PROOF OF A MONOTONICITY CONJECTURE
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ABSTRACT. A monotonicity conjecture of Friedman, Joichi and Stanton is estab-
lished.

In [2] the following monotonicity conjecture was made.
Conjecture. Ifn > 3 is an odd integer, then
I—q
2n—1 ;
Hizn (1-4q")
has non-negative power series coefficients.

The purpose of this note is prove the Conjecture.

The conjecture has been established for prime values of n by Andrews [1], and
for n < 99, using a computer proof (see [2], [4]). The proof given here relies upon an
identity for the rational function of the conjecture, which is our Lemma. A similar
identity was found by Andrews [1] to establish the case when n is prime.

Recall the notation

(a;q)n = (1—a)(1—aq)--- (1 —aq"™ "), [n]g=(1—-¢")/(1—0q),
and
[n] _ (@9
kly (@@ -k

Lemma. Ifn is a non-negative integer, then

n—2
l1—4q 1 ( 4n2—6n+3 (nm)(2m+1) (" a7 Y
4 g=—5—— 1— q n n 4 q n+m)(2m 4 4 Jm
G 1 — g4n?*—6n+2 mzzo (@2 @)am
n—3 n—1. —
+ Z q2(n+m+1)(m+1) (¢ iq 1)m+1 >
m=0 (@25 @) 2m+1

Proof of the Conjecture. We may assume the Lemma and take n > 5. We show

that the individual terms of the Lemma inside the parentheses have non-negative

2_6n+3

coefficients, and that ¢*" also occurs.
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First we show that the mth term in each of the two sums has non-negative
coefficients. If m = 0 the term in the second sum is ¢>™ D (1 — ¢»~1)/(1 — ¢?),
which is non-negative since n is odd, while the term in the first sum is ¢".

So we take 1 < m < n — 3 and first consider the second sum. If 2m+2>n —1,
then L

(q ’ q_l)m+1 - 1

(q2; Q)2m+1 (qn; Q)2m+3—n(q2§ Q)n—m—S

which clearly has non-negative coefficients. Next suppose that 2m +2 <n —1 and
let
2°<m+1<2t —1

for some positive integer s. Note that 257! < 2m +2 < n — 1. Then

(@5 Dmer _ 1 [ n } 1
(4% @)2m+1 [nq 2+ q((IZSHH;Q)2m+2725+1(qn_23+1+1§Q)2s+17m72

We now appeal to the fact [1, Th. 2], [3, Prop. 2.5.1] that

i 1,

has non-negative coefficients if 1 < k& < n and GCD(n,k) = 1, to obtain non-
negativity of the mth term since n is odd.
For the first sum a similar proof applies. For 1 < m < n — 2 we have

n—1. —1
(@5 ) _ 1 Jif2m41>n—1,

(QQ; Q)Qm (qn; Q)2m+27n(q2§ Q)nfm72

while for 2m+1 <n —1 we let 25 < m + 1 < 2571 to obtain

(@5 a m 1[ n L(q 1

= 2S+1 2s+141.

(@%q)om  [n]g P Q)ama1_2s+1 (g2 g)

25+l _m—1

Finally we must show that the term q4”2’6”+3 does appear in the sum. The
m =n — 2 term of the first sum is

q4n2—10n+6

(@™ @)n—2

and a ¢*" 2 does appear due to the denominator factors of (1—¢") and (1—¢*"~3).

Proof of the Lemma. The lemma is equivalent to

n—1
1 ("% q m
=1+ q(n+m)(2m+1) \Y -4 /m
(@™ q@)n 2 (¢: @) 2m+1

m=0
n—2
("5 Dmna
1 + q2(n+m+1)(m+1)
o Z (45 @)2m+2

m=0
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because the m = n — 1 term of the first sum and the m = n — 2 term of the second

sum do sum to

4n2—6n+2

a
s

To prove (1), the g-binomial theorem implies

+1

14 i J g — i 7" L(qd — )

(q 4 q

n

1—

TL

o0
+(1—q" Z J 2 (n+1)g

=1+

n L q2(n+1)

q n— - ] 2 (n—i—l)y
+(1—-q
1—gq ( ) (¢ q)z ]z:

=1+

Continuing we see that for ¢ > 0,

L. qummmw
(@™ @)n = (¢ @)2m+1
t
(@ " Dt
+ q2(n+m+1)(m+1)
mz:() (4 @)2m+2
+(@" a7 Den i Ul EE g3
i (¢:9);

and (1) is the t = n — 1 case.

Remarks. One may also see that the Lemma proves that the coefficients are
strictly positive past ¢3"*4 for n > 7, (see [2]). The m = 1 term of the first sum is

3(n+1)1+q +qt -+
1—¢°

)

which has the required property.
The equivalent form (1) of the Lemma is the x = ¢™ special case of

1 — n+m-—1 92 x?m = n+m om? 4 x2mtl
o B[] E ]
(#30)n mz:O 2m ] (@ @)m mz:O 2m+1], (%3 Qm1
A generalization of (2) to any positive integer r > 2 is
[ee) oo . . t 1
Z (a o :Z (a;q)(r—1)(b/a; Q)tq(rt—nt—(;) (—a)tz"
= (b 9k — (0; @)re (@3 )¢
+i a; q (r— 1)t+1(b/a Q)t qv‘t2 (t) (_a)txrt-i—l
=0 (0; Q)41 (@5 @)1
(3) +T— i a: q (r—1)t+i— 1(b/a q)t+1 (rt+z 1)(t41)— (r+1) (_a)t+lxrt+i
i (03 @)t (@3 @)e+1
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Another identity similar to the Lemma is

l1—q 1 2n—1)+1 l—gq (m+n—1)
L N — _ n( n—1)+ + qm m+n ,
(@™ @)n 1 —gnn=1) Z (@™ @)m

which would also prove the Conjecture if the individual terms are non-negative.

Conjecture 1. The power series coefficients of
[ n ] 1—¢q
m |, (@ @)m
are mon-negative

(1) ifn>0is odd and 0 < m < n, or
(2) if n >0 is even and 0 < m < n with m # 2,n — 2.

Recall [5] the Schur function sy(x1,---,z,) and the content [5, p.11, Ex. 1.1.3]
of a cell x € A\. A Schur function version of Conjecture 1 is

Conjecture 2. The power series coefficients of

n—l) 1- q
Hl’E)\ 1— qn—c(m)

SA(laqa"' » q

are non-negative unless

(1) A=11 and n > 0 is even, or
(2) A\=1%, k>3 odd, n =k, or
(3) A=1%, k>3 even, n =k or k + 2.

Conjecture 1 is the choice A = 1™ in Conjecture 2.
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