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Abstract. A set of orthogonal polynomials with 8 independent “q’s” is defined
which generalizes the Laguerre polynomials. The moments of the measure for these
polynomials are the generating functions for permutations according to eight dif-

ferent statistics. Specializing these statistics gives many other well-known sets of
combinatorial objects and relevant statistics. The specializations are studied, with
applications to classical orthogonal polynomials and equidistribution theorems for

statistics.

1. Introduction.

In this paper we study a set of orthogonal polynomials which generalize the
Laguerre polynomials. There are many possible ways to do this, for example by
considering any of the polynomials above the Laguerre on the “Askey tableau”
[As-Wl], or the q-Laguerre polynomials [Mo]. Here we take a family of polynomials
which have “8 independent q’s”, and thus infinitely many possible “q-analogs.” We
refer to these polynomials as “octabasic Laguerre” polynomials.

The advantage of the 8 q’s is that they can be specialized in many different ways,
to obtain other sets of polynomials, for example Charlier, Chebyshev, and Hermite.
Combinatorially, the specialization to Charlier polynomials is equivalent to em-
bedding set partitions inside permutations, and the specialization to Chebyshev
polynomials is equivalent to embedding non-crossing set partitions inside permuta-
tions. Our model for the octabasic Laguerre polynomials provides simultaneously
these embeddings, as well as embeddings of other combinatorial objects (e.g., invo-
lutions) inside permutations.

Our setting also allows for a uniform study of statistics on permutations, set
partitions, non-crossing partitions, involutions, and other families of combinatorial
objects.

The octabasic Laguerre polynomials are given by the three term recurrence re-
lation

pn+1(x) = (x− bn)pn(x)− λnpn−1(x), p0(x) = 1, p−1(x) = 0,
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where

(1.1) bn = a[n+ 1]r,s + b[n]t,u, λn = ab[n]p,q[n]v,w,

and

[n]q =
1− qn

1− q
, [n]r,s =

rn − sn

r − s
= rn−1 + rn−2s+ · · ·+ sn−1.

It is clear that by rescaling x in (1.1), we could take b = 1.
The 8 q’s are r, s, t, u, p, q, v, and w.
If we replace each occurrence of [n]c,d in (1.1) by n, and put a = b = 1, then

we recover the recurrence relation for the Laguerre polynomials L0
n(x). So the

octabasic Laguerre polynomials are multi-q versions of L0
n(x). It is possible to

define octabasic versions of Lα
n(x), see (11.4).

2. Moments.

For the Laguerre polynomials, there are explicit formulas for the polynomials,
measure, and moments. The octabasic Laguerre polynomials are too general to
have such explicit facts known. In this section we use the Viennot theory [V1, V2]
to give a combinatorial version of the moments in Theorem 2.1 and Theorem 2.2.

The nth moment for L0
n(x) is µn = n!. So one would expect the moments of

the octabasic Laguerre polynomials to be generating functions for permutations
counted according to certain statistics. This is indeed the case and the precise
statement appears in Theorems 2.1 and 2.2. Specializations of Theorem 2.1, which
reduce the moments to n!q, are given in [Si-St].

For the definition of the statistics, it is convenient to represent a permutation σ
as a word σ(1)σ(2) · · ·σ(n) consisting of increasing runs, separated by the descents
of the permutation. For example, the permutation σ = 26|357|4|189 has 4 runs
separated by 3 descents. The runs of length 2 or more will be called proper runs
and those of length 1 will be called singleton runs. We write run(σ) for the total
number of runs in σ.

The elements σ(i) of σ fall into four classes: the elements which begin proper
runs (openers), the elements which close proper runs (closers), the elements which
form singleton runs (singletons), and the elements which continue runs (continua-
tors). We shall abbreviate these classes of elements “op”, “clos”, “sing”, and “cont”
respectively. In the example, op(σ) = {2, 3, 1}, clos(σ) = {6, 7, 9}, sing(σ) = {4},
and cont(σ) = {5, 8}.
Definition 2.1. For σ ∈ Sn, the statistics lsg(σ) and rsg(σ) are defined by

lsg(σ) =
n
∑

i=1

lsg(i), rsg(σ) =
n
∑

i=1

rsg(i),

where lsg(i) = the number of runs of σ strictly to the left of i which contain elements
smaller and greater than i, and rsg(i) = the number of runs of σ strictly to the right
of i which contain elements smaller and greater than i.

We also define lsg and rsg on the openers of σ

lsg(op)(σ) =
∑

i∈op(σ)

lsg(i), rsg(op)(σ) =
∑

i∈op(σ)

rsg(i).
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Each of the statistics on the remaining three classes of elements have analogous
definitions.

For example, if σ = 26|357|4|189, then lsg(7) = 0, rsg(7) = 1, lsg(op)(σ) =
0+1+0 = 1, rsg(op)(σ) = 1+1+0 = 2, lsg(clos)(σ) = 0, rsg(clos)(σ) = 2+1+0 = 3,
etc.

Theorem 2.1. ( [Si-St], Thm. 1) The nth moment µn for the octabasic Laguerre
polynomials is

µn =
∑

σ∈Sn

rlsg(sing)(σ)srsg(sing)(σ)tlsg(cont)(σ)ursg(cont)(σ)plsg(op)(σ)qrsg(op)(σ)

vlsg(clos)(σ)wrsg(clos)(σ)arun(σ)bn−run(σ).

The proof of Theorem 2.1 which appears in [Si-St] uses a bijection from weighted
Motzkin paths to permutations. Biane [Bi] gave another bijection for the same
Motzkin paths. It leads to another eight variable generating function for the mo-
ments, which we give in Theorem 2.2. This time we consider the cycle decom-
position of σ. Elements i lie in four disjoint sets: peaks (σ−1(i) < i > σ(i)),
valleys (σ−1(i) > i < σ(i)), double descents (σ−1(i) > i > σ(i)), and double ascents
(σ−1(i) < i < σ(i)). We consider a fixed point (i = σ(i)) as a degenerate double de-
scent. We use the abbreviations “pe”, “va”, “dd”, and “da” for these four sets. For
example, if σ = (1 7 2)(3)(4 9 8 6)(5)(10 11), then pe = {7, 9, 11}, va = {1, 4, 10},
dd = {2, 3, 5, 6, 8}, da = ∅. Strictly speaking, the peaks, valleys, etc. considered
here are cyclic peaks, valleys, etc. (they are defined in terms of the cycle decom-
position). Their definition differs from that of the same terms occurring elsewhere
in the literature, where they might be called linear peaks, valleys, etc. (defined in
terms of the 2-line representation of a permutation; e.g., σ(i− 1) < σ(i) > σ(i+1)
for linear peaks).

We need another pair of statistics, replacing lsg and rsg. Given i let

l1(i, σ) = |{j : j < i, j < σ(i), σ−1(j) > i}|,

and

l2(i, σ) = |{j : j ≤ i, j > σ(i), σ−1(j) > i}|.

For a set S ⊆ [n] and a permutation ρ, we define l1(S, ρ): =
∑

i∈S l1(i, ρ) and
l2(S, ρ): =

∑

i∈S l2(i, ρ).

Theorem 2.2. The nth moment µn for the octabasic Laguerre polynomials is

µn =
∑

σ∈Sn

rl1(dd(σ),σ)sl2(dd(σ),σ)tl1(da(σ),σ
−1)ul2(da(σ),σ

−1)pl1(pe(σ),σ)ql2(pe(σ),σ)

vl1(pe(σ),σ
−1)wl2(pe(σ),σ−1)ape(σ)+dd(σ)bpe(σ)+da(σ).
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3. Set partitions.

We are interested in specializations of the parameters p, q, r, s, t, u, v, w in the
octabasic Laguerre polynomials. Of particular interest are those specializations
which will reduce the moments to generating functions for various types of (un-
ordered) set partitions.

Before discussing such specializations, we devote this section to the elucidation
of the relation, useful for our purposes, between permutations and set partitions.
We begin with some definitions and convenient notation.

As usual, a partition of the set [n]: = {1, 2, . . . , n} is a collection of non-empty
pairwise disjoint sets, called blocks, whose union is [n]. Neither the order of the
elements inside a block, nor the ordering among blocks is relevant in a partition, and,
as is done generally, we will assume that the blocks B1, B2, . . . , Bk of a partition
are indexed in increasing order of their minimum elements. Using this standard
indexing of the blocks, a set partition of [n] can also be represented by its restricted
growth function [Wa-Wh], [Mi], “RG function”, which for our purposes is the word
w = w1w2 . . . wn in which wi is the index of the block containing the element i. For
example, the set partition 1 6 8 / 2 3 5 / 4 / 7 has RG function 1 2 2 3 2 1 4 1. The
terminology reflects the property of RG functions (due to the standard indexing of
the blocks) that wi ≤ 1 +max{wj : j < i} for all i.

In contrast with a set partition, a set composition of [n] is an ordered collection
of non-empty pairwise disjoint sets whose union is [n]. There are, of course, k! set
compositions having the same underlying partition into k blocks. We extend the
idea of a RG function to that of block indexing function, “BI function”, defined for
set compositions. Thus, the set composition 4 / 1 6 8 / 7 / 2 3 5 has BI function
2 4 4 1 4 2 3 2.

Obviously, if S(n, k) denotes the Stirling number of the second kind, we have:
the total number of partitions of [n] is

∑

k S(n, k), the n
th Bell number, and the

total number of set compositions of [n] is
∑

k k!S(n, k). Clearly, the number of set
compositions of [n] is larger than the number of permutations of [n]. We will define
an equivalence relation on set compositions which has n! equivalence classes, and
then a bijection between a set of class representatives and permutations. This bijec-
tion will permit us to translate the statistics lsg and rsg defined on permutations,
into the language of set compositions. Consequently, specializations of Theorem 2.1
will be expressible in terms of set compositions with suitable side conditions and,
in turn, many of these specializations will give rise to results about various types
of set partitions.

On the set SC[n] of compositions of [n] we consider the relation ∼ defined by:
π ∼ ρ if π = ρ or if ρ can be obtained from π through interchanges of adjacent
blocks which are “separated.” By separated blocks we mean that all elements of one
block are larger than all elements of the other. For example, 1 6 7 / 2 3 5 / 4 /8 ∼
1 6 7 / 2 3 5 / 8 / 4 ∼ 1 6 7 / 8 / 2 3 5 / 4 ∼ 8 / 1 6 7 / 2 3 5 / 4. It is easy to
verify that ∼ is an equivalence relation.

Lemma 3.1. Each equivalence class of the relation ∼ contains exactly one canon-
ical set composition, that is, a set composition with the property that each block’s
maximum element is larger than the minimum of the next block (if the latter exists).

