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Abstract. An overview is given for classical orthogonal polynomials as moments for

other classical orthogonal polynomials. Some combinatorial explanations and open

problems are discussed.

1. Introduction

The symbolic method consisted of manipulating power series in x, and mapping
xn to αn, where {αn} is a sequence of combinatorial numbers. This was used by
Kaplansky, Mendelsohn and Riordan [K, KR, M] to treat a variety of combinatorial
problems. In a beautiful series of papers [RHO, RR, JR], Rota’s ideas put the um-
bral and symbolic calculus on solid foundations and his techniques were applied to
study several combinatorial and analytic problems. The purpose of this paper is to
use these ideas to consider moments of orthogonal polynomials as other orthogonal
polynomials. We thank Gian-Carlo for his insight into these problems and for being
the driving force behind the modern theory of the umbral calculus.

In [K2] and [IS2] several families of orthogonal polynomials are shown to be the
moment sequences for other orthogonal polynomials. The proofs in [IS2] are by
brute force, using the explicit form of the measures. In this paper we motivate and
generalize some of these results (Theorems 1, 2 and 3), by evaluating linear func-
tionals on appropriate bases of the vector space of real polynomials. We also give
combinatorial explanations for some of these results in §5-6. Two characterizations
of generalized moment sequences as q-Hermite polynomials are given in §7. Some
open problems are discussed throughout this work.

The Rotafest, which resulted in these Proceedings, had two components, one
on enumeration and a workshop on the umbral calculus. We are pleased that this
work overlaps with both components since on one hand our study of functionals
is umbral in nature but on the other hand our results on Hermite, Meixner and
Al-Salam-Chihara polynomials are combinatorial in nature and use enumerative
techniques.

We set some notation. If {pn(x)} is a sequence of monic orthogonal polynomials
with real coefficients, it is known [Ch] that they satisfy a recursion relation

(1.1) pn+1(x) = (x− bn)pn(x)− λnpn−1(x), n ≥ 0,
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for some real bn and λn, with p0(x) := 1 and λ0p−1(x) := 0. We refer to (1.1) as
the three term recurrence relation for pn(x). We let L denote the linear functional
on the vector space of real polynomials for which orthogonality holds,

(1.2) L(pnpm) = 0 if n 6= m.

The moments µn are defined by

µn = L(xn).

We note that if pn(x) satisfies (1.1), and

(1.3) L(pn) = 0 for n > 0,

then (1.2) holds.
We shall also find the value of L at polynomials of degree n, other than xn and

pn(x). We shall consider

(1.4) L((x+ a)n) =
n
∑

k=0

(

n

k

)

µka
n−k,

(1.5) L((x; q)n),

where

(A; q)n :=
n−1
∏

i=0

(1−Aqi),

and

(1.6) L(φn(x; a)),

where

φn(x; a) = (aeiθ; q)n(ae
−iθ; q)n, x = cosθ.

We use the standard notation for hypergeometric and basic hypergeometric series
in [GR]. We also use the notion of basic numbers

[n]q =
1− qn

1− q

and the q-binomial coefficients

[

n
k

]

q

=
(q; q)n

(q; q)k(q; q)n−k
.
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2. Meixner polynomials as moments

Here we obtain the Meixner polynomials as moments of the translated beta
measure. We will see that the moments can be found directly from the orthogonal
polynomials via (1.3), without knowledge of a representing measure.

First consider the normalized beta integral on [0, 1], and define the associated
linear functional L by

(2.1) L(p(x)) =
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

∫ 1

0

p(x)xα(1− x)βdx.

The monic orthogonal polynomials for L are constant multiples of the Jacobi poly-
nomials,

P (α,β)
n (1− 2x) =

(α+ 1)n
n!

2F1(−n, n+ α+ β + 1;α+ 1;x).

Clearly from (2.1) and the beta function evaluation we have

(2.2) µk =
(α+ 1)k

(α+ β + 2)k
.

