x2) = A2
1 + A1A2 + 2A1B0 +B2

0 + A1B1 + Λ1.

The moment generating function for type RI polynomials also has a continued fraction
expansion, [10, Proposition 5.5].

Proposition 2.6. The moment generating function for type RI orthogonal polynomials,
as a formal power series in t, satisfies

∞∑
n=0

µnt
n =

1

1−B0t−
A1t+ Λ1t

2

1−B1t−
A2t+ Λ2t

2

1−B2t−
A3t+ Λ3t

2

· · ·
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3. b-Laguerre polynomials

In this section we consider the Laguerre polynomials Lbn(x) as polynomials in x and
b.

Definition 3.1. The b-Laguerre polynomials are

Pn(b) =
n∑
k=0

(−n)k
k!

(b+ 1 + k)n−kx
k, n ≥ 0.

The three-term recurrence for the Laguerre polynomials Lbn(x) becomes a type RI

recurrence for the b-Laguerre polynomials.

Proposition 3.2. For n ≥ 0,

Pn+1(b) = (b− x+ 2n+ 1)Pn(b)− n(n+ b)Pn−1(b).

Proposition 3.3. The b-Laguerre polynomials satisfy the type RI recurrence relation in
Proposition 2.3

Pn+1(b) = (b−Bn)Pn(b)− (Anb+ Λn)Pn−1(b)

Bn = x− 2n− 1, An = n, Λn = n2.

The non-degeneracy condition is x 6= 0 because

Pn(−n) = (−x)n.

So there is a linear functional L on

V = span{1, b, · · · , bn, · · · , 1/(b+ 1), 1/(b+ 1)(b+ 2), · · · }
which satisfies

L

(
bk

Pn(b)

(b+ 1)(b+ 2) · · · (b+ n)

)
= 0, 0 ≤ k ≤ n− 1.

The moments L(bn) of L are uniquely determined by

(3.1) L(1) = 1, L(Pn(b)) = A1A2 · · ·An = n!.

Theorem 3.4. The type RI moments of L for the b-Laguerre polynomials are the same
as the Charlier moments,

L(bn) =
n∑
k=1

S(n, k)xk.

Proof. We first verify the connection relation to Charlier polynomials

(3.2) Pn(b) =
n∑
k=0

(
n

k

)2

(n− k)!qk(b)

where

qk(b) = (−x)k
k∑
s=0

(−k)s
s!

(−b)s(−1/x)s.
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Assuming (3.2) is true, applying the Charlier linear functional C gives

C(Pn(b)) = n!,

so C = L on polynomials.

So it remains to prove (3.2). Using(
b+ j

p

)
=

j∑
s=0

(
j

p− s

)(
b

s

)
with j = n, p = n− k, we have

Pn(b) =
n∑
k=0

(−n)k
k!

xk(n− k)!
n−k∑
s=0

(
n

k + s

)(
b

s

)
.

So the coefficient of
(
b
s

)
in Pn(b) is

n−s∑
k=0

(−n)k
k!

xk(n− k)!

(
n

k + s

)
while the same coefficient on the right side of (3.2) is

(3.3)
n∑
k=s

(
n

k

)2

(n− k)!(−k)s(−x)k−s(−1)s.

These are equal, after replacing k by k + s in (3.3). �

The values of the b-Laguerre functional on the rational functions may be found.

Theorem 3.5. The values of the b-Laguerre linear functional on the rational functions
are given by

L

(
1

(b+ 1)(b+ 2) · · · (b+ n)

)
=

1

xn
.

Proof. We prove this by induction on n using

L

(
Pn(b)

(b+ 1)(b+ 2) · · · (b+ n)

)
= 0

for n ≥ 1.

The defining relation becomes

Pn(b)

(b+ 1)(b+ 2) · · · (b+ n)
=

n∑
k=0

(−n)k
k!

1

(b+ 1)(b+ 2) · · · (b+ k)
xk.

Applying L and induction we have

0 =
n−1∑
k=0

(−n)k
k!

+
(−n)n
n!

L

(
1

(b+ 1)(b+ 2) · · · (b+ n)

)
xn

which implies

L

(
1

(b+ 1)(b+ 2) · · · (b+ n)

)
=

1

xn
.