Proof. Let π = B1, B2, . . . , Bk be a set composition of [n]. Suppose that max{a ∈
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Bi} > min{b ∈ Bi+1} for every 1 ≤ i < j. If j = k, then π itself is canon-
ical. On the other hand, if max{a ∈ Bj} < min{b ∈ Bj+1}, then Bj and
Bj+1 are separated. Let l be the minimum index such that for every l ≤ t ≤ j
we have Bj+1 separated from Bt and max{a ∈ Bj+1} > min{a ∈ Bt}. Then
π ∼ π′: = B1, B2, . . . , Bl−1, Bj+1, Bl, Bl+1, . . . , Bj , Bj+2, . . . , Bk. Furthermore, in
π′ the maximum of the ith block is larger than the minimum of the (i+ 1)st block
for 1 ≤ i < j + 1. This follows from the assumptions on j and l, together with
the observation that if two blocks are not separated, then the maximum of each is
larger than the minimum of the other. Now replace π with π′, recompute j (which
will now be larger than its previous value), and repeat until — after at most k
iterations — a canonical set composition c is reached such that π ∼ π′ ∼ · · · ∼ c.
Thus, every set composition is ∼ equivalent with some canonical composition.

It remains to show that no two canonical set compositions are in the same ∼
class. Let c be canonical and define a partial order on the blocks of c, namely
the transitive closure of B < C if B precedes C in c and they are non-separated
blocks. Denote this poset as P (c). Suppose now that c ∼ c′, where c′ is canonical
as well. Then c and c′ must have the same underlying partition and P (c) = P (c′).
Moreover, c and c′ correspond to linear extensions of this partial order, having
the property that the maximum of each block is larger than the minimum of the
following block. We claim that the poset admits only one such extension, hence,
c = c′.

Specifically, this (unique) extension B1, B2, . . . , Bk has the property that for each
i, Bi is the minimal element of P (c; i): = P (c)− {B1, B2, . . . , Bi−1} which has the
largest minimum element. For suppose that B and C are two minimal elements
of P (c; i). This implies that they are separated blocks and, say, all elements of B
are smaller than all elements of C. Suppose that Bi = B and Bj = C for some
j > i. We may and shall assume that none of Bi+1, Bi+2, . . . , Bj−1 is a minimal
element in P (c; i). Since we are constructing a linear extension, Bi+1, . . . , Bj−1

must be incomparable to Bj = C, that is, they must be separated from C as
blocks. However, since in our linear extension the maximum of a block must be
larger than the minimum of the next block, there is a smallest l, i+ 1 ≤ l ≤ j − 1,
such that the maximum of Bl is larger than the minimum of Bj = C. But Bl

and C must be separated, so Bl must lie entirely to the right of C, and – by the
choice of Bl – we must have Bl−1 entirely to the left of C. This means that the
maximum of Bl−1 fails to be larger than the minimum of Bl, contradicting the
condition necessary for the linear extension to be a canonical set composition. �

In view of Lemma 3.1, the canonical set compositions are distinct representatives
of the equivalence classes of ∼, and we will refer to them as canonical representa-
tives.

Observe that if π = B1, B2, . . . , Bk is a partition of [n], then the pairs (fi, li), i =
1, 2, . . . , k, where fi: = min{a ∈ Bi} and li: = max{a ∈ Bi}, determine the number
of ∼ classes for the set compositions having π as their underlying set partition.
In fact, if we define a directed graph having vi = (fi, li) as vertices, with an edge
from vi to vj if and only if li > fj , then each hamiltonian path in this graph gives
the ordering of the blocks for a different canonical representative, and conversely.
While this description of canonical representatives is not computationally useful for

5



large n, it can prove helpful in certain arguments.

Proposition 3.2. There is a bijection between the equivalence classes SC[n]/ ∼
and permutations in Sn.

Proof. Given a canonical representative of a ∼ class, c = B1, B2, . . . , Bk, write the
elements in each block in an increasing sequence, and let σ ∈ Sn be the permuta-
tion σ = σ(1)σ(2) . . . σ(n) obtained by concatenating these sequences in the same
order as the order of the blocks. By Lemma 3.1, each block constitutes a run in
σ and, conversely, if we form a block out of the elements in each run of a permu-
tation then the resulting set composition is a canonical representative of a class in
SC[n]/ ∼. �

We can clearly use Proposition 3.2 and Theorem 2.1 to interpret the moments of
our octabasic polynomials as generating functions for statistics on the BI functions
of canonical representatives of set compositions. The notions of opener, closer,
singleton, and continuation elements defined for permutations apply also to the
BI functions. They correspond, respectively, to the first occurrence of a repeated
letter, the last occurrence of a repeated letter, a letter which occurs only once, and
a repeated letter which is neither the first nor the last of its kind. For example, in
the BI function w = 2 3 3 4 3 2 2 1 of the set composition 8 / 1 6 7 / 2 3 5 / 4,
w2 = 3 is an opener, w3 = 3 is a continuator, and w5 = 3 is a closer. These three
3’s correspond to the permutation run 2 3 5.

The statistics lsg and rsg on permutations become lrs (left right smaller) and
lrg (left right greater) on the BI function for canonical representatives of set com-
positions. More precisely, if w is a BI function for a set composition of [n], then

lrs(i): = |{I < wi: ∃ j < i < k s.t. wj = wk = I}|,

lrg(i): = |{I > wi: ∃ j < i < k s.t. wj = wk = I}|,

and

lrs(w): =

n
∑

i=1

lrs(i), lrg(w): =

n
∑

i=1

lrg(i).

A run which contributes to lsg(i) for some element i of a permutation σ becomes,
via our bijection, a block of smaller index than that containing i and which has
elements both to the left and to the right of i, thus contributing to lrs(i) on the BI
function. Similarly, rsg(i) = lrg(i). So, if σ ∈ Sn corresponds with the BI function
w of a canonical representative, then

lsg(σ) = lrs(w), rsg(σ) = lrg(w).

Analogous equalities hold for the statistics on openers, closers, singletons, and
continuators.

The remainder of this section consists of preliminaries to our discussion of spe-
cializations of the octabasic Laguerre polynomials obtained from setting subsets of
the q’s equal to zero. The results of the following propositions provide conditions, in
terms of our statistics, which lead from canonical set compositions to set partitions.
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Proposition 3.3. Let c = B1, B2, . . . , Bk be a canonical set composition of [n] and
let w = w1w2 . . . wn be its BI function.

(1) For w, lrg(clos) = lrg(sing) = 0 if and only if the reverse of w, wrev: =
wnwn−1 . . . w1, is an RG function.

(2) For w, lrs(op) = lrs(sing) = 0 if and only if the complement of w, wc: =
(n+ 1− w1)(n+ 1− w2) . . . (n+ 1− wn), is an RG function.

Proof. To prove (1), we begin by showing that if i is the largest element of the
mth block of c, m > 1, then there is some j > i such that wj = m − 1. Since
c is canonical, the maximum of Bm−1 is larger than the minimum of Bm. But
if lrg(clos) = lrg(sing) = 0, then the maximum of Bm−1 cannot lie between the
minimum and maximum of Bm, so it must be larger than the maximum of Bm.
Thus, there is wj = m−1 for some j > i, that is, wrev is an RG function. Conversely,
suppose wrev is an RG function. Then in w, the last (rightmost) occurrence of each
m ∈ [k] must be of the form wim = m with 1 ≤ ik < ik−1 < · · · < i1 ≤ n. Hence,
in w, we have lrg(im) = 0 for all m, i.e., lrg(clos) = lrg(sing) = 0 for w.

The proof of (2) is similar. We need to show that if i is the smallest element
of Bm, m < k, then there is some j < i such that wj = m + 1. Again, since
c is canonical, the maximum of Bm is larger than the minimum of Bm+1. But
lrs(op) = lrs(sing) = 0, so the minimum of Bm+1 must in fact be smaller than
i. So there is wj = m + 1 with j < i. Conversely, if wc is an RG function, then
the first (leftmost) occurrence of each m ∈ [k], must be of the form wim = m with
1 ≤ ik < ik−1 < · · · < i1 ≤ n. Consequently, in w, lrs(im) = 0 for every m, so
lrs(op) = lrs(sing) = 0 for w. �

One of the specializations considered in the next section gives rise to non-crossing
partitions (see [Si1] for references). A partition of [n] is non-crossing if for every
four elements 1 ≤ a < b < c < d ≤ n the following condition is satisfied: if a, c
are in the same block and b, d are in the same block, then all four elements are
in the same block. It is well-known that the number of non-crossing partitions of
[n] is the nth Catalan number, Cn = 1

n+1

(

2n
n

)

. An RG function w represents a
non-crossing partition if and only if whenever wi = wj for some 1 ≤ i < j ≤ n, we
have wr ≥ wi for all i < r < j. This is easy to verify using the observation that a
crossing between two blocks Ba and Bb is equivalent to the presence of a subword
abab or baba in the RG function.

Proposition 3.4. Let w be the BI function of an arbitrary set composition. If
lrg(w) = 0 or lrs(w) = 0, then the underlying partition is non-crossing.

Proof. If the underlying partition has two crossing blocks, then any set composition
of it will contain ijij as a subword in its BI function w, for some i 6= j. We will
therefore have lrs(w) > 0 and lrg(w) > 0 independently of whether i < j or
i > j. �

Proposition 3.5. Each non-crossing partition has precisely two canonical compo-
sitions whose BI functions ws and wg satisfy lrs(ws) = 0 and lrg(wg) = 0.

Proof. If two blocks of a non-crossing partition are not separated, then all elements
of one lie “nested” between two successive elements of the other. If we seek a
canonical set composition c for which lrs is null, then its associated poset P (c) (as
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introduced in the proof of Lemma 3.1) is completely determined by the fact that
each block must be smaller in P (c) than all blocks in which it is nested. Then ws is
the BI function of the set composition resulting from the unique linear extension of
P (c) which gives a canonical set composition. The canonical set composition with
BI function wg follows from the dual of the poset above, since this time we wish to
give each block a larger index than that of every block in which it is nested. �

The next Proposition will make it easy to understand several of the zero special-
izations of the octabasic Laguerre polynomials.

Proposition 3.6. Let w be the BI function of a canonical set composition. Then
lrs(clos) = lrg(clos) = 0 if and only if every two non-singleton blocks are sepa-
rated. Also, lrs(op) = lrg(op) = 0 if and only if every two non-singleton blocks are
separated.

Proof. Suppose that lrs(j) > 0 for some element j ∈ op(w) ∪ cont(w), and, say,
j ∈ Bb. Then there exists a block Ba and 1 ≤ i < j < l ≤ n such that wi = wl = a,
and a < b. We may assume that i and l are the minimum and maximum of Ba.
Now, the closer which is the maximum of the block Bb cannot be larger than l,
otherwise lrg(l) > 0 contradicting lrg(clos) = 0, nor can it be smaller than l
because then it would lie between j and l, hence between i and l, and would cause
lrs(clos) > 0. Similarly, we reach a contradiction if we suppose that lrg(j) > 0 for
j ∈ op(w) ∪ cont(w). Thus, lrs(j) > 0 or lrg(j) > 0 implies j ∈ sing(w). From
this, it follows easily that every two non-singleton blocks must be separated. The
converse is trivial. The second statement has an entirely similar proof which we
omit. �

An additional class of set partitions which will arise from our zero-specializations
is that of non-overlapping set partitions. A partition is non-overlapping (“NOP”) if
for every two blocks B and B′ which are not separated, if min{a ∈ B} < min{a ∈
B′}, then max{a ∈ B} > max{a ∈ B′}. The term “non-overlapping set partition”
is adopted from Flajolet [Fl-Sch] where asymptotic results are established. It turns
out that NOP’s can be characterized via our statistics.