Thus (1.4) implies

(2.3) L((x+ a)n) =
n
∑

k=0

(

n

k

)

(α+ 1)k
(α+ β + 2)k

an−k,

which is a Meixner polynomial under an appropriate choice of α and β. This says
that the measure for which the Meixner polynomials are moments is a translate of
the orthogonality measure, for Jacobi polynomials, which is stated in [IS2].

Note that (2.2) implies that

L(P (α,β)
n (1− 2x)) =

(α+ 1)n
n!

2F1(−n, n+ α+ β + 1;α+ β + 2; 1) = 0 if n > 0,

from the Chu-Vandermonde evaluation of a terminating 2F1 at x = 1. So we could

obtain (2.2) from the explicit formula for P
(α,β)
n (1 − 2x) without knowledge of an

explicit measure. We shall use this method again in the next section.

3. Three q-versions

In this section we consider three different q-versions of the functional L of §2.
These three functionals will be denoted by L1, L2 and L3. They act nicely on xn,
(x; q)n, and φn(x; a), respectively (see Theorems 1, 2, and 3). The corresponding
three sets of orthogonal polynomials are the little q-Jacobi, big q-Jacobi, and the
Askey-Wilson polynomials. We use the explicit formula for these polynomials to
find the value of the linear functional L, in order for (1.3) to hold. Then we change
the bases to find orthogonal polynomials as generalized moments.
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The little q-Jacobi polynomials are defined by [GR, (7.3.1)]

pn(x; a, b; q) = 2φ1(q
−n, abqn+1; aq; q, xq).

For (1.3) to hold, we should try

(3.1) L1(x
k) =

(aq; q)k
(abq2; q)k

,

analogous to §2. In this case the q-analogue of the Chu-Vandermonde evaluation
[GR, (II.6)] does imply (1.3). Thus we have found the moments without explicitly
knowing any representing measure.

We next obtain the analog of translating the measure by a constant.

Theorem 1. For the little q-Jacobi functional L1 we have

L1((cx; q)n) = 2φ1(q
−n, aq; abq2; q, cqn).

Proof. Apply the q-binomial theorem in the form

(cx; q)n =
n
∑

k=0

(q−n; q)k
(q; q)k

(cqnx)k

to (3.1). �

The big q-Jacobi polynomials of Andrews and Askey are defined by [GR, (7.3.10)]

Pn(x; a, b, c; q) = 3φ2(q
−n, abqn+1, x; aq, cq; q, q).

As for the little q-Jacobi polynomials again if we put

L2((x; q)k) =
(aq; q)k(cq; q)k

(abq2; q)k
,

then the q-analogue of the Chu-Vandermonde sum [GR, (II.6)] implies (1.3). To
find the moments we expand xn in terms of (x; q)k, by a limiting case of the above
mentioned 2φ1 evaluation

xn =
n
∑

k=0

(q−n; q)k
(q; q)k

(x; q)kq
k.

Theorem 2. For the big q-Jacobi functional L2 we have

L2(x
n) = 3φ2(q

−n, aq, cq; abq2, 0; q, q).

By appropriately choosing the parameters, the moments in Theorem 2 are Al-
Salam-Chihara polynomials. Theorem 2 is proven from the explicit big q-Jacobi
measure in [IS2, Theorem 3.1].
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Finally we consider the Askey-Wilson polynomials, [GR, (7.5.2)]

pn(x; a, b, c, d|q) = 4φ3(q
−n, abcdqn−1, aeiθ, ae−iθ; ab, ac, ad; q, q).

This time

L3(φk(x, a)) =
(ab; q)k(ac; q)k(ad; q)k

(abcd; q)k

works. By expanding φn(x; f) in terms of φn(x; a) [I, (2.2)]

φn(x; f) = (af, f/a; q)n

n
∑

k=0

(q−n; q)kq
k

(q, af, aq1−n/f ; q)k
φk(x; a)

we obtain the following theorem.