6 MOURAD E.H. ISMAIL AND DENNIS STANTON

�

The moment generating function for L(bn) has two continued fraction expansions.
One for the classical Charlier polynomials (see Section 4), and the other for the type RI

b-Laguerre polynomials.

Theorem 3.6.
∞∑
n=0

(
n∑
k=1

S(n, k)xk

)
tn =

1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− b2t−
λ3t

2

· · ·

=
1

1−B0t−
A1t+ Λ1t

2

1−B1t−
A2t+ Λ2t

2

1−B2t−
A3t+ Λ3t

2

· · ·
where

bn = n+ x, λn = nx

Bn = x− 2n− 1, An = n, Λn = n2.

and S(n, k) are the Stirling numbers of the second kind.

4. b-Charlier polynomials

The b-Charlier polynomials as a monic polynomial of b of degree n are

Pn(b) = bn
n∑
k=0

(−n)k(−x)k
k!

(−1/b)k.

In this section we consider these as type RI polynomials in b.

The Charlier recurrence becomes a type RI recurrence relation (2.3)

Pn+1(b) = (b−Bn)Pn(b)− (Anb+ Λn)Pn−1(b)

Bn = x− n, An = n, Λn = 0.

Thus the vector space V for the b-Charlier linear functional L is

V = span{1, b, b2, · · · , 1/b, 1/b2, · · · }.
The non-degeneracy condition is x 6= 0, 1, 2, · · · because

Pn(0) = (−x)n.

Theorem 4.1. The moments of the b-Charlier linear functional L are the same as the
Laguerre moments,

L(bn) = (x+ 1)(x+ 2) · · · (x+ n).
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Proof. Again we use induction and

(4.1) L(Pn(b)) = A1A2 · · ·An = n!.

This time (4.1) becomes

n∑
k=0

(−n)k
k!

(−x)k(−1)k(x+ 1)n−k = n!

which is a special case of the Chu-Vandermonde theorem. �

Theorem 4.2. The negative moments of the b-Charlier linear functional L are

L(b−n) =
1

x(x− 1) · · · (x− n+ 1)
.

Proof. Again we use induction and

(4.2) L(Pn(b)/bn) = 0, n ≥ 1.

This time (4.2) becomes

n∑
k=0

(−n)k
k!

(−x)k
x(x− 1) · · · (x− k + 1)

(−1)k = 0, n ≥ 1,

which is a special case of the binomial theorem. �

Corollary 4.3. The Laguerre polynomials pn(x, b) = Lbn(x) and the Charlier polynomials
Pn(b, x) = Cn(b;x) have moment duality.

Again we have two expressions for the moment generating function: Laguerre and
b-Charlier.

Theorem 4.4.
∞∑
n=0

(x+ 1)nt
n =

1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− b2t−
λ3t

2

· · ·

=
1

1−B0t−
A1t+ Λ1t

2

1−B1t−
A2t+ Λ2t

2

1−B2t−
A3t+ Λ3t

2

· · ·
where

bn = 2n+ x+ 1, λn = n(n+ x)

Bn = x− n, An = n, Λn = 0.
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5. β-Meixner polynomials

The monic Meixner polynomials satisfy (2.1) with

(5.1) bn =
n+ (β + n)c

1− c
, λn =

n(n+ β − 1)c

(1− c)2
.

Thus as polynomials in β they are type RI polynomials.

Definition 5.1. The monic β-Meixner polynomials are defined by

Pn(β) = (β)n

n∑
k=0

(−n)k(−x)k
k!(β)k

(1− 1/c)k.

Proposition 5.2. The monic β-Meixner polynomials satisfy the type RI recurrence
relation in (2.3)

Pn+1(β) = (β −Bn)Pn(β)− (Anβ + Λn)Pn−1(β)

Bn = ((1− c)x− n(1 + c))/c, An = n/c, Λn = n(n− 1)/c.

The non-degeneracy condition is x 6= 0, 1, 2, · · · and c 6= 1 because

Pn(1− n) = (−x)n(1− 1/c)n.