Proposition 3.7. If the BI function w of a set composition satisfies lrs(op) =
lrs(clos) = 0, then the underlying partition is non-overlapping. Each non-overlapping
partition has exactly one indexing of its blocks which gives a canonical set compo-
sition.

Proof. If two blocks, Bi and Bj , i < j, of a canonical set composition are not
separated, then min{a ∈ Bj} < min{a ∈ Bi} < max{a ∈ Bi} < max{a ∈ Bj} is
the only relation on their minima and maxima allowed by the condition lrs(op) =
lrs(clos) = 0. Hence, the underlying partition is indeed non-overlapping.

As in the proof of Proposition 3.5, a NOP has a unique indexing of its blocks
which produces a canonical set composition, namely, the blocks must be indexed
in decreasing order of their minimum elements. �

Another class of set partitions which will arise from our zero-specializations is
that of partitions in which every pair of non-separated blocks, Ba and Bb, satisfies
one of the following two conditions: (i) if minBa < minBb ≤ maxBb < maxBa,
then Ba, Bb do not cross and |Bb| ≤ 2; or (ii) if minBa < minBb < maxBa <
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maxBb, then i ∈ Bb, i < maxBa imply i = minBb, and i ∈ Ba, i > minBb imply
i = maxBa. We call such a set partition minimally non-separated.

Proposition 3.8. If the BI function w of a set composition satisfies lrs(sing) =
lrs(op) = 0 and lrs(cont) = lrg(cont) = 0, then the underlying partition is mini-
mally non-separated. Each minimally non-separated partition has exactly one index-
ing of its blocks which gives a canonical set composition with lrs(sing) = lrs(op) =
0.

Proof. The condition lrs(op) = lrs(sing) = 0 implies, by Proposition 3.3(2), that
wc, the complement of w, is an RG function. Since lrs(cont) = lrg(cont) = 0,
wc satisfies the conditions defining the RG function for a minimally non-separated
partition.

If we seek a canonical set composition with a given minimally non-separated
underlying partition and whose BI function has lrs(op) = lrs(sing) = 0, then the
only allowable indexing of the blocks is in decreasing order of the block minima. �

A similar characterization can be given for “not under” set partitions (“NU”).
These are set partitions whose RG function contains no subword of the form abba
with a < b.

Proposition 3.9. If the BI function w of a set composition satisfies lrs(sing) =
lrs(op) = 0 and lrg(cont) = lrg(clos) = 0, then the underlying partition is NU.
Each NU partition has exactly one indexing of its blocks which gives a canonical set
composition with lrs(sing) = lrs(op) = 0.

Proof. As in the preceding proof, lrs(sing) = lrs(op) = 0 implies that wc is an
RG function. If, in addition, lrg(cont) = lrg(clos) = 0 for w, then lrs(cont) =
lrs(clos) = 0 for wc, so wc contains no subword abba with a < b. �

4. Moments of the zero specializations.

We are particularly interested in the specializations of the octabasic Laguerre
polynomials which arise from putting a subset of the q’s equal to 0. A priori
there are 28 = 256 such specializations. It is clear, however, from the recurrence
relation (1.1), that the polynomials are symmetric under each interchange of bases
belonging to the same pair (for example, the interchange of r and s), and under the
interchange of the pairs {p, q} and {v, w}. These interchanges generate a group G
of order 32 which acts on the boolean algebra of 8 elements. There are 54 orbits
of this action. Each orbit is described by a four-tuple of integers, whose entries are
0, 1, or 2. These indicate, for each of the four pairs of bases, whether neither, one,
or both bases are set equal to zero. For example, 1020 denotes the orbit where the
subset of null bases has 1 element from {r, s}, none from {t, u}, 2 from {p, q}, and
none from {v, w}. So r = p = q = 0 belongs to the orbit 1020.

In this section combinatorial interpretations of the moments of the specializations
are given.

One way to understand the 54 orbits is to put the non-zero q’s equal to 1, put
a = b = 1, and identify combinatorially the resulting moments. For example, if
none of the q’s are put equal to 0, then the moments are 1, 1, 2, 6, 24, 120, 720,...,
just the number of permutations of [n].
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The 54 orbits fall into two categories. There are 27 orbits which give λn = 0
for n > 1, so they do not correspond to orthogonal polynomials with positive
measures. Nonetheless, the “moments” have combinatorial interpretations which
we give here. In the quotient of the boolean algebra by the group G, these 27 orbits
fall into three intervals: [0020, 0222], [1020,1222], and [2020,2222]. Each of these
intervals contains 9 orbits. The remaining 27 orbits correspond to true orthogonal
polynomials.

The 9 orbits in the interval [0020,0222] specialize the moments to 1, 1, 2, 6,
20, 68, 232, 792, . . . . From Proposition 3.6 applied to 0020, we see that µn is
the number of ∼ classes of set compositions of [n] whose non-singleton blocks are
separated. For the canonical representatives of such compositions, the statistics
lrs and lrg are null on continuing elements and on closers. Hence, all orbits in
the interval [0020, 0222] give indeed the same sequence of moments. This sequence
appears in [Ri]. The explicit formula for µn is

(4.1) µn = an +

n/2
∑

j=1

n−2j
∑

k=0

(

k + j

j

)(

n− j − k − 1

j − 1

)

ak+j(1 + a(r + s))n−2j−k.

The generating function for µn is

(4.2)

∞
∑

n=0

µnz
n =

1− z − a(r + s)z

1− z − az − a(r + s)z + a2(r + s)z2
.

Based on Proposition 3.6, a routine counting argument verifies that (4.1) follows
from Theorem 2.1, and the Lagrange inversion formula proves (4.2) from (4.1). By
partial fractions, with t1, t2 being the roots of the denominator in (4.2), we obtain

µn =
1

a2(r + s)

[ t−n−1
1 − t−n−1

2

t2 − t1
− (1 + a(r + s))

t−n
1 − t−n

2

t2 − t1

]

.

Riordan [Ri] gave the explicit formula

(4.3) µn(r = s = a = 1) =

n
∑

p=−n
p≡0,3 mod 8

(

2n

n− p

)

−
n
∑

p=−n
p≡1,4 mod 8

(

2n

n− p

)

.

It is easy to prove (4.3) from (4.2).
The second interval of 9 orbits is [1020, 1222], with moments 1, 1, 2, 5, 13, 34, 89,

. . . : the Fibonacci numbers of even index. Indeed, the moments for the orbit 1020
count (by Propositions 3.3(2) and 3.6) the set partitions whose non-singleton blocks
are separated. With this interpretation, it is easy to establish that the moments
satisfy the recurrence µn = 3µn−1 − µn−2, µ0 = µ1 = 1, which implies that for
n > 0, µn = F2n. The explicit formula for the µn can be found by putting r = 0 in
(4.1). As in the preceding case, all 9 orbits in the interval [1020,1222] lead to the
same moments.

The third interval of 9 orbits is [2020, 2222], with moments 1, 1, 2, 4, 8, 16, 32,
. . . . The combinatorial objects associated with the moments in this case are set

10



partitions whose blocks are intervals (alternatively, compositions of the integer n).
This interpretation follows from Proposition 3.6 which implies that every two non-
singleton blocks must be separated, together with the observation that lrs(sing) =
lrg(sing) = 0 forces all singletons to be separated from other blocks as well. As
in the previous two cases, all orbits in the interval [2020, 2222] yield the same
moments, and the nth moment has the expression

µn = a(1 + a)n−1.

We now turn to the remaining 27 orbits, all of which correspond to true orthog-
onal polynomials (λn > 0). Directly from Theorem 2.1, the orbit 0000 corresponds
to permutations.

One of the orbits (r = p = 0), corresponds, by Proposition 3.3, to set partitions.
(1) 1010: 1, 1, 2, 5, 15, 52, . . . , set partitions.

There are 11 orbits above 1010 in the quotient of the boolean algebra, whose
moments we discuss next. Four of these orbits give moments which count specialized
types of set partitions:

(2) 1011: 1, 1, 2, 5, 14, 43, 143, 509, . . . , non-overlapping set partitions (by Propo-
sition 3.7).

(3) 1111: 1, 1, 2, 5, 14, 42, 132, 429, . . . , non-crossing set partitions (by Propositions
3.4 and 3.5).

(4) 1210: 1, 1, 2, 5, 15, 48, 163, 571, . . . , minimally non-separated set partitions (by
Proposition 3.8).

(5) 1211: 1, 1, 2, 5, 14, 41, 123, 374, . . . , non-crossing partitions such that if block B
is nested inside block A, then |B| ≤ 2. (This is an easily obtained strengthening
of the conditions from the case 1111 or 1210).
Each of these orbits has a counterpart designated by a four-tuple whose first entry

is 2 instead of 1. Thus, we get 5 further orbits which lie above 1010 and whose
moments count set partitions – unrestricted set partitions and set partitions of the
four other types listed above – with the supplementary condition that singleton
blocks are separated from all other blocks.

(6) 2010: 1, 1, 2, 4, 10, 28, 90, 326, . . . , set partitions with singletons separated
from all blocks.

(7) 2011: 1, 1, 2, 4, 9, 22, 58, 164, . . . , non-overlapping set partitions with the
singletons separated from all blocks.

(8) 2111: 1, 1, 2, 4, 9, 21, 51, 127, . . . , non-crossing set partitions with singletons
separated from all blocks.

(9) 2210: 1, 1, 2, 4, 10, 24, 66, 172, . . . , minimally non-separated set partitions with
singletons separated from all blocks.

(10) 2211: 1, 1, 2, 4, 9, 20, 46, 105, . . . , non-crossing set partitions such that if block
B is nested inside block A, then |B| = 2.
The moments of the orbits 2111, 2210, and 2211 lend themselves to yet another

combinatorial interpretation, in terms of (partial) matchings. This will be described
below, following the discussion of the orbit 2110.

(11) 2110: 1, 1, 2, 4, 10, 26, 76, 232, . . . .
If we consider r = s = t = p = 0 in Theorem 2.1, we see that the nth mo-

ment enumerates set partitions of [n] with the property that if two blocks Ba
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and Bb are not separated and minBb < minBa, then all the elements in the set
(minBa,min{maxBa,maxBb}) ∩ (Ba ∪ Bb) must belong to Ba (this is to ensure
that lrs(cont) = 0). Therefore, there is a bijection between the set partitions of
this type and (partial) matchings of the set [n]. Specifically, a (partial) match-
ing of [n] is a partition of [n] into blocks of cardinality at most 2. Each match-
ing corresponds bijectively with a set partition counted by the moments when
r = s = t = p = 0, by first indexing the pairs of the matching in decreasing order of
their minima, and then adjoining each non-separated singleton block to the block
of least index from which the singleton is not separated. For example, the matching
1 / 2 8 / 3 / 4 / 5 13 / 6 / 7 / 9 11 / 10 / 12 / 14 /15 16 of [16], corresponds to
the set partition 1 / 2 3 4 8 / 5 6 7 12 13 / 9 10 11 / 14 / 15 16.

