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Abstract. We decribe various aspects of the Al-Salam-Chihara q-Laguerre polynomials. These
include combinatorial descriptions of the polynomials, the moments, the orthogonality relation
and a combinatorial interpretation of the linearization coefficients. It is remarkable that the
corresponding moment sequence appears also in the recent work of Postnikov and Williams on
enumeration of totally positive Grassmann cells.
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1. Introduction

The monic simple Laguerre polynomials Ln(x) may be defined by the explicit formula:

Ln(x) =
n∑

k=0

(−1)n−k n!
k!

(
n

k

)
xk, (1)

or by the three-term recurrence relation

Ln+1(x) = (x− (2n + 1))Ln(x)− n2Ln−1(x). (2)

The moments are

µn = L(xn) =
∫ ∞

0
xne−xdx = n!. (3)
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The linearization formula reads as follows:

Ln1(x)Ln2(x) =
∑

n3

Cn3
n1 n2

Ln3(x),

where

Cn3
n1 n2

=
∑

s≥0

n1!n2! 2N2+n3−2s s!
(s− n1)!(s− n2)!(s− n3)!(N2 + n3 − 2s)!n3!

.

Equivalently we have

L(Ln1(x)Ln2(x)Ln3(x)) =
∑

s≥0

n1!n2!n3! 2N2+n3−2s s!
(s− n1)!(s− n2)!(s− n3)!(N2 + n3 − 2s)!

. (4)

Given positive integers n1, n2, . . . , nk such that n = n1 + · · · + nk, let Si be the consecutive
integer segment {n1 + · · ·ni−1 + 1, . . . , n1 + · · · + ni} with n0 = 0, then S1 ∪ . . . ∪ Sk = [n].
A permutation σ of [n] is said to be a generalized derangement of specification (n1, . . . , nk) if i
and σ(i) do not belong to a same segment Sj for all i ∈ [n]. Let D(n1, n2, . . . , nk) be the set of
generalized derangements of specification (n1, . . . , nk) then we have

L(Ln1(x) . . . Lnk(x)) =
∑

σ∈D(n1,n2,...,nk)

1. (5)

A q-version of (1) was studied by Garsia and Remmel [9] in 1980. Several q-analogues of the
recurrence relation (2) and moments (3) were investigated in the last two decades (see [2,18,19])
in order to obtain new mahonian statistics on the symmetric groups. On the other hand, in view
of the unified combinatorial interpretations of several aspects of Sheffer orthogonal polynomials
(moments, polynomials, and the linearization coefficients)(see [14, 20, 22]) it is natural to seek
for a q-version of this picture.

As one can expect, the first result in this direction was the linearization formula for q-Hermite
polynomials due to Ismail, Stanton and Viennot [12], dated back to 1987. In particular, their
formula provides a combinatorial evaluation of the Askey-Wilson integral. However, a similar
formula for q-Charlier polynomials was discovered only recently by Anshelevich [1], who used
the machinery of q-Levy stochastic processes. Short later, Kim, Stanton and Zeng [15] gave a
combinatorial proof of Anshelevich’s result.

The object of this paper is to give a q-version of all the above formulas for simple Laguerre
polynomials. It is interesting to note that the corresponding moment sequence appears in the
recent work on enumeration of totally positive Grassmann cells [3, 21].

The rest of this paper is organized as follows: We recall the definition of Al-Salam-Chihara
polynomials, prove their linearization formula introduce the new q-Laguerre polynomials in
Section 2. In Section 3 we study the moment sequence of the q-Laguerre polynomials. In
particular we shall give a new proof of Williams’ formula for the corresponding moment sequence.
We derive then the linearization coefficients of our q-Laguerre polynomials in Section 4. Finally
two technical lemmas will be proved in Sections 5 and 6, respectively.
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2. Al-Salam-Chihara polynomials revisited

The Al-Salam-Chihara polynomials Qn(x) := Qn(x;α, β|q) may be defined by the recurrence
relation [16, Chapter 3]:

{
Q0(x) = 1, Q−1(x) = 0,
Qn+1(x) = (2x− (α + β)qn)Qn(x)− (1− qn)(1− αβqn−1)Qn−1(x), n ≥ 0.

(6)

Let Qn(x) = 2npn(x) then

xpn(x) = pn+1(x) +
1
2
(α + β)qnpn(x) +

1
4
(1− qn)(1− αβqn−1)pn−1(x). (7)

They also have the following explicit expressions:

Qn(x;α, β|q) =
(αβ; q)n

αn 3φ2

(
q−n, αu, αu−1

αβ, 0

∣∣∣ q; q

)

= (αu; q)nu−n
2φ1

(
q−n, βu−1

α−1q−n+1u−1

∣∣∣ q;α−1qu

)

= (βu−1; q)nun
2φ1

(
q−n, αu

β−1q−n+1u

∣∣∣ q;β−1qu−1

)
,

where x = u+u−1

2 or x = cos θ if u = eiθ.
The Al-Salam-Chihara polynomials have the following generating function

G(t, x) =
∞∑

n=0

Qn(x;α, β|q) tn

(q; q)n
=

(αt, βt; q)∞
(teiθ, te−iθ; q)∞

.