The vector space in this case is

V = span{1, β, β2, · · · , 1/β, 1β(β + 1), · · · , }.

The b-Laguerre and the b-Charlier polynomials had two nice features. Their moments
were equal to moments of classical orthogonal polynomials, and there were simple explicit
formulas for the rational part of the linear functional. This phenomenon persists for the
Meixner polynomials.

First we relate the β-Meixner moments back to classical Meixner moments. Let
LMeix,β,c(x

n) = µn(β, c) be the moments for the Meixner polynomials given by (5.1).

Proposition 5.3. The type RI moments of the β-Meixner polynomials are the moments
of the orthogonal polynomials with

bn = (2n+ 1− nc+ (1− c)x)/c, λn = n(1− c)(n+ x)/c2.

This may be rewritten as

L(βn) =
n∑
k=0

(
n

s

)
µs(x+ 1, 1− c) = LMeix,x+1,1−c((β + 1)n).

Proof. Let Mn(x; β, c) be the monic Meixner polynomial in x of degree n

Mn(x; β, c) = (β)n(1− 1/c)−n
n∑
k=0

(−n)k(−x)k
k!(β)k

(1− 1/c)k.

We will show the connection coefficient relation

(5.2) Pn(β + 1) =
n∑
k=0

(
n

k

)2
(n− k)!

cn−k
Mk(β;x+ 1, 1− c)
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Applying the Meixner functional LMeix,x+1,1−c, only the constant term k = 0 survives
on the right side

LMeix,x+1,1−c(Pn(β + 1)) = n!/cn = A1A2 · · ·An.

So the composition of LMeix,x+1,1−c with the translation β → β + 1 must agree with the
type RI linear functional L,

L(βn) = LMeix,x+1,1−c((β + 1)n) =
n∑
k=0

(
n

s

)
µs(x+ 1, 1− c).

The proof of (5.2) is similar to the proof of (3.2). �

Remark 5.4. Proposition 5.3 is equivalent to

L((β − 1)(β − 2) · · · (β − n)) =
(1− c)n

cn
(x+ 1)(x+ 2) · · · (x+ n).

We give the value of the β-Meixner linear functional on the rational part.

Proposition 5.5. The type RI linear functional L of the β-Meixner polynomials satisfies

L

(
1

β(β + 1) · · · (β + n− 1)

)
=

cn

(1− c)n
1

x(x− 1) · · · (x− n+ 1).

Proof. We have by induction that this choice works. If n ≥ 1,

L

(
Pn(β)

(β)n

)
=

n∑
k=0

(−n)k(−x)k
k!

(1− 1/c)kL

(
1

(β)k

)

=
n∑
k=0

(−n)k(−x)k
k!

(1− 1/c)k
(−c)k

(1− c)k(−x)k

= 0

again by the binomial theorem. �

The Meixner duality results can be summarized by the next Proposition.

Proposition 5.6. The polynomials

pn(x, b) = Mn(x; b, c) and Pn(b, x) = Mn(b− 1;x+ 1, 1− c)

have moment duality.

Proof. This follows by iterating the map Mn(x; β, c)→Mn(β − 1;x+ 1, 1− c). �

Finally we have the two forms of the moment generating function.
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Theorem 5.7. The moment generating function for the β-Meixner is
∞∑
n=0

L(βn)tn =
1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− b2t−
λ3t

2

· · ·

=
1

1−B0t−
A1t+ Λ1t

2

1−B1t−
A2t+ Λ2t

2

1−B2t−
A3t+ Λ3t

2

· · ·
where

bn =(2n+ 1− nc+ (1− c)x)/c, λn = n(1− c)(n+ x)/c2

Bn = ((1− c)x− n(1 + c))/c, An = n/c, Λn = n(n− 1)/c.

6. b-Al-Salam-Chihara polynomials

The monic Al-Salam-Chihara polynomials [7, §15.1] are

Qn(x/2; a, b|q) =
1

an

n∑
k=0

(q−n; q)k
(q; q)k

(abqk; q)n−kq
k

k−1∏
j=0

(1− axqj + a2q2j).

which satisfy (2.1) with

bn = (a+ b)qn, λn = (1− qn)(1− abqn−1).