The singletons of a partial matching are singletons in the sense of set partitions
as well. Of two points in [n] which are matched, the smaller is an opener and the
larger is a closer. Two non-separated non-singleton blocks are two pairs of the
matching which either cross, or else one is nested under the other. Let C(m) be the
number of crossings and U(m) be the number of nestings (as described above) in
a matching m. It is then easy to see that for a matching, lrg(op) = C(m) + U(m)
and lrg(clos) = U(m). The statistics C(m) and U(m) appear again in (5.4).

In view of the interpretation in terms of matchings for the moments of 2110, we
can obtain simple alternative interpretations for the moments of three of the orbits
discussed earlier:

(8’) 2111: 1, 1, 2, 4, 9, 21, 51, 127, . . . , non-crossing (partial) matchings.
(9’) 2210: 1, 1, 2, 4, 10, 24, 66, 172, . . . , (partial) matchings such that every singleton

is separated from all but at most one pair of the matching.
(10’) 2211: 1, 1, 2, 4, 9, 20, 46, 105, . . . , non-crossing (partial) matchings in which

every singleton is separated from all but at most one pair of the matching.
The remaining orbit above 1010 is

(12) 1110: 1, 1, 2, 5, 15, 50, 181, 697, . . . , set partitions in which if A and B are
blocks satisfying min{a ∈ A} < min{b ∈ B}, then A ∩ [min{b ∈ B},max{b ∈
B}] ⊆ {max{a ∈ A}}.
The remaining 15 orbits will be given as permutations with restrictions. We use

Theorem 2.1. Alternative descriptions can be given from Theorem 2.2. By means of
the canonical composition corresponding to a permutation, we can refer to runs as
being “separated,” “non-separated,” “minimally non-separated,” etc., if they form
blocks with these properties.

(13) 1000: 1, 1, 2, 5, 17, 70, 349, 2017, . . . , permutations in which any singleton run
must be a left-to-right minimum.

(14) 0100: 1, 1, 2, 6, 24, 116, 652, 4156, . . . , permutations with lsg(cont) = 0, i.e.,
if run A precedes run B, then [min{a ∈ A},max{a ∈ A}] ∩ B ⊆ {min{b ∈
B},max{b ∈ B}}.

(15) 0010: 1, 1, 2, 6, 22, 94, 460, 2537, . . . , permutations in which each opener is a
left-to-right minimum.

(16) 2000: 1, 1, 2, 4, 12, 40, 180, 924, . . . , permutations in which every singleton run
must be a left-to-right minimum and a right-to-left maximum.

(17) 1100: 1, 1, 2, 5, 17, 66, 305, 1545, . . . , permutations in which each singleton
run is a left-to-right minimum and if run A precedes run B, then [min{a ∈
A},max{a ∈ A}] ∩B ⊆ {min{b ∈ B},max{b ∈ B}}.
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(18) 0200: 1, 1, 2, 6, 24, 112, 592, 3468, . . . , permutations in which every two non-
separated runs are minimally non-separated.

(19) 0110: 1, 1, 2, 6, 22, 92, 426, 2146, . . . , the specialization u = p = 0 yields
permutations in which the openers are left-to-right minima and where, if A,B
are non-separated runs with min{a ∈ A} > min{b ∈ B}, then B ∩ [min{a ∈
A},max{a ∈ A}] ⊆ {min{b ∈ B},max{b ∈ B}}.

(20) 0011: 1, 1, 2, 6, 21, 81, 343, 1591, . . . , the specialization p = w = 0 gives
permutations in which the openers are left-to-right minima and the closers are
right-to-left maxima.

(21) 0111: 1, 1, 2, 6, 21, 80, 326, 1408, . . . , combining cases (14) and (20), we obtain
permutations in which the openers are left-to-right minima, the closers are right-
to-left maxima, and every two non-separated runs A,B with min{a ∈ A} >
min{b ∈ B} satisfy B ∩ [min{a ∈ A},max{a ∈ A}] ⊆ {min{b ∈ B},max{b ∈
B}}.

(22) 0210: 1, 1, 2, 6, 22, 90, 396, 1846, . . . , permutations in which the openers are
left-to-right minima and non-separated runs are minimally non-separated.

(23) 1200: 1, 1, 2, 5, 17, 62, 269, 1205, . . . , a strengthening of the condition in (18):
permutations in which the singleton runs are left-to-right minima and every two
non-separated runs are minimally non-separated.

(24) 2100: 1, 1, 2, 4, 12, 36, 152, 624, . . . , combining the conditions in (14) and (16),
permutations in which the singleton runs are left-to-right minima and right-to-
left maxima, and in which if run A precedes run B then [min{a ∈ A},max{a ∈
A}] ∩B ⊆ {min{b ∈ B},max{b ∈ B}}.

(25) 2200: 1, 1, 2, 4, 12, 32, 132, 416, . . . , permutations in which the singleton
runs are left-to-right minima and right-to-left maxima, and where every two
non-separated runs are minimally non-separated.

(26) 0211: 1, 1, 2, 6, 21, 79, 311, 1266, . . . , combining the conditions in (18) and (20),
we have permutations in which the openers are left-to-right minima, the closers
are right-to-left maxima, and non-separated runs are minimally non-separated.

5. Explicit formulas for the moments.

In §4 we gave the combinatorial interpretations for the moments of the 54 zero
specializations of the octabasic Laguerre polynomials. We also gave an explicit
formula for the moments in 27 of these cases. In general, Theorems 2.1 and 2.2 are
the best that can be said for the moments. However, some specializations do give
classical sequences and their q-analogs. In this section we give these examples.

First we note that the generating function of µn is always given by the continued
fraction [C1], [Fl],

(5.1)

∞
∑

n=0

µnt
n =

1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

.

Each of the 54 cases has such an expansion. For example, orbit (1), 1010, gives a
continued fraction for the generating function of a 6-q version of the Bell numbers.
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There are 6 cases, after all of the remaining parameters are set equal to 1, for
which µn is clearly a well known sequence (see [Fl-Sch] for the Bessel numbers)

(1) (orbit (0)) n!,
(2) (orbit (1)) Bell numbers Bn,
(3) (orbit (2)) Bessel numbers B∗

n,
(4) (orbit (3)) Catalan numbers Cn,
(5) (orbit (8)) Motzkin numbers Mn,
(6) (orbit (11)) involution numbers In.

They correspond, respectively, to permutations, set partitions, non-overlapping
set partitions, non-crossing set partitions, non-crossing (partial) matchings, and
(partial) matchings. We now give the specializations for a single q-analog of each
of these cases.

Three specializations giving n!q are given in [Si-St].
The q-Bell numbers arise from the q-Stirling numbers of the second kind [Mi],

[Wa-Wh]. This is the specialization r = p = 0, s = q, b = 1, {t, u} = {v, w} =
{1, q}, giving the q-Charlier polynomials (see [deM-St-Wh]).

There are many choices for q-Catalan numbers (see [Fu-Ho], [Bo-Sh-Si], [Si2]).
A well-known one is given by the recurrence

(5.2) Cn(q) =

n−1
∑

k=0

Ck(q)Cn−1−k(q)q
k, C0(q) = C1(q) = 1.

We have µn = Cn(q) if r = t = p = v = 0, a = 1, b = q, s = u = q2, w = q3. The
polynomials are a family of q-Chebyshev.

The number of (partial) matchings on [n] is

In =

n/2
∑

k=0

(

n

2k

)

(2k − 1)(2k − 3) · · · 1.

If r = s = t = p = 0, u = v = a = b = 1, w = q, then we have

(5.3) µn =

n/2
∑

k=0

(

n

2k

)

[2k − 1]q[2k − 3]q · · · [1]q.

It is also easy to see that

(5.4) µn =
∑

m∈M(n)

qC(m)+2U(m),

where M(n) is the collection of matchings of [n] and C(m), U(m) were defined in
the discussion of orbit (11) in §4. The polynomials are discrete q-Hermite.

The Motzkin numbers are given by

Mn =

n/2
∑

k=0

(

n

2k

)

Ck.

If r = s = t = p = v = 0, u = w = a = b = 1, then we have

(5.5) µn =

n/2
∑

k=0

(

n

2k

)

Ck(q).

The polynomials are q-Chebyshev.
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6. The quadrabasic Laguerre polynomials.

The monic Laguerre polynomials have the explicit formula

(6.1) L̂0
n(x) =

n
∑

k=0

(

n

k

)

n!

k!
(−1)n−kxk

and the coefficient of xk has a simple combinatorial interpretation (see [Fo-St], (6.6)
and (6.7) below). In the octabasic Laguerre polynomials, the coefficient of xk is
a polynomial in a and the “8 q’s,” whose own coefficients do not necessarily have
constant sign (such is the case, for example, with the coefficient of x in p3(x)). This
means that any combinatorial interpretation of the octabasic polynomials will be
complex.

In this section we specialize the octabasic Laguerre polynomials to a “quadraba-
sic” set, for which the coefficient of xk is a polynomial in a and “4 q’s” whose
coefficients have constant sign. We obtain in Theorem 6.2 a weighted version of the
combinatorial interpretation for Laguerre polynomials. We remark that the Vien-
not theory does not give this result. Our choice of specialization will be determined
from the “even-odd” polynomials associated with the Laguerre polynomials. We
begin with a brief review of general facts about “even-odd” polynomials.

Suppose that pn(x) is a set of orthogonal polynomials whose three term recur-

rence has coefficients b
′

n = 0 and λ
′

n > 0 for all n. This implies that p2n(x) = en(x
2)

and p2n+1(x) = x on(x
2), for some polynomials en(x) and on(x). It turns out that

both {en}n and {on}n are sequences of orthogonal polynomials (see [C1]). The
coefficients of their three-term recurrence relations are

bn(e) = λ
′

2n+1 + λ
′

2n

λn(e) = λ
′

2n−1λ
′

2n(6.2)

and

bn(o) = λ
′

2n+2 + λ
′

2n+1

λn(o) = λ
′

2n+1λ
′

2n.(6.3)

Moreover, the moments for the polynomials pn, en, and on satisfy

µn(e) = µ2n(p)

µn(o) = µn+1(e)/µ1(e).(6.4)

Now let us consider λ
′

2n+1 = n + 1 and λ
′

2n = n. Then (6.2) and (1.1) imply
that the specialization of the octabasic Laguerre polynomials obtained by setting
all 8 q’s, a, and b equal to 1, satisfies

(6.5a) p2n(x) = L̂0
n(x

2).

It is not hard to see that the “odd” polynomials for this specialization are

(6.5b) p2n+1(x) = xL̂1
n(x

2) =
n
∑

k=0

(

n

k

)

(n+ 1)!

(k + 1)!
(−1)n−kx2k+1.
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From (6.1) and (6.5b) it is easy to see that L̂0
n(x) and L̂

1
n(x) have simple com-

binatorial interpretations:

(6.6) L̂0
n(x) =

∑

A⊆[n],f :A→[n]

xn−|A|(−1)|A|,

and

(6.7) L̂1
n(x) =

∑

A⊆[n],f :A→[n+1]

xn−|A|(−1)|A|,

where, in both cases, the function f is an injection.
We give in Theorem 6.2 quadrabasic versions of (6.6) and (6.7). To do this, we

specialize the octabasic Laguerre polynomials (1.1) so that (6.2) occurs. The most
natural choice is {t, u} = {p, q} and {r, s} = {v, w}, so that

(6.8) λ
′

2n+1 = a[n+ 1]r,s, λ
′

2n = [n]t,u.

