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Abstract. A monotonicity conjecture of Friedman, Joichi and Stanton is estab-
lished.

In [2] the following monotonicity conjecture was made.

Conjecture. If n ≥ 3 is an odd integer, then

1− q
∏2n−1

i=n (1− qi)
+ q

has non-negative power series coefficients.

The purpose of this note is prove the Conjecture.
The conjecture has been established for prime values of n by Andrews [1], and

for n ≤ 99, using a computer proof (see [2], [4]). The proof given here relies upon an
identity for the rational function of the conjecture, which is our Lemma. A similar
identity was found by Andrews [1] to establish the case when n is prime.

Recall the notation

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), [n]q = (1− qn)/(1− q),

and
[

n
k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

.

Lemma. If n is a non-negative integer, then

1− q

(qn; q)n
+ q =

1

1− q4n2−6n+2

(

1− q4n
2
−6n+3 +

n−2
∑

m=0

q(n+m)(2m+1) (q
n−1; q−1)m
(q2; q)2m

+
n−3
∑

m=0

q2(n+m+1)(m+1) (q
n−1; q−1)m+1

(q2; q)2m+1

)

.

Proof of the Conjecture. We may assume the Lemma and take n ≥ 5. We show
that the individual terms of the Lemma inside the parentheses have non-negative

coefficients, and that q4n
2
−6n+3 also occurs.

Research partially supported by NSF grant DMS-0203282.



T. PRELLBERG AND D. STANTON

First we show that the mth term in each of the two sums has non-negative
coefficients. If m = 0 the term in the second sum is q2(n+1)(1 − qn−1)/(1 − q2),
which is non-negative since n is odd, while the term in the first sum is qn.

So we take 1 ≤ m ≤ n− 3 and first consider the second sum. If 2m+ 2 ≥ n− 1,
then

(qn−1; q−1)m+1

(q2; q)2m+1
=

1

(qn; q)2m+3−n(q2; q)n−m−3

which clearly has non-negative coefficients. Next suppose that 2m+ 2 < n− 1 and
let

2s ≤ m+ 1 ≤ 2s+1 − 1

for some positive integer s. Note that 2s+1 ≤ 2m+ 2 < n− 1. Then

(qn−1; q−1)m+1

(q2; q)2m+1
=

1

[n]q

[

n
2s+1

]

q

1

(q2s+1+1; q)2m+2−2s+1(qn−2s+1+1; q)2s+1−m−2

We now appeal to the fact [1, Th. 2], [3, Prop. 2.5.1] that

1

[n]q

[

n
k

]

q

has non-negative coefficients if 1 < k < n and GCD(n, k) = 1, to obtain non-
negativity of the mth term since n is odd.

For the first sum a similar proof applies. For 1 ≤ m ≤ n− 2 we have

(qn−1; q−1)m
(q2; q)2m

=
1

(qn; q)2m+2−n(q2; q)n−m−2
, if 2m+ 1 ≥ n− 1,

while for 2m+ 1 < n− 1 we let 2s < m+ 1 ≤ 2s+1 to obtain

(qn−1; q−1)m
(q2; q)2m

=
1

[n]q

[

n
2s+1

]

q

1

(q2s+1+1; q)2m+1−2s+1(qn−2s+1+1; q)2s+1−m−1

.

Finally we must show that the term q4n
2
−6n+3 does appear in the sum. The

m = n− 2 term of the first sum is

q4n
2
−10n+6

(qn; q)n−2
,

and a q4n−3 does appear due to the denominator factors of (1−qn) and (1−q2n−3).

Proof of the Lemma. The lemma is equivalent to

1

(qn; q)n
=1 +

n−1
∑

m=0

q(n+m)(2m+1) (q
n−1; q−1)m
(q; q)2m+1

+
n−2
∑

m=0

q2(n+m+1)(m+1) (q
n−1; q−1)m+1

(q; q)2m+2
,(1)
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because the m = n− 1 term of the first sum and the m = n− 2 term of the second
sum do sum to

q4n
2
−6n+2

(qn; q)n
.