This is a polynomial in b with a type RI recurrence.

Definition 6.1. The monic b-Al-Salam-Chihara polynomials are defined by

Pn(b) =
1

(−a)nq(
n
2)

n∑
k=0

(q−n; q)k
(q; q)k

(abqk; q)n−kq
k

k−1∏
j=0

(1− axqj + a2q2j).

Proposition 6.2. The monic b-Al-Salam-Chihara polynomials satisfy the type RI re-
currence relation (2.3)

Pn+1(b) = (b−Bn)Pn(b)− (Anb+ Λn)Pn−1(b),

Bn = xq−n − a, An = −aq−n(1− qn), Λn = q1−2n(1− qn).

The non-degeneracy condition is x 6= aqj + q−j/a, j = 0, 1, 2, · · · , because

Pn(q1−n/a) = q−(n
2)(−1)n(az, a/z; q)n/a

n.

The vector space in this case is

V = span{1, b, b2, · · · , 1/(1− ab), 1/(ab; q)2, · · · , }.
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Theorem 6.3. The type RI moments of the b-Al-Salam-Chihara polynomials are the
moments of the orthogonal polynomials with (2.1)

bn = (−a− aq + aqn+1 + xqn+1)/q2n+1, λn = −q1−n(1− q−n)(1− q−na/z)(1− q−naz).

where x = z + z−1.

Definition 6.4. The monic big q−1-Laguerre polynomials [12, §3.11] Rn(b;α, β; q−1) in
b are defined by (2.1) with

bn = αq−n−1 + βq−n−1 + αβq−n−1 − αβq−1−2n − αβq−2−2n

λn = −αβq−1−n(1− q−n)(1− αq−n)(1− βq−n)

Theorem 6.5. The orthogonal polynomials in Theorem 6.3 are big q−1-Laguerre poly-
nomials (q/a)nRn(ab/q; a/z, az; q−1), where x = z + z−1.

Proof. Rescaling a monic orthogonal polynomial pn(x) to sn(x) = Cnpn(x/C) multiplies
(bn, λn) for pn(x) in (2.1) by (C,C2) for sn(x). The choice of C = q/a shows the
recurrence in (6.4) becomes that given in Conjecture 6.3. �

Proof. Again we use a connection coefficient relation. The rescaled big q−1-Laguerre
polynomials are []

tn(b) = (q/a)n(a/zq; q−1)n(az/q; q−1)n

n∑
k=0

(qn; q−1)k
(q−1; q−1)k

(baq−1; q−1)k
(a/zq; q−1)k(az/q; q−1)k

q−k.

The connection relation between the b-Al-Salam-Chihara polynomials and tn(b) is

(6.1) Pn(b) =
n∑
k=0

(qn, q−1)2k
(q; q)k

(−a)kq−2nk+3(k+1
2 )−2ktn−k(b).

Applying the linear functional T for tn(b) we have

T (Pn(b)) = (−a)n(q; q)nq
−(n+1

2 ) = A1A2 · · ·An
so T equals the b-Al-Salam-Chihara linear functional L on polynomials in b.

To prove (6.1), we use

(A/C; q)m = (C; q−1)m(−C)−mq(
m
2 )

m∑
s=0

(qm; q−1)s
(q−1; q−1)s

(A; q−1)s
(C; q−1)s

q−s

with

A = ab/q, C = q−1−k, m = n− k
to rewrite Pn(b) as a linear combination of (ab/q; q−1)s. Equating the resulting coefficient
of (ab/q; q−1)s on both sides is equivalent to

3φ2

(
qs−n, az, a/z

qs+1, 0

∣∣∣∣ q; q) = (a2q−1−s)n−s 3φ2

(
qs−n, zqs+1/a, qs+1/az

qs+1, 0

∣∣∣∣ q; q) .
This is a special case of a 3φ2 transformation, [6, (III.11), e = 0] �
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Proposition 6.6. The type RI linear functional L of the b-Al-Salam-Chihara polyno-
mials satisfies

L

(
1

(ab; q)k

)
=

1∏k−1
j=0(1− axqj + a2q2j)

.