However, it is easy to see that the same specialization, {t, u} = {p, q} and {r, s} =
{v, w}, also gives (6.3) for the odd polynomials if

(6.9) λ
′

2n+2 = a[n+ 1]r,s, λ
′

2n+1 = [n]t,u.

Thus we concentrate on these “quadrabasic” Laguerre polynomials which come
from {t, u} = {p, q} and {r, s} = {v, w}.

For Theorem 6.2 we need statistics on the pairs (A, f) which involve a and the
four remaining q’s: r, s, t, u. The rather technical definition of these statistics is in
terms of the cycles and paths in the functional digraph of f .

The functional digraph of an injection f :A → [n] consists of disjoint paths
and cycles. Each path P is of the form a0(P ) → a1(P ) → · · · → al(P ), where
f(aj(P )) = aj+1(P ) for 0 ≤ j < l, with f−1(a0(P )) empty, and al(P ) ∈ [n] − A.
For simplicity in notation, we will write aj for aj(P ). We also put last(P ) = al
and if i = ak ∈ P we write ind(i, P ) = k for the index of i on the path P .

The following quantities computed on points and paths of the digraph will be
helpful in describing the combinatorial interpretation of our quadrabasic Laguerre
polynomials. For any path P in the digraph and two integers i < j, we put

nP (i, j) = |{a ∈ P : i < a < j}|.

For p ∈ P and two integers i < j, we put

mP (p; i, j) = |{a ∈ P : i < a < j, ind(p, P ) < ind(a, P )}|,

that is, the number of points on the path “to the right” of p, whose values are
strictly between i and j. And finally, for i ∈ A, we denote by F (i) the “first
forward iterate” of f which is smaller than i,

F (i) =

{

fp(i), where p = min{m ≥ 1, fm(i) < i} if such m exists,

i, if {m ≥ 1, fm(i) < i} is empty.

For example, suppose that the path P = 2 → 7 → 1 → 5 → 3 is a con-
nected component of the functional digraph of f . Then nP (1, 4) = |{2, 3}| = 2,
mP (7; 1, 4) = |{3}| = 1, and F (2) = F (7) = 1, F (1) = 1, and F (5) = 3.
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Definition 6.1. Let A ⊆ [n] and let f be an injection f : A → [n]. We define the
weight w(A, f) of (A, f) by w(A, f) =

∏

i∈[n] w(i), where

w(k) =



















tαuβ if k ∈ P and k < last(P ) for some path P of f,

arγsδ if k ∈ P and k > last(P ) for some path P of f ,

arγsδif k lies on a cycle of f,

1 if k /∈ A,

where the exponents α, β, γ, δ are defined below, using the notation established pre-
viously, and with Q ranging over paths in the functional digraph of f :

α = k − 1−mP (k; 0, k)−
∑

last(Q)>last(P )

nQ(0, k),

β = last(P )− k −mP (k; k, last(P ))−
∑

last(Q)>last(P )

nQ(k, last(P )),

γ = F (k)− 1−
∑

last(Q)>k

nQ(0, F (k)),

δ = k − F (k)−
∑

last(Q)>k

nQ(F (k), k).

Theorem 6.2. The quadrabasic Laguerre polynomials obtained by setting {t, u} =
{p, q} and {r, s} = {v, w} in (1.1) have the following interpretation:

∑

A⊆[n],f :A→[n]

xn−|A|(−1)|A|w(A, f),

where f is injective and w(A, f) is the monomial in r, s, t, u, a in Definition 6.1.

Corollary 6.3. For all k, the coefficient of xk in the quadrabasic Laguerre polyno-
mials obtained by setting {t, u} = {p, q} and {r, s} = {v, w} in (1.1), is a polynomial
(in a, r, s, t, u) all of whose coefficients have the same sign.

Proof of Theorem 6.2. Assuming (6.8) we have

p2n+1(x) = xp2n(x)− [n]t,up2n−1(x)(6.10a)

p2n(x) = xp2n−1(x)− a[n]r,sp2n−2(x).(6.10b)

If we set p2n(x) =
∑

k En,kx
2k(−1)n−k, and p2n+1(x) =

∑

k On,kx
2k+1(−1)n−k,

then (6.10) is equivalent to

On,k = En,k + [n]t,uOn−1,k(6.11a)

En,k = On−1,k−1 + a[n]r,sEn−1,k.(6.11b)

It is clear that (6.11) proves Corollary 6.3, as well as a version of Corollary 6.3 for

the quadrabasic version of L̂1
n(x). What remains is to use (6.11) to produce the

statistics in Definition 6.1. In order to show that

En,k =
∑

A⊆[n],|A|=n−k

f:A→[n]

w(A, f)

17



and
On,k =

∑

A⊆[n],|A|=n−k

f:A→[n+1]

w(A, f)

for all n, k, we will define recursively a weight w(A, f) on the ordered pairs (A, f)
in (6.6) and (6.7), such that w satisfies (6.11), and then prove that w agrees with
the weight w of Definition 6.1.

For (6.11a), let A ⊆ [n], |A| = n − k, and let f :A → [n + 1] be an injection. If
n+ 1 /∈ Im(f), just delete n+ 1 and let A′ = A and f ′:A′ → [n], with f ′ given by
the function f when viewed as f : A → [n]. This gives a pair (A′, f ′) contributing
to the term En,k in (6.11a). We set w(A′, f ′) = w(A, f). If n + 1 ∈ Im(f), then
n + 1 must be the last point of a path P of f , since A ⊆ [n]. Define the pairing
i↔ i′ between i ∈ [n+ 1]− {f−1(n+ 1)} and i′ ∈ [n] via

i′ =

{

i if i < f−1(n+ 1)

i− 1 if i > f−1(n+ 1).

Now let A′ = {i′ : i ∈ A− f−1(n+1)}, and f ′:A′ → [n] defined by f ′(i′) = [f(i)]′.
Then the pair (A′, f ′) corresponds to On−1,k in (6.11a). We set

w(A, f) = tf
−1(n+1)−1un−f−1(n+1)w(A′, f ′),

with the monomial tf
−1(n+1)−1un−f−1(n+1) from [n]t,u, so w(A, f) corresponds to

the term [n]t,uOn−1,k in (6.11a).
Similarly, for (6.11b) consider A ⊆ [n], |A| = n− k, and an injection f :A→ [n].

If n /∈ A, then let A′ be identical to A, but viewed as a subset of [n − 1], and
f ′:A′ → [n] pointwise equal to f . We set w(A′, f ′) = w(A, f), and the pairs (A′, f ′)
arising from this case correspond to the On−1,k−1 term in (6.11b). If n ∈ A, we let
A′ = A−{n}, and obtain an injection f ′:A′ → [n−1] as follows: delete n from the
functional digraph of f , and connect f−1(n) (if it exists) to f(n). The pair (A′, f ′)
corresponds to En−1,k in (6.11b). We set

w(A, f) = arf(n)−1sn−f(n)w(A′, f ′)

and thus we get the term a[n]r,sEn−1,k.
Thus, each w-weighted pair (A, f) contributing to the left hand side of (6.11)

corresponds to a w-weighted pair (A′, f ′) contributing to the right hand side. We
will regard this correspondence as a “reduction” of (A, f) obtained by “processing”
the largest element. Effectively, with the exception of the first case under (6.11b),
in order to construct (A′, f ′) we reduce the digraph for (A, f) by one point. The
reduction consists of removing the largest element currently in the digraph, or its
preimage. The latter type of reduction occurs only in the second case of (6.11a),
and entails the “compression” of the remaining values to an initial interval of the
positive integers. The compression preserves the order relation among values, and
the value of an element decreases by one unit for each reduction in which a smaller
element is deleted.

We claim that w(A, f) obtained upon applying the above reduction rules as
long as the domain of the injection is non-empty, agrees with w(A, f) of Definition
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6.1. To verify this, first observe the following property of the reduction process.
If at some stage the maximum element is last(P ) for some path in the digraph of
the function, then its preimage is eliminated and the values of the elements are
compressed. The maximum value is reduced by one unit, but at the next reduction
it will be again the maximum element and still last in its path. Therefore, once the
last point of a path has the maximum value of all points in the digraph, the path
will be completely eliminated from the digraph through a sequence of consecutive
reductions. Second, if the maximum is not last on a path of the digraph, then it is
simply deleted.

Now let us consider a point in A. If its original value is k, let k∗ be its value at
the time when it is deleted. If k belonged to a path P of the original digraph and
k < last(P ), then

k∗ = k −
∑

last(Q)>last(P )

|{a ∈ Q: a < k}| − |{b ∈ P : b < k, ind(k, P ) < ind(b, P )}|.

The difference k−k∗ is the number of previous reductions when values smaller than
k were deleted, thereby causing compressions which diminished the original label
k. At this same stage, the label of the last element on the path containing k∗ is
not necessarily last(P ) but last(P )∗,

last(P )∗ = last(P )−
∑

last(Q)>last(P )

|{a ∈ Q: a < last(P )}|

− |{b ∈ P : b < last(P ), ind(k, P ) < ind(b, P )}|,

and at this stage last(P )∗ is the image of k∗. By the second case of (6.11a) above,
the ratio w(A, f)/w(A′, f ′) for this reduction is equal to tk

∗−1ulast(P )∗−k∗

. After
minor simplifications, we recognize this expression as w(k) = tαuβ from Definition
6.1.

A simpler situation is the first type of reduction described above for (6.11a).
In this case, the element deleted from the digraph derives from an original point
k which was not in the domain of the injection. Hence, the value 1 of the ratio
w(A, f)/w(A′, f ′) for such reductions agrees with w(k) in Definition 6.1. The first
type of reduction under (6.11b) does not contribute to the w-weight and no point
is removed from the digraph.

Finally, suppose that in the original digraph the point k belongs to a path P and
k > last(P ), or k is on a cycle. Then when this point is deleted from the digraph,
its current value k∗ is the largest value present in the current digraph and is equal
to

k∗ = k −
∑

last(Q)>k

|{a ∈ Q: a < k}|.

Note also that at this stage, the image of k∗ is F (k)∗. That is, the current value
of the original “first forward iterate” of k. Indeed, the previous reductions have
eliminated all values derived from elements larger than k. We have

F (k)∗ = F (k)−
∑

last(Q)>k

|{a ∈ Q: a < F (k)}|.
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Thus, the ratio w(A, f)/w(A′, f ′) for such a reduction is arF (k)∗−1sk
∗−F (k)∗ . Again,

we recognize this as w(k) = arγsδ from Definition 6.1.
Hence, w(A, f) =

∏

k w(k) = w(A, f) and the proof is completed. �

7. More even-odd polynomials.

The first result of this section is an alternative interpretation of the orbit (19)
from §4. There, the moments of the specializations falling in the orbit 0110 were
interpreted in terms of permutations with side conditions. Here, the moments for
the orbit 0110 will arise in the context of the quadrabasic and even-odd polynomials
discussed in §6, by setting t = p = 0, r = v, s = w, u = q, b = 1. This specialization
gives the following coefficients for the three-term recurrence:

(7.1) b0 = a, bn = a[n+ 1]r,s + un−1, if n > 0, λn = a[n]r,su
n−1.