Theorem 3. For the Askey-Wilson functional L3 we have

L3(φn(x; f)) = (af, f/a; q)n 4φ3(q
−n, ab, ac, ad; abcd, af, aq1−n/f ; q, q).

Note that the explicit form of pn(x) was crucial to determine the appropriate
polynomial of degree n, Rn(x), and the value of L(Rn(x)) which factored. In §4
we show that this idea can applied even if the explicit form of pn(x) is not known,
but the measure is known.

4. Al-Salam-Chihara polynomials revisited

Theorem 2 gives the Al-Salam-Chihara polynomials as the moments of the mea-
sure with respect to which the big q-Jacobi polynomials are orthogonal. In this
section we give another measure whose moments are multiples of the Al-Salam-
Chihara polynomials. As before we find a polynomial Rn(x) of degree n such that
L(Rn(x)) factors. However, we do not know an explicit formula for the orthogonal
polynomials {pn(x)} with respect to L, nor do we explicitly know the recurrence
coefficients given by (1.1).

We consider a measure which is purely discrete with two infinite sequences of
jumps,

L(p(x)) =
(q/A, q/B)∞
(q, q/D)∞

∞
∑

n=0

(A,B; q)n
(q,D; q)n

(Dq/AB)np(uqn)+

(D/B,D/A)∞
(q,D/q)∞

∞
∑

n=0

(Aq/D,Bq/D; q)n
(q, q2/D; q)n

(Dq/AB)np(uqn+1/D).(4.1)

If we let c = ut, e = cq, in [GR, (III.33)], and consider L(1/(1− xt)), we have a
sum of two 3φ2’s which is a single infinite product. The result is

(4.2)
(qut/D)∞
(qut/A)∞

L(1/(1− xt)) =
(qut/B)∞
(ut)∞

.
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Clearly (4.2) is equivalent to a generating function which implies

L(Rn(x)) = un (q/B; q)n
(q; q)n

if

(4.3) Rn(x) =
n
∑

l=0

(A/D; q)l
(q; q)l

(qu/A)lxn−l.

We also easily obtain from (4.2) the following theorem, first obtained by Suslov [S].

Theorem 4. The moments for the linear functional given by (4.1) are

L(xn) = (qu/D)n
(D/A)n
(q; q)n

2φ1(q
−n, q/B;Aq1−n/D; q, A).

Clearly we could rescale and put u = 1.
Note that [GR, (III.6)] implies

L(xn) = (Bu/D)n
(Dq/AB; q)n

(q; q)n
3φ2(q

−n, q/B,D/B;Dq/AB, 0; q, q),

which is multiple of the result in Theorem 2. Thus Theorems 2 and 4 give two
possible interpretations for the Al-Salam-Chihara polynomials as moments. There
should also be a companion theorem for Theorem 3, but we do not know such a
result.

5. Combinatorial applications

In §2-§4 we found that moments of classical orthogonal polynomials may be
other classical orthogonal polynomials. There has been much work on combinato-
rial models for both orthogonal polynomials [FO,FS] and their moments [V]. So if a
given orthogonal polynomial is also a moment, these two possibly different combi-
natorial points of views should be reconciled. In this section we make some remarks
in this direction.

The Hermite polynomials, Hn(x), are the simplest limiting case of any classical

polynomial. In [IS2], (or from (2.3)) it is shown that a rescaled version, H̃n(a)
are the moments for a translate of the Hermite measure by a. Thus the Hermite
polynomials are the moments for any translate of their own measure.

We give the combinatorial reason for this phenomenon. Consider the set S =
{1, 2, · · · , n}. A matching m of S is an involution on S. We refer to the 2-cycles of
m as edges, and the 1-cycles (fixed points) of m as unmatched vertices.