Proof. Again we have by induction that this choice works. If n ≥ 1,

L

(
Pn(b)

(ab; q)n

)
=

n∑
k=0

(q−n; q)k
(q; q)k

qk
k−1∏
j=0

(1− axqj + a2q2j)L

(
1

(ab; q)k

)

=
n−1∑
k=0

(q−n; q)k
(q; q)k

qk +
(q−n; q)n
(q; q)n

qn
n−1∏
j=0

(1− axqj + a2q2j)L

(
1

(ab; q)n

)

=
n∑
k=0

(q−n; q)k
(q; q)k

qk = 0

by the q-binomial theorem. �

Theorem 6.7. The moments for the Al-Salam-Chihara polynomials which have

bn = (a+ b)qn, λn = (1− qn)(1− abqn−1).
are equal to the type RI moments of the rescaled big q−1-Laguerre polynomials which
have

Bn = bqn + (a+ aq − aqn+1)/qn+1, An = a(1− q−n), Λn = (1− qn)(1 + a2q−2n).

Proof. The inverse relation to (6.1) is

(6.2) tn(b) =
n∑
k=0

(qn, q−1)2k
(q; q)k

akq−k(2n−k)Pn−k(b).

This also holds as polynomials in x, and we need the degree n monic in x versions:

(−1)nq(
n
2)tn(b) and q(

n
2)Pn(b),

(−1)nq(
n
2)tn(b) = (−1)n

n∑
k=0

(qn, q−1)2k
(q; q)k

akq−k(2n−k)+(n
2)−(n−k

2 )q(
n−k
2 )Pn−k(b).

Applying the linear functional L for q(
n
2)Pn(b) as a function of x we have

L((−1)nq(
n
2)tn(b)) = (q; q)n(−a)nq−(n+1

2 ) = A1A2 · · ·An
where in Theorem 6.7 An = a(1− q−n). �

Corollary 6.8. The continued fractions in Proposition 2.2 and Proposition 2.6 are equal
if

bn = (a+ b)qn, λn = (1− qn)(1− abqn−1).
Bn = bqn + (a+ aq − aqn+1)/qn+1, An = a(1− q−n), Λn = (1− qn)(1 + a2q−2n).

Corollary 6.9. The Al-Salam-Chihara polynomials pn(x, b) = Qn(x; a, b|q) and the
rescaled big q−1-Laguerre polynomials Pn(b, x) = (q/a)nRn(ab/q; az, a/z; .q−1). have mo-
ment duality, z + 1/z = x.
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7. continuous dual q-Hahn polynomials

The monic continuous dual q-Hahn polynomials in x are

pn(x/2; a, b, c|q) =
1

an

n∑
k=0

(q−n; q)k
(q; q)k

(abqk; q)n−k(acq
k; q)n−kq

k

k−1∏
j=0

(1− axqj + a2q2j).

which satisfy (2.1) with

bn =(a+ b+ c)qn + abcqn−1 − abcq2n − abcq2n−1,
λn =(1− qn)(1− abqn−1)(1− acqn−1)(1− bcqn−1).

Note that these polynomials in x are symmetric in the parameters a, b, c. If c = 0 these
are the Al-Salam-Chihara polynomials.

As a function of b, λn is quadratic, not linear. So we must renormalize the parameters
to have linear functions b in the recurrence, and thus a type RI polynomial recurrence
in b.

7.1. y-continuous dual q-Hahn polynomials. Let

a = A/B, b = Bz, c = B/z, where z + 1/z = y.

Now λn and bn are linear polynomials in y,

bn = (A/B +By)qn + ABqn−1 − ABq2n − ABq2n−1

λn = (1− qn)(1− Ayqn−1 + A2q2n−2)(1−B2qn−1).

We need the leading term in bn to be y, so we replace y by y/B, and multiply by

(−1)nq−(n
2).