These are precisely the coefficients for the even polynomials (see (6.2)) for λ′2n =
un−1, λ′2n+1 = a[n+1]r,s, and so µn(e) is the nth moment for the orbit 0110 of §4.
The coefficients of the three-term recurrence for the corresponding odd polynomials
are

(7.2) bn(o) = un + a[n+ 1]r,s, λn(o) = a[n+ 1]r,su
n−1.

If we rescale the odd polynomials to õn(x): = anon(x/a), the coefficients

bn(õ) = [n+ 1]r,s +
un

a
, λn(õ) = [n+ 1]r,s

un−1

a

are reminiscent of r, s, u versions of the coefficients for Charlier polynomials and
suggest that the nth moment, µn(õ), is related to the enumeration of certain parti-
tions. More precisely, these coefficients would give the correct weights on the steps
of the associated Motzkin paths (see [V1], [Si-St]) if the level k steps were shifted to
level k+1. We can accomplish this by adding an initial NE step and a final SE step.
The resulting Motzkin paths counted by µn(õ) have length n+2 and do not touch
the x-axis except at their initial and final points. That is, these paths correspond
to partitions of the set [n+ 2] such that no interval [i] is a union of blocks, for any
i < n + 2. We call such partitions connected set partitions, abbreviated ConnSP .
From these observations and (6.4) we obtain

µn(e) = µ1(e)µn−1(o) = a · an−1µn−1(õ),

the reciprocal polynomial (in terms of a) of 1
aConnSP (n + 1), enumerating con-

nected set partitions of [n + 1]. With a = r = s = u = 1, the moments from §4,
orbit 0110 arise as the sequence µn(e) = |ConnSP (n + 1)| for n ≥ 1: 1, 2, 6, 22,
92, 426, . . . . We have:

Theorem 7.1. Let bn and λn be given by (7.1). The moments are given by

µn =
∑

π∈ConnSP (n+1)

rlrs(cont)(π)+lrs(clos)(π)slrg(cont)(π)+lrg(clos)(π)

ulrs(sing)(π)+lrs(op)(π)−blocks(π)+1an+1−blocks(π).

We remark that Theorem 7.1 admits the following alternative formulation:
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Theorem 7.1′. Let bn and λn be given by (7.1). The moments are given by

µn =
∑

π∈ConnSP (n+1)

rrs(cont)(π)+rs(clos)(π)slsg(cont)(π)+lrg(clos)(π)

wrs(sing)(π)+lr(clos)(π)−blocks(π)+1an+1−blocks(π).

The notation rs (“right smaller”) is an abbreviation of lrs permitted by the
standard indexing of the blocks in a partition (the blocks are indexed in increasing
order of their minima), while lr = lrs+ lrg. The latter arises from a modification of
the weights on the Motzkin paths: assign weight 1 to the NE steps, and a monomial
from λk(o) to level k SE steps, and it turns out that lrs(op) = lr(clos). Other
versions can be formulated for further modifications of how the combined weight
λk(o) is distributed between NE steps ending at level k and SE steps beginning at
level k.

Next we consider the general quadrabasic polynomials of §6. Assuming (6.4), we
see that µn(o) is an (r, s, t, u, a)-version of (n + 1)!. The remainder of this section
is devoted to obtaining a combinatorial description of these moments in terms of
suitable permutation statistics (Theorem 7.2). To begin with, from (6.3) we have

bn(o) =a[n+ 1]r,s + [n+ 1]t,u

λn(o) =a[n+ 1]r,s[n]t,u.(7.3)

As in the proof of Theorem 2.1 (see [Si-St]), µn(o) enumerates weighted Motzkin
paths of length n which, in turn, correspond to permutations in Sn+1 counted
according to certain combinatorial statistics. We will obtain the correspondence in
two stages: first we describe a bijection ϕ from the paths to a subset of Sn+2, and
then a bijection ψ from this subset to Sn+1.

Let P be a path counted by µn(o). The permutation ϕ(P ) ∈ Sn+2 will have 1
and n+ 2 in the same run. The elements 2, 3, . . . , n+ 1 are inserted one at a time,
in a position determined by the corresponding step of P and its weight. The steps
of P originating at level k have the following weights:
NE steps (leading to openers of runs): a monomial from a[k + 2]r,s,
E steps (leading to singleton runs): a monomial from a[k + 1]r,s,
E steps (leading to continuators): a monomial from [k + 1]t,u,
SE steps (leading to closers): a monomial from [k]t,u.
(These are the same weights for Motzkin paths as in the proof of Theorem 2.1
[Si-St] (with r = p, s = q, t = v, u = w), except that the NE steps (the openers) at
height k have weight a[k+2]r,s, and the horizontal steps for continuators at height
k have weight [k + 1]t,u.)

Starting with a two-element run 1, n + 2, we traverse P and if the ith step has
weight aαrβsγ or tδuǫ, we insert i + 1 in the current (partial) permutation in the
leftmost position which ensures the following: for openers and continuators the lsg
(resp., rsg) value must be β, δ (resp., γ, ǫ); singletons and closers do not “see”
the run containing 1, that is, their lsg (resp., rsg) value without counting the run
containing 1, must be β, δ (resp., γ, ǫ). The permutations which arise as ϕ(P )
satisfy: (i) 1 and n+ 2 in the same run, and (ii) in the subword to the right of the
run containing 1, no singleton run is a left-to-right minimum.
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Next, we construct a bijection ψ from this subset of Sn+2 to all permutations of
length n+ 1. Suppose the permutation σ of length n+ 2 contains the consecutive
runs 1, . . . , c, n+2|d1, . . . , dm. (Note thatm > 1, otherwise d1 contradicts condition
(ii) for σ.) If c > d1, let ψ(σ) be the permutation obtained by replacing the two
runs above with the two consecutive runs 1, . . . , c|d1, . . . , dm. Note the ψ(σ) still
satisfies condition (ii). If c < d1, let ψ(σ) be the permutation obtained by replacing
the two runs above with the run 1, . . . , c, d2, . . . , dm, and moving d1 to the right as
a singleton run, in the unique position where it is a left-to-right minimum for the
subword to the right of the run containing 1. So d1 immediately precedes the first
run after 1, . . . , c, d2, . . . , dm whose opener is less than d1. This time, ψ(σ) does
not satisfy condition (ii). The inverse map ψ−1 is easy to describe. If condition
(ii) holds, just add n+2 to the run with 1. Otherwise find the rightmost singleton
which violates (ii), call it d1, and let c be the the largest element smaller than d1
occurring in the same run as 1; then insert n+ 2 followed by d1 immediately after
c.

It remains to describe the statistics on permutations to which ϕ ◦ ψ maps lsg
and rsg. We denote these by lsg∗ and rsg∗. If a permutation satisfies condition
(ii), then define its lsg∗ (rsg∗) to be lsg (rsg), but always include the run with 1
for openers and continuators, and exclude this run for singletons and closers. So for
the permutation 278|15|36|4, lsg∗(4) = 2, rsg∗(7) = 1. If a permutation does not
satisfy (ii), let d1 be the rightmost singleton run violating (ii). Let z > d1 be the
maximum of the run containing 1. This time define lsg∗ (rsg∗) as above, with the
extra modifications: add 1 for each element in [d1, z) for the run with 1. Elements
in the run with 1 and in [d1, z) count as left. For example, in the permutation
248|157|69|3, d1 = 3, z = 7, lsg∗(3) = 2, rsg∗(4) = 3, lsg∗(5) = 2, lsg∗(6) = 3.

In view of (6.3) we have the next theorem.

Theorem 7.2. Let µn be given by Theorem 2.1 with r = p, s = q, t = v, u = w,
b = 1. Then

µn =
∑

σ∈Sn

rlsg*(sing)+lsg*(op)(σ)srsg*(sing)+rsg*(op)(σ)

tlsg*(cont)+lsg*(clos)(σ)ursg*(cont)+rsg*(clos)(σ)arun(σ),

for the modified statistics lsg* and lrg*.

8. Equidistributed statistics.

Theorems 2.1 and 2.2 give an interpretation for the moments of the octabasic
Laguerre polynomials, in terms of permutation statistics. So we can use facts
about the octabasic Laguerre polynomials to give combinatorial theorems about
these statistics.

One easy fact is the invariance of the moment under the group G of order 32 in
§4.
Theorem 8.1. The generating functions in Theorems 2.1 and 2.2 are invariant
under the group G of order 32 described at the start of §4.

We can also find analogous theorems for sets other than permutations, for ex-
ample set partitions. If we take the r = p = 0 specialization (the orbit (1), 1010,
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in §4), we find

bn = asn + [n]t,u

λn = aqn−1[n]v,w.

Clearly the symmetry group here is a group of order four. We use Proposition 3.3
(2) to find the appropriate statistics for an RG function w.

Theorem 8.2. The generating function for RG functions on [n],

∑

w∈SP (n)

slrs(sing)(w)tlrg(cont)(w)ulrs(cont)(w)qlrs(op)(w)vlrg(clos)(w)wlrs(clos)(w)a#blocks,

is symmetric under t↔ u and v ↔ w.

For non-crossing set partitions (r = t = p = v = 0, orbit 1111), we have

bn = asn + un−1, n ≥ 1, b0 = a

λn = aqn−1wn−1.

Again Proposition 3.3 (2) allows us to take complements.

Theorem 8.3. The generating function for RG functions of non-crossing set par-
titions of [n],

∑

w∈NCSP (n)

slrs(sing)(w)ulrs(cont)(w)qlrs(op)(w)wlrs(clos)(w)a#blocks,

is invariant under q ↔ w.

We can use another element of the orbit of 1111 to obtain another equidistri-
bution theorem. If we put r = u = p = w = 0, we find the class of set partitions
NU (see Proposition 3.9). These are enumerated by the Catalan numbers, just as
non-crossing partitions are.

Theorem 8.4. The 5-tuples

(lrs(sing), lrs(cont), lrs(op), lrs(clos), blocks)

and
(lrs(sing), lrg(cont), lrs(op), lrg(clos), blocks)

are equidistributed on the class of non-crossing set partitions and on the class “NU”
of not-under set partitions.

Bijective proofs of Theorems 8.1-8.4 are implicit in the bijection for Theorem 2.1
appearing in [Si-St].

There are similar results, that we do not state here, for orbits whose moments can
be interpreted in terms of matchings. Also, Theorems 2.1, 2.2 and 7.2 clearly give
equidistribution results. Moreover, Theorem 2.2 provides for alternative versions
of Theorems 8.1-8.4.
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9. Classical orthogonal polynomials and zero specializations.

We now turn to the classical orthogonal polynomials which arise from our zero
specializations. In §4 we gave the combinatorial interpretations for the moments in
54 cases. Several of the cases are related to classical orthogonal polynomials, and
we identify them here. We do this assuming the non-zero q’s have been put to 1,
so that each case will represent a multi-q version of the listed polynomials. We will
also discuss some “principal specializations” which lead to known q-analogs of the
classical polynomials.

The 27 cases in §4 which have λn = 0 for n > 1 have simple explicit formulas,
and are not classical orthogonal polynomials. For completeness we state them. If
we put p = q = 0 (the 0020 case), then clearly

pn+1(x) = (x− bn)pn(x)

for n > 1. From this we see that

pn(x) = (x2 − x(a(r + s) + a+ 1) + a2(r + s))
n
∏

i=3

(x− a[i+ 1]r,s − [i]t,u), n ≥ 2,

p1(x) = x− a.