To prove (1), the q-binomial theorem implies

1

(qn; q)n
=1 +

∞
∑

j=1

(qn; q)j
(q; q)j

qnj = 1 +
∞
∑

j=1

(qn+1; q)j−1

(q; q)j

(

qnj − qn(j+1)
)

=1 +
qn

1− q
+ (1− qn−1)

∞
∑

j=2

(qn+1; q)j−2

(q; q)j
q(n+1)j

=1 +
qn

1− q
+ (1− qn−1)

q2(n+1)

(q; q)2
+ (1− qn−1)

∞
∑

j=3

(qn+1; q)j−2

(q; q)j
q(n+1)j .

Continuing we see that for t ≥ 0,

1

(qn; q)n
=1 +

t
∑

m=0

q(n+m)(2m+1) (q
n−1; q−1)m
(q; q)2m+1

+
t
∑

m=0

q2(n+m+1)(m+1) (q
n−1; q−1)m+1

(q; q)2m+2

+(qn−1; q−1)t+1

∞
∑

j=2t+3

(qn+t+1; q)j−2t−2

(q; q)j
q(n+t+1)j .

and (1) is the t = n− 1 case.

Remarks. One may also see that the Lemma proves that the coefficients are
strictly positive past q3n+4 for n ≥ 7, (see [2]). The m = 1 term of the first sum is

q3(n+1) 1 + q2 + q4 + · · ·+ qn−3

1− q3
,

which has the required property.
The equivalent form (1) of the Lemma is the x = qn special case of

(2)
1

(x; q)n
=

n−1
∑

m=0

[

n+m− 1
2m

]

q

q2m
2 x2m

(x; q)m
+

n−1
∑

m=0

[

n+m
2m+ 1

]

q

q2m
2+m x2m+1

(x; q)m+1
.

A generalization of (2) to any positive integer r ≥ 2 is

∞
∑

k=0

(a; q)k
(b; q)k

xk =

∞
∑

t=0

(a; q)(r−1)t(b/a; q)t

(b; q)rt
q(rt−1)t−(t2) (−a)txrt

(x; q)t

+
∞
∑

t=0

(a; q)(r−1)t+1(b/a; q)t

(b; q)rt+1
qrt

2
−(t2) (−a)txrt+1

(x; q)t+1

+
r−1
∑

i=2

∞
∑

t=0

(a; q)(r−1)t+i−1(b/a; q)t+1

(b; q)rt+i

q(rt+i−1)(t+1)−(t+1

2 ) (−a)t+1xrt+i

(x; q)t+1
.(3)
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Another identity similar to the Lemma is

1− q

(qn; q)n
+ q =

1

1− qn(2n−1)

(

1− qn(2n−1)+1 +
n−1
∑

m=1

[

n
m

]

q

1− q

(qn; q)m
qm(m+n−1)

)

,

which would also prove the Conjecture if the individual terms are non-negative.

Conjecture 1. The power series coefficients of

[

n
m

]

q

1− q

(qn; q)m

are non-negative

(1) if n > 0 is odd and 0 < m < n, or
(2) if n > 0 is even and 0 < m < n with m 6= 2, n− 2.

Recall [5] the Schur function sλ(x1, · · · , xn) and the content [5, p.11, Ex. I.1.3]
of a cell x ∈ λ. A Schur function version of Conjecture 1 is

Conjecture 2. The power series coefficients of

sλ(1, q, · · · , q
n−1)

1− q
∏

x∈λ 1− qn−c(x)

are non-negative unless

(1) λ = 11 and n > 0 is even, or

(2) λ = 1k, k ≥ 3 odd, n = k, or
(3) λ = 1k, k ≥ 3 even, n = k or k + 2.

Conjecture 1 is the choice λ = 1m in Conjecture 2.
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