It is well known [Fo] that, with the proper rescaling, the Hermite polynomials

H̃n(x) =
∑

m

(−1)#edges in mx#fixed points of m
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are the generating function for all matchings m on a set {1, 2, · · · , n}, with edges
weighted by −1, and unmatched vertices by x. It is also known that the moments
µn are the number of complete matchings on {1, 2, · · · , n}. Thus

L((x+ a)n) =

n/2
∑

k=0

(

n

2k

)

µ2ka
n−2k

is the generating function for all matchings of {1, 2, · · · , n}, with edges weighted
by 1, and unmatched vertices by a. This is just the rescaled Hermite polynomials
rescaled again.

Although there is an a priori combinatorial interpretation for Meixner polynomi-
als [V], and another interpretation for moments of general orthogonal polynomials
[V], for the Meixner polynomials we do not have a combinatorial reconciliation, as
we gave for the Hermite polynomials.

Another example is the Laguerre polynomials, a limiting case of the Meixner,
for which there is well-studied combinatorial model [FS]. There are two possible
interpretations as moments, corresponding to the limiting cases of Theorems 2 and
4. This would lead to two new models.

6. Combinatorics of Al-Salam-Chihara polynomials

The Al-Salam-Chihara polynomials are a special case of the Askey-Wilson poly-
nomials. Theorems 2 and 4 give linear functionals whose moments are these poly-
nomials. In this section we give the combinatorial interpretations for these polyno-
mials and their moments.

The monic form of the Al-Salam-Chihara polynomials [AI, (3.2)] have the three
term recurrence relation

(6.1) pn+1(x) = (x− aqn)pn(x)− (c+ bqn−1)[n]qpn−1(x).

To combinatorially understand these polynomials and their moments, we con-
sider matchings m of {1, 2, · · · , n}. A 2-bicoloring C of a matching m is a two
coloring of the edges of the matching (say with colors b and c), and an independent
two coloring of the unmatched vertices (say with colors x and a). We let b(C),
c(C), x(C), and a(C) denote the number of these colored edges and unmatched
vertices.

If only the edges are 2-colored, and not the unmatched vertices, we call such a
coloring D an edge 2-coloring of m. We denote by a(D) the number of unmatched
vertices, and by b(D) and c(D) the number of edges colored b and c respectively.

Theorem 5. The Al-Salam-Chihara polynomial pn(x) is the generating function
of all 2-bicolorings C of all matchings m of {1, 2, · · · , n} with weight

w(C) = xx(C)(−a)a(C)(−b)b(C)(−c)c(C)qs(C),

where

s(C) = s1(C) + s2(C) + s3(C),
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s1(C) =
∑

a−vertices i |{z : z < i,m(z) < i}|,s2(C) =
∑

alledges i<j |{z : z <

i,m(z) < j}|,s3(C) =
∑

b−edges i<j |{z : i < z < j,m(z) < j}|.

If n+ 1 is unmatched and colored x, then n+ 1 does not contribute to s(C). If
n + 1 is unmatched and colored a, then (6.1) contributes n to s(C), and n is the
number of vertices i to the left of n+1 such that m(i) < n+1. Any i < n+1 with
m(i) > n+1 is inserted after n+1. This gives the term s1(C). If n+1 is matched
to m(n + 1) < n + 1, we choose a monomial qj−1, 1 ≤ j ≤ n, from [n]q to weight
the edge. If the edge is colored b we additionally weight the edge by qn−1. We can
choose j from left-to-right or right-to-left. For a c-edge {j, n+1}, choose qj−1, for
the b edge {n− j+1, n+1} choose qn−1+j−1. The term qj−1 gives s2(C) and while
the additional qn−1 gives s3(C). �

It is clear from the proof that several other versions of Theorem 5 could be
given, with slight modifications of s(C). For example, if the c-edges are read in the
opposite direction, s2(C) and s3(C) would be replaced by

s̃2(C) =
∑

alledges i<j

|{z : i < z < j,m(z) < j}|,

s̃3(C) =
∑

b−edges i<j

|{z : z < j,m(z) < j}|,

6.1

Note that by taking a = b = 0, and c = 1, we obtain the continuous q-Hermite
polynomials H̃n(x|q), which are defined by (1.1) with

bn = 0, λn = [n]q.