Definition 7.1. The monic y-continuous dual q-Hahn polynomials are defined by

Pn(y) = (−B/A)nq−(n
2)

n∑
k=0

(q−n; q)k
(q; q)k

qk
k−1∏
j=0

(1− Axqj/B + A2q2j/B2)

×
n−1∏
j=k

(1− Ayqj/B + A2q2j)

Proposition 7.2. The monic y-continuous dual q-Hahn polynomials satisfy the type RI

recurrence relation (2.3)

Pn+1(y) = (y −Bn)Pn(y)− (Any + Λn)Pn−1(y),

Bn = (−ABqn−1 − Aqn/B + ABq2n + ABq2n−1 + x)/(qn)

An = (1− qn)(1−B2qn−1)
(−Aq−n)

B
,

Λn = (1− qn)(1−B2qn−1)(1 + A2q2n−2)/q2n−1.
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The non-degeneracy condition is x 6= Aqj/B +Bq−j/A, j = 0, 1, 2, · · · because

Pn(Bq1−n/A+BAqn−1) = (B/A)nq−n
2+n

n−1∏
j=0

(1− Axqj/B + A2q2j/B2).

The vector space in this case, with Dn(y) =
∏n−1

j=0 (1− Ayqj + A2q2j), is

V = span{1, y, y2, · · · , 1/D1(y), 1/D2(y), · · · , }.

Theorem 7.3. The RI moments of the y-continuous dual q-Hahn polynomials are the
moments of the orthogonal polynomials (2.1)

bn =(−A− Aq + AB2qn + Aqn+1 +Bxqn+1)/Bq2n+1,

λn =(1− q−n)(1− q1−n/B2)(1− Awq−n/B)(1− Aq−n/Bw)B2.

and x = w + w−1. These monic orthogonal polynomials are the continuous dual q-Hahn
polynomials

Bnpn(y/2B;A/q, w/B, 1/Bz|q−1).

Corollary 7.4. The continued fractions in Proposition 2.2 and Proposition 2.6 are equal
if

bn =(−A− Aq + AB2qn + Aqn+1 +Bxqn+1)/Bq2n+1,

λn =(1− q−n)(1− q1−n/B2)(1− Azq−n/B)(1− Aq−n/Bz)B2,

Bn = (−ABqn−1 − Aqn/B + ABq2n + ABq2n−1 + x)/(qn),

An = (1− qn)(1−B2qn−1)
(−Aq−n)

B
,

Λn = (1− qn)(1−B2qn−1)(1 + A2q2n−2)/q2n−1.

Corollary 7.5. The continuous dual q-Hahn polynomials

rn(x, y) = pn(x/2;A/B,Bz,B/z|q) with y = z + 1/z

and
Rn(y, x) = Bnpn(y/2B;A/q, z/B, 1/Bz|q−1) with x = z + 1/z

have moment duality.

Proof. Again we use connection coefficients between the two sets of monic polynomials
in y,. Pn(y) and Rn(y, x). It is

(7.1)

Pn(y) =
n∑
k=0

cn,kRk(y, x), where

cn,k =
(qn; q−1)2k

(q; q)k
(B2qn−1; q−1)k

(−A)k

Bk
q−2kn+3(k+1

2 )−2k.

Applying the linear functional R for the y-polynomials Rn(y, x) gives

R(Pn(y)) = cn,n = (q; q)n(B2qn−1; q−1)n
(−A)n

Bn
q−n(n+1)/2 = A1A2 · · ·An.

so that R coincides with the type RI linear functional of Corollary 7.2 on polynomials
in y.
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Equation (7.1) may be proven inductively using the three-term recurrences in y for
Pn(y) and Rk(y, x).

Moment duality follows from iterating the map from rn(x, y) to Rn(y, x). �

8. Concluding Remarks

Question 8.1. Is there a general moment duality result which includes Corollary 4.3,
Corollary 6.9, and Corollary 7.5?

Question 8.2. Type RI versions of the Askey-Wilson and q-Racah polynomials are
given in [10, Theorem 8.33, Theorem 8.37]. The corresponding moments are equal to
the Askey-Wilson and q-Racah moments. Is there a moment duality result for these
polynomials?

Question 8.3. Is there an Askey scheme for type RI polynomials with corresponding
moment dualities?

Remark 8.4. Another equality of moments and RI moments is given in [11, Cor. 5.13].
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