Each of the other 26 cases is a specialization of the above.
This leaves 27 cases, which are listed below. In each case we have included

the specialization, that is, which of our 8 bases are set equal to zero, the others
being set equal to 1. In each case, we identify the orthogonal polynomials, give the
coefficients of the three-term recurrence relation and state the explicit formula for
the (monic) polynomials. The Appendix gives the explicit notation for each of the
polynomials.

We have used some facts about corecursive polynomials [C2] to give the explicit
formulas. We need the following fact: if the coefficient b0 is perturbed in the recur-
rence relation (1.1), then the resulting polynomials are perturbed by a polynomial
with a related recurrence relation. This occurs in several of the classical cases be-
low. The related recurrence relation in these cases is for the associated orthogonal
polynomials.

(0000) Specialization: ∅, i.e., none of the 8 q’s is set equal to zero. For a = 1 we
obtain Laguerre polynomials. For general a we obtain special Meixner polynomials:

bn = n+ a(n+ 1), λn = an2,

(9.0) pn(x) = (−a)nmn(x/(1− a), a, 1).

(1010) Specialization: r = p = 0. We have the Charlier polynomials:

bn = n+ a, λn = an,

(9.1) pn(x) = Ca
n(x).
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(1011) Specialization: r = p = v = 0. The polynomials are dual Lommel
polynomials [C1, (6.11), p.189]:

bn = n+ a, λn = a,

(9.2) pn(x) = (−1)nKn(a− x, a).

(1111) Specialization: r = t = p = v = 0. We obtain Chebyshev polynomials:

b0 = a, bn = a+ 1, n > 0, λn = a,

(9.3) pn(x) = Un(
x− a− 1

2
√
a

)an/2 + Un−1(
x− a− 1

2
√
a

)a(n−1)/2.

(1210) Specialization: r = t = u = v = 0. We obtain a sum of associated
Hermite polynomials [As-Wm, (4.18)]:

b1 = a+ 1, bn = a, n 6= 1, λn = an,

(9.4)

pn(x) = Hn(
x− a√

2a
)(a/2)n/2−Hn−1(

x− a√
2a

, 1)(a/2)(n−1)/2−2aHn−3(
x− a√

2a
, 3)(a/2)(n−3)/2.

(1211) Specialization: r = t = u = p = v = 0. We obtain sums of Chebyshev
polynomials:

b1 = a+ 1, bn = a, n 6= 1, λn = a,

(9.5) pn(x) = Un(
x− a

2
√
a
)an/2 − (x− a)Un−2(

x− a

2
√
a
)a(n−2)/2.

(2010) Specialization: r = s = p = 0. We obtain a sum of Charlier and associated
Charlier polynomials (see [I-L-V, (1.14) and (4.2)]):

b0 = a, bn = n, n > 0, λn = an,

(9.6) pn(x) = Ca
n(x+ a)− aCa

n−1(x+ a, 1).

(2011) Specialization: r = s = p = v = 0. The polynomials are sums of dual
Lommel polynomials [C1, (6.11), p.189]:

b0 = a, bn = n, n > 0, λn = a,

(9.7) pn(x) = (−1)nKn(−x, a) + a(−1)nKn−1(1− x, a).
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(2111) Specialization: r = s = t = p = v = 0. We obtain Chebyshev polynomi-
als:

b0 = a, bn = 1, n > 0, λn = a,

(9.8) pn(x) = Un(
x− 1

2
√
a
)an/2 − (a− 1)Un−1(

x− 1

2
√
a
)a(n−1)/2.

(2210) Specialization: r = s = t = u = p = 0. We obtain a sum of associated
Hermite polynomials:

b0 = a, b1 = 1, bn = 0, n > 1, λn = an,

pn(x) =Hn(x/
√
2a)(a/2)n/2 − (1 + a)Hn−1(x/

√
2a, 1)(a/2)(n−1)/2

+aHn−2(x/
√
2a, 2)(a/2)(n−2)/2 − 2aHn−3(x/

√
2a, 3)(a/2)(n−3)/2.(9.9)

(2211) Specialization: r = s = t = u = p = v = 0. We obtain Chebyshev
polynomials:

b0 = a, b1 = 1, bn = 0, n > 1, λn = a,

(9.10) pn(x) = Un(
x

2
√
a
)an/2−Un−1(

x

2
√
a
)a(n+1)/2+(a−x)Un−2(

x

2
√
a
)a(n−2)/2.

(2110) Specialization: r = s = t = p = 0. The polynomials are a sum of Hermite
polynomials and associated Hermite polynomials [As-Wm, (4.18)]:

b0 = a, bn = 1, n > 0, λn = an,

(9.11) pn(x) = Hn(
x− 1√

2a
)(a/2)n/2 + (1− a)Hn−1(

x− 1√
2a

, 1)(a/2)(n−1)/2.

(1110) Specialization: r = t = v = 0. The polynomials are a sum of Hermite
polynomials and associated Hermite polynomials [As-Wm, (4.18)]:

b0 = a, bn = a+ 1, n > 0, λn = an,

(9.12) pn(x) = Hn(
x− a− 1√

2a
)(a/2)n/2 +Hn−1(

x− a− 1√
2a

, 1)(a/2)(n−1)/2.

(1000) Specialization: r = 0. The polynomials are special Meixner polynomials
[C1, p. 176]:

bn = n+ a, λn = an2,

(9.13) pn(x) =
(−c)n
(1 + c)n

mn(((1 + c)(x− a) + c)/(1− c), c, 1),
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where a = c/(1 + c)2.
(0100) Specialization: t = 0. The polynomials are a sum of Meixner polynomials

[C1, p. 176] and Pollaczek polynomials:

b0 = a, bn = a(n+ 1) + 1, n > 0 λn = an2,

(9.14)

pn(x) = (−1−c)nmn(
xc− 2c− 1

1− c2
, c, 1)+P

1/2
n−1(

x− a/2− 1

−
√
4a− a2

, φ, 1)(4a−a2)(n−1)/2(−1)n−1,

where a = (1 + c)2/c, cot(φ) =
√

a
4−a .

(0010) Specialization: p = 0. The polynomials are Charlier polynomials:

bn = a(n+ 1) + n, λn = an,

(9.15) pn(x) = (1 + a)nCa/(1+a)2

n (
(1 + a)x− a2

(1 + a)2
).

(2000) Specialization: r = s = 0. The polynomials are a sum of Meixner poly-
nomials [C1, p. 176] and Pollaczek polynomials:

b0 = a, bn = n, n > 0 λn = an2,

(9.16)

pn(x) = (
−c
1 + c

)nmn(
x+ xc+ c

1− c
, c, 1)− aP

1/2
n−1(

x+ 1/2√
4a− 1

, φ, 1)(4a− 1)(n−1)/2,

where a = c/(1 + c)2, cot(φ) = −1/
√
4a− 1.

(1100) Specialization: r = t = 0. The polynomials are a sum of Meixner poly-
nomials [C1, p. 176] and Pollaczek polynomials

b0 = a, bn = a+ 1, n > 0 λn = an2,

(9.17)

pn(x) = (−a)n/2mn(
x− a− 1−

√
−a

2
√
−a ,−1, 1)+P

1/2
n−1(

x− a− 1

2
√
a

, π/2, 1)(4a)(n−1)/2.

(0200) Specialization: t = u = 0. The polynomials are a sum of Meixner poly-
nomials [C1, p. 176] and Pollaczek polynomials:

b1 = 2a+ 1, bn = a(n+ 1), n 6= 1 λn = an2,

(9.18)

pn(x) = (−1−c)nmn(
cx− c− 1

1− c2
, c, 1)+(a−x)P 1/2

n−2(
x− a/2√
4a− a2

, φ, 2)(4a−a2)(n−2)/2,

where a = (1 + c)2/c, cot(φ) = −a√
4a−a2

.
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(0110) Specialization: t = v = 0. The polynomials are a sum of Charlier poly-
nomials and associated Charlier polynomials:

b0 = a, bn = a(n+ 1) + 1, n > 0, λn = an,

(9.19) pn(x) = anC1/a
n (x/a− 1) + an−1C

1/a
n−1(x/a− 1, 1).

(0011) Specialization: v = p = 0. The polynomials are dual Lommel polynomi-
als:

bn = a(n+ 1) + n, λn = a,

(9.20) pn(x) = (−1− a)nKn(
a− x

1 + a
,

a

(1 + a)2
).

(0111) Specialization: t = v = p = 0. The polynomials are sums of dual Lommel
polynomials:

b0 = a, bn = a(n+ 1) + 1, n > 0, λn = a,

(9.21) pn(x) = (−a)nKn(
1 + a− x

a
,
1

a
) + (−a)n−1Kn−1(

1 + 2a− x

a
,
1

a
).

(0210) Specialization: t = u = v = 0. The polynomials are a sum of Charlier
polynomials and associated Charlier polynomials:

b1 = 2a+ 1, bn = a(n+ 1), n 6= 1, λn = an,

(9.22) pn(x) = anC1/a
n (

x− a+ 1

a
) + an−2(a− x)C

1/a
n−2(

x− a+ 1

a
, 2).

(1200) Specialization: r = t = u = 0. The polynomials are a sum of Meixner
polynomials [C1, p. 176] and Pollaczek polynomials:

b1 = a+ 1, bn = a, n 6= 1, λn = an2,

(9.23)

pn(x) = (−a)n/2mn(
x− a−

√
−a

2
√
−a ,−1, 1) + (a− x)P

1/2
n−2(

x− a

2
√
a
, π/2, 2)(2

√
a)n−2.

(2100) Specialization: r = s = t = 0. The polynomials are a sum of Meixner
polynomials [C1, p. 176] and Pollaczek polynomials:

b0 = a, bn = 1, n 6= 0, λn = an2,

(9.24)

pn(x) = (−a)n/2mn(
x− 1−

√
−a

2
√
−a ,−1, 1) + (1− a)P

1/2
n−1(

x− 1

2
√
a
, π/2, 1)(2

√
a)n−1.
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(2200) Specialization: r = s = t = u = 0. The polynomials are a sum of Meixner
polynomials [C1, p. 176] and Pollaczek polynomials:

b0 = a, b1 = 1, bn = 0, n > 1, λn = an2,

pn(x) =(−a)n/2mn(
x−

√
−a

2
√
−a ,−1, 1)− a(2

√
a)n−1P

1/2
n−1(

x

2
√
a
, π/2, 1)

−(x− a)(2
√
a)n−2P

1/2
n−2(

x

2
√
a
, π/2, 2).(9.25)

(0211) Specialization: t = u = v = p = 0. The polynomials are sums of dual
Lommel polynomials:

b1 = 2a+ 1, bn = a(n+ 1), n 6= 1, λn = a,

(9.26) pn(x) = (−a)nKn(
a− x

a
,
1

a
) + (a− x)(−a)n−2Kn−2(

3a− x

a
,
1

a
).

10. q-analogs of classical orthogonal polynomials.