In this case we have only matchings, and Theorem 5 with the (6.1) definitions
becomes Proposition 3.3 in [ISV].

The moments of the continuous q-Hermite polynomials are the generating func-
tions of the crossing numbers of complete matchings [ISV, (3.6)],

c(m) = |{edges i < j, k < l : i < k < j < l}|.

or also the generating functions of the nesting numbers of complete matchings [ISV,
(3.9)],

nest(m) = |{edges i < j, k < l : i < k < l < j}|.

For the Al-Salam-Chihara polynomials, we need a q-statistic on edge 2-colorings
generalizing either of these two statistics.

Theorem 6. The nth moment for the Al-Salam-Chihara polynomials (6.1) is the
generating function for all edge 2-colorings D of matchings m of {1, 2, · · · , n} with
weight w(D)

µn =
∑

D

w(D),

where
w(D) = aa(D)bb(D)cc(D)qt(D),
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t(D) = c1(m) + c2(D) + c3(m),

c1(m) =
∑

a−vertices

|{edges i < j : i < a < j}|,

c2(D) =
∑

b−edges i<j

|{edges k < l : k < j < l}|,

and c3(m) is either the crossing number c(m) or the nesting number nest(m).

Proof. We follow the proof of [ISV, (3.6)]. If a = b = q = 1 and c = 0, the bijection
from Motzkin paths of length n gives matchings on {1, 2, · · · , n}. We must weight
the unmatched vertices by a, the edges by either b or c, and also an appropriate
power of q. This gives Theorem 6, up to the power t(D) of q. An unmatched vertex
p has weight aqn if there are n uncompleted edges preceding p, this contributes the
term c1(m) in Theorem 6. A similar argument applies for the b edges of weight
bqn−1, yielding c2(D). The remaining term c3(m) appears from the term qj chosen
from [n]q for any edge, b or c. This contributes either c(m) or nest(m). �

Again by reading the inserting the edges in the opposite order one may find other
versions of theorem 6.

One may prove orthogonality of the Al-Salam-Chihara polynomials from The-
orems 5 and 6. We note that the L2-norm can be thought of as the generating
function for the length in Weyl groups of type Bn.

Proposition 1. Let L be the linear functional for the Al-Salam-Chihara polyno-
mials. Then

L(pnpm) = δn,mn!q

n−1
∏

i=0

(c+ bqi).

Proof. Since L(1) = 1, the L2-norm is always given by λn · · ·λ1, so (6.1) gives
the stated constant. The general theory of Viennot [V], gives an involution which
proves orthogonality. In this case the fixed points will be all edge bicolorings of
complete matchings of {1, 2, · · · , n} to {n + 1, n + 2, · · · , 2n}. There are no a-
vertices in this case, and Theorem 6 also gives the stated constant. The edge
(m−1(2n − i), 2n − i) contributes c or bqi, 0 ≤ i ≤ n − 1. The crossing number
contributes n!q, independent of the coloring. �

It is of interest to consider the q-analog of the Hermite polynomials, which were
moments of their own translated measure. If we put c = 0, b = −1 in Theorem 6
we obtain the following corollary.

Corollary 1. The continuous q-Hermite polynomials H̃n(a|q) are the moments of
L for bn = aqn, λn = −qn−1[n]q.

Proof. Since c = 0, the edges are colored only b = −1, while the unmatched vertices
are weighted by a. Thus the moments are some q-version of the Hermite polynomials
in a. In Theorem 6, c2(D) = c(m) + nest(m). If we choose c3(m) = nest(m), then
the q-statistic is c1(m) + c2(D) + c3(m) = c1(m) + c(m) + 2nest(m) = s(m), and
we apply the (6.1) version of Theorem 5. �
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Another q-analog is given by the discrete q-Hermite, [GR, p. 193] H̃n(x; q), which
have bn = 0, λn = qn−1[n]q. The next corollary says that the discrete q-Hermite
are the “shifted moments” for the discrete q−1-Hermite.