In §9 we gave several classical orthogonal polynomials which were specializations
of the octabasic Laguerre polynomials. So each of these polynomials has its own
multi-q version, by “despecializing” the q’s which were set to 1. However, it is
possible to specialize these remaining q’s to obtain known q-analogs of classical
orthogonal polynomials. In this section we give these specializations, and state the
explicit formulas for the polynomials.

(0000), q-Laguerre [Si-St, (3.6)] (r = t = b = q−2, s = u = a = q−1, p = β = 1,
v = q−4, w = q−3, bn = q−2n[n]q + q−1−2n[n+ β]q, λn = q1−4n[n]q[n+ β − 1]q)

pn(x) =

n
∑

j=0

[

n
j

]

q

qj
2−n2

xj
n−j−1
∏

i=0

(1− qβ+j+i)

(q − 1)
.

(1011), dual q-Lommel [I, (1.25), (2.10)] (r = p = v = 0, s = 1, {t, u} = {1, q−1},
w = q−1, bn = a+ [n]1/q, λn = aq1−n)

pn(x) = q−n(n−1)/2(−1)n
n/2
∑

j=0

[

n− j
j

]

q

(−a)jqj2
n−j−1
∏

k=j

(q[k]q − qk(x− a)).

(1010), q-Charlier [deM-St-Wh] (r = p = 0, s = q, {t, u} = {v, w} = {1, q},
bn = aqn + [n]q, λn = aqn−1[n]q)

pn(x) =

n
∑

j=0

[

n
j

]

q

(−1)nan−jq(
n−j
2 )

j−1
∏

k=0

([k]q − x).
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(2110), discrete q-Hermite [Ga-Ra, p. 193] (r = s = t = p = 0, a = u = v = 1,
w = q, bn = 1, λn = qn−1[n]q)

pn(x) =

n/2
∑

j=0

[

n
2j

]

q

(x− 1)n−2j(−1)jqj(j−1)

j
∏

k=1

[2k − 1]q.

(1111), q-Chebyshev (r = t = p = v = 0, s = u = w = q, b0 = a, bn = aqn+qn−1,
n > 0, λn = aq2n−2)

pn(x) =

n/2
∑

j=0

qj(j−1)/2xn−j(−1)j
j

∑

k=0

[

n− 1− k
n− 1− j

]

q

[

n− j + k
k

]

q

ak.

(2111), q-Chebyshev (several choices)
(r = s = t = p = v = 0, u = 1 = w, b0 = a, bn = 1, n > 0, λn = aqn−1)

pn(x) =

n/2
∑

j=0

(

[

n− j
j

]

q

(x−1)n−2j+(1−a)qj
[

n− j − 1
j

]

q

(x−1)n−2j−1)qj(j−1)(−a)j .

(r = s = t = p = v = 0, w = 1/q, b0 = a, bn = un−1, n > 0, λn = a, see [Is-Mu]
for related results)

pn(x) =

n
∑

k=0

(−1)kuk(k−3)/2a(n−k)/2
n−k
∑

s=0

[

k + s
s

]

u

[

n− s
s

]

u

Tn−k−2s(
x

2
√
a
)+

n−1
∑

k=0

(−1)kuk(k−3)/2a(n−k−1)/2
n−k−1
∑

s=0

[

k + s
s

]

u

[

n− s− 1
s

]

u

Tn−k−1−2s(
x

2
√
a
).

11. Remarks.

Other specializations also are of combinatorial interest. For example, we can
obtain up-down permutations, that is, the class UD(N) ⊆ SN of permutations σ
such that σ(1) < σ(2) > σ(3) < . . . . If we take bn = 0 and λn = n2, then the
weighted Motzkin paths enumerated by the moment µ2n have no horizontal steps,
hence the corresponding permutations consist exclusively of runs of length 2. Thus,
the moments µ2n = |UD(2n)| are the secant numbers [Go-Ja, p. 169].

Returning briefly to the orbit 2100 (case (24), §4), if we take the specialization
r = s = t = 0 and the other bases equal to 1, we get the three-term recurrence
coefficients bn = 1, λn = n2. Comparing the Motzkin paths for this case with
those for the previous specialization (this time, singleton runs are permitted and
must be separated from the other, length 2, runs), the moments now are µn =
∑

j≥0

(

n
2j

)

|UD(2j)|. In turn, this implies that the moments of the orbit 2100 of §4
have exponential generating function

∑

n≥0 µnz
n/n! = ez

∑

n≥0 |UD(2n)|zn/n! =
ezsec(z).

The tangent numbers, |UD(2n + 1)|, are the moments (up to sign) if bn = −1,
λn = −n2; this is the choice a = −1 in (1.1). A set of q-tangent numbers is given
in [An-Ge]. We have a natural (r, s)-tangent number if

(11.1) bn = −[n+ 1]r,s + [n]r,s, λn = −[n]2r,s.
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Let

(11.2) T2n+1(r, s) = (−1)nµ2n+1.

The following theorem is a companion to those in [An-Fo], [An-Ge].

Theorem 11.1. We have

T2n+1(r, s) =
∑

w∈UD1,2n+2(2n+2)

rlsg
′(w)srsg

′(w),

where UD1,2n+2(2n + 2) is the set of up-down permutations of [2n + 2] in which
1 and 2n + 2 are in the same run, and the statistics lsg′ and rsg′ are defined by
modifying lsg and rsg: closers do not count the run (1, 2n+ 2). Moreover (r+ s)n

divides T2n+1(r, s).

Proof. If we put λ′2n+1 = −[n+ 1]r,s, λ
′
2n = [n]r,s, then the tangent numbers arise

from the moments of the odd polynomials. These have a three-term recurrence
whose coefficients are a special case of (7.3), namely,

(11.3) bn(o) = 0, λn(o) = −[n]r,s[n+ 1]r,s.

According to (6.2) and (6.4), µ2n+1(e) = −µ2n(o). As in the argument preceding
Theorem 7.2, the Motzkin paths enumerated here by the moment µ2n(o) correspond
to permutations in S2n+2 via the bijection ϕ. In this case, the Motzkin paths P have
no horizontal steps (since bn(o) = 0), so the permutations produced as ϕ(P ) consist
exclusively of 2-element runs. In fact, the image of ϕ in this case is UD1,2n+2(2n+2).
The description of the statistics lsg′ and rsg′ follows directly from the discussion
in §7 of the effect of ϕ on lsg and rsg.

Finally, the Motzkin paths of length 2n considered here permit a pairing of every
NE step with a SE step between the same two levels. In each such pair, the weight
of one the the two steps is a monomial from [2k]r,s for some k ≥ 1. In turn, [2k]r,s
is divisible by r+s. Therefore, the sum of the weights of all P which have the same
underlying (unweighted) path of length 2n is divisible by (r + s)n. �

There is an easy bijection from the permutations in UD(2n + 2) which contain
the run 1, 2n+2 to UD(2n+1). This is a modification of the bijection ψ of §7. Since
all permutations in UD1,2n+2(2n+2) satisfy the condition (ii) (indeed, vacuously),
we delete 2n+2. But now we must eliminate the two consecutive ascents resulting
if 2n+2 was not in the last position. To this end, we reverse the word to the right
of 1. For example, 36|18|25|47 ∈ UD1,8(8) maps to 36|17|45|2 ∈ UD(7). A version
of Theorem 11.1 could be given for UD(2n+ 1).

An (r, s)-analogue of the secant numbers, E2n = |UD(2n)|, arises as E2n(r, s) =
µ2n if bn = 0, λn = [n]2r,s, and we have (see [An-Fo])

E2n(r, s) ≡ 1 mod (r + s)2.

Indeed, the Motzkin paths enumerated by the moments are without horizontal steps
and all steps between levels k and k− 1 have weights from [k]r,s. Thus, the unique
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path which does not exceed level 1 has weight 1, while every other path has at
least two steps between levels 1 and 2, and its total contribution to the moment is
divisible by [2]2r,s.

Alternative descriptions of the moments for the orbit (3), 1111, of §4 can be
given in terms of permutations. Choosing the specialization r = p = t = v = 0,
it is easy to see from Theorem 2.1 that the moments enumerate the 132-avoiding
permutations, i.e., permutations σ such that there is no triple i < j < k with
σ(i) < σ(k) < σ(j). Also, for the choice s = q = u = w = 0, the moments count
the 213-avoiding permutations, i.e., permutations σ such that there is no triple
i < j < k with σ(j) < σ(i) < σ(k). The orbit 1111 has size 16 here, so there are
14 other subsets of permutations which are enumerated by the Catalan numbers.
Analogous statements can be made for the other orbits.

We could define an octabasic version of the Laguerre polynomials Lα
n(x), by

putting

(11.4) bn = (α+ rn−1s+ · · ·+ sn)+ [n]t,u, λn = [n]p,q(α+ vn−2w+ · · ·+wn−1).

Appendix.

We list the explicit formulas for each of the classical polynomials in §7. We
use the notation (a)k for the rising factorial. We also give the recurrence relation
coefficients for the monic forms.

Charlier, bn = n+ a, λn = an,[C1, p. 170]

Ca
n(x) =

n
∑

k=0

(

n

k

)(

x

k

)

k!(−a)n−k.

Meixner, bn = ((1 + c)n+ cβ)/(1− c), λn = cn(n+ β − 1)/(1− c)2, [C1, p. 176,
(3.5)]

mn(x, c, β) = n!(−1)n
n
∑

k=0

(−x− β

n− k

)(

x

k

)

(1/c)k.

Chebyshev, bn = 0, λn = 1,[C1, p. 143]

Un(x) =

n/2
∑

m=0

(

n−m

m

)

(−1)m(2x)n−2m.

Hermite, bn = 0, λn = n/2,[C1, p. 146]

Hn(x) = n!

n/2
∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
.

Associated Hermite, bn = 0, λn = (n+ c)/2,[As-Wm, (4.18)]

Hn(x, c) =

n/2
∑

k=0

(−2)k(c)k(n− k)!

k!(n− 2k)!
Hn−2k(x).
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Associated Charlier, bn = n+ a+ c, λn = a(n+ c), [I-L-V]

Ca
n(x, c) = (−1)n(c+ 1)n

∑

0≤k+p≤n

(x+ 1)k
k!

(−x)n−k−p

(n− k − p)!

cap

(c+ k)p+1
.

Dual Lommel polynomials, bn = −n, λn = β, [Ma]

Kn(x, β) =

n/2
∑

k=0

(

n− k

k

)

(x+ k)n−2k(−β)k.

Meixner-Pollaczek,[C1, p. 186, (5.13)], (c = 0, α = cot(φ)), bn = −α(n+µ), λn =
n(n+ 2µ− 1)(1 + α2)/4,

Pµ
n (x, φ) =

(2µ)n
n!

einφ
n
∑

k=0

(

n

k

)

(µ+ ix)k
(2µ)n

(e−2iφ − 1)k.

Associated Meixner-Pollaczek (Pollaczek), [C1, p. 186, (5.13)] bn = −α(n+ µ+
c), λn = (n+ c)(n+ 2µ+ c− 1)(1 + α2)/4,

Pµ
n (x, φ, c) =

(c+ 1)n
(2sin(φ))n

n
∑

k=0

c

c+ k
P 1−µ
k (−x, φ)Pµ

n−k(x, φ).
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