Corollary 2. If L is given by bn = 0, λn = −q−n[n]1/q, then L(dn(−x/d; q)n) =

H̃n(d; q).

Proof. Clearly

L(dn(−x/d; q)n) =
n
∑

k=0

[

n
k

]

q

q(
k

2
)dn−kL(xk).

We appeal to Theorem 6 to find L(xk). The choices given for bn and λn correspond
to a = c = 0, b = −q, and then q replaced by 1/q in Theorem 6. Since a = 0
the matchings must be complete and k is even. As in the proof of Corollary 1,
the q-statistic is 2c(m) + nest(m). Moreover the generating function for complete
matchings is [SS, (5.4)]

∑

m

q2c(m)+nest(m) = [1]q[3]q · · · [k − 1]q.

so that [GR, p. 193]

L(dn(−x/d; q)n) =
n
∑

k=0

[

n
2k

]

q

qk
2
−k(−1)kdn−2k[1]q[3]q · · · [2k − 1]q = H̃n(d; q).

�

A stronger version of Corollary 2 holds, when the shifted moments are themselves
orthogonal polynomials.

7. Remarks

In [IS2] several applications of Theorem 2 are given to generating functions.
All of the techniques given there apply, in particular new generating functions for
Al-Salam-Chihara polynomials may be given via Theorem 4. A more elementary
example is given by applying the linear functional given by Corollary 1 (the Al-
Salam-Carlitz measure [Ch, p. 197]), to the generating function for the continuous
q-Hermite polynomials. The result is the q-analog of Mehler’s formula, [IS1, (2.2)].

One may ask if it is possible to characterize which orthogonal polynomials are
moments. Since any sequence is a moment sequence [Ch, p. 74] (possibly not of
a positive definite measure), we must put a restriction on the types of functionals
which are available. We give two such results, below, motivated by Corollaries 1
and 2.

Proposition 2. If bn = aqn, and λn is independent of a, then L(xn) is an orthog-
onal polynomial in a of degree n only when λn = qn−1[n]qλ1.

Proof. From Corollary 1 the stated choice of λn works. It is easy to see from
[V] that L(xn) is an even function of a for n even, and an odd function of a for n
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odd. The remainder, upon division of L(x2n)− aL(x2n−1) by L(x2n−2), is a linear
polynomial in λn, so λn is uniquely determined for n > 1. �

This raises the question of characterizing orthogonal polynomials of the form
L(dn(−x/d; q)n). This question is answered in the next Proposition.

Proposition 3. I

f λn and bn are independent of d, then L(dn(−x/d; q)n) is an orthogonal poly-
nomial in d of degree n only when λn = q2−2n[n]qλ1, bn = q−nb0.

Proof. The proof is similar to the proof of Proposition 2. The two leading terms
of L(dn(−x/d; q)n) are

L(dn(−x/d; q)n) = dn + q

[

n
1

]

q

b0d
n1 + · · ·+

The possible three term recurrence relation is

(7.1) L(xn) = (d+ qnb0)L(x
n−1) + λ̃nL(x

n−2),

so we find the remainder when L(xn−2) divides L(xn) − (d + qnb0)L(x
n−1) as a

polynomial in d. Again λn is uniquely determined by the remainder in (7.1) for 2n,
while bn is uniquely determined from the 2n− 1 case. �

If the combinatorics of pn(x) and µn are known, then the combinatorics of the
associated orthogonal polynomials is often easy to find. For the associated Hermite
polynomials, bn = 0, λn = n− 1 + c. To combinatorially interpret the polynomials
and their moments, we weight one the n choices for m(n+1) in the matching m by
c instead of 1. An analogous technique would give associated versions of Theorems
5 and 6.

Acknowledgments. This work was done while the first author was visiting Im-
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