They are orthogonal with respect to the linear functional L̂q:

L̂q(xn) =
1
2π

∫ π

0
(cos θ)n (q, αβ, e2iθ, e−2iθ; q)∞

(αeiθ, αe−iθ, βeiθ, βe−iθ; q)∞
dθ, (8)

where x = cos θ. Note that

L̂q(Qn(x)2) = (q; q)n(αβ; q)n.

Theorem 1. . We have

Qn1(x)Qn2(x) =
∑

n3≥0

Cn3
n1,n2

(α, β; q)Qn3(x), (9)

where

Cn3
n1,n2

(α, β; q) = (−1)N2+n3
(q; q)n1(q; q)n2

(αβ; q)n3

×
∑

m2,m3

(αβ; q)n1+m3α
m2βn3+n2−n1−m2−2m3q(

m2
2 )+(n3+n2−n1−m2−2m3

2 )

(q; q)n3+n2−n1−m2−2m3(q; q)m2(q; q)m3+n1−n3(q; q)m3+n1−n2(q; q)m3

.
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Proof. Clearly Cn3
n1,n2

(α, β; q) = L̂q(Qn1(x)Qn2(x)Qn3(x))/L̂q(Qn3(x)Qn3(x)). Using the Askey-
Wilson integral:

(q; q)∞
2π

∫ π

0

(e2iθ, e−2iθ; q)∞∏4
j=1(tjeiθ, tje−iθ; q)∞

dθ =
(t1t2t3t4; q)∞∏

1≤j<k≤4(tjtk; q)∞
,

one can prove [12, Theorem 3.5] that

L̂q(G(t1, x)G(t2, x)G(t3, x))

=
(αt1t2t3, βqt1t2t3, αβq; q)∞

(t1t2, t1t3, t2t3; q)∞
3φ2

(
t1t2, t1t3, t2t3

αt1t2t3, βt1t2t3
|q;αβ

)
.

Therefore
∑

n1,n2,n3

L̂q(Qn1(x)Qn2(x)Qn3(x))
tn1
1

(q; q)n1

tn2
2

(q; q)n2

tn3
3

(q; q)n3

=
∑

k≥0

(αt1t2t3qk, βt1t2t3qk, αβ; q)∞
(t1t2qk, t1t3qk, t2t3qk; q)∞

(αβ)k

(q; q)k
. (10)

Using the Euler formulas:

(t; q)∞ =
∑

n≥0

(−1)nq(
n
2)

(q; q)n
tn;

1
(t; q)∞

=
∑

n≥0

1
(q; q)n

tn,

we can rewrite the sum in (10) as follows:

(αβ; q)∞
∑

k≥0

(αβ)k

(q; q)k

∑

l1,l2≥0

αl1βl2qk(l1+l2)(−t1t2t3)l1+l2q(
l1
2 )+(l2

2 )

(q; q)l1(q; q)l2

×
∑

m1,m2,m3≥0

q(m1+m2+m3)ktm1+m2
1 tm1+m3

2 tm1+m3
3

(q; q)m1(q; q)m2(q; q)m3

. (11)

Substituting
∑

k≥0

(αβql1+l2+m1+m2+m3)k

(q; q)k
=

1
(αβql1+l2+m1+m2+m3 ; q)∞

in (11), we get

∑

l1,l2,m1,m2,m3

tn1
1 tn2

2 tn3
3

(αβ)n1+m3α
l1βl2q(

l1
2 )+(l2

2 )

(q; q)m1(q; q)m2(q; q)m3(q; q)l1(q; q)l2
(−1)l1+l2 , (12)

where l1 + l2 + m1 + m2 = n1, l1 + l2 + m1 + m3 = n2 and l1 + l2 + m2 + m3 = n3.
Since l1 + l2 ≡ N2 + n3 (mod 2), extracting the coefficient of t

n1
1 t

n2
2 t

n3
3

(q; q)n1 (q; q)n2 (q; q)n3
in (12) and

dividing by (q, αβ; q)n3 we obtain (9) where l1 is replaced by m2. !
We define the new q-Laguerre polynomials Ln(x; q) by re-scaling Al-Salam-Chihara polyno-

mials:

Ln(x; q) =
( √

y

q − 1

)n

Qn

(
(q − 1)x + y + 1

2√y
;

1
√

y
,
√

yq|q
)

. (13)
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It follows from (7) that the polynomials Ln(x; q) satisfy the recurrence:

Ln+1(x; q) = (x− y[n + 1]q − [n]q)Ln(x; q)− y[n]2qLn−1(x; q). (14)

We derive then the explicit formula for Ln(x):

Ln(x; q) =
n∑

k=0

(−1)n−k n!q
k!q

[
n

k

]

q

qk(k−n)yn−k
k−1∏

j=0

(
x− (1− yq−j)[j]q

)
. (15)

Thus

L1(x; q) = x− y,

L2(x; q) = x2 − (1 + 2y + qy)x + (1 + q)y2,

L3(x; q) = x3 − (q2y + 3 y + q + 2 + 2 qy)x2

+ (q3y2 + yq2 + q + 2 qy + 3 q2y2 + 1 + 4 qy2 + 2 y + 3 y2)x

− (2 q2 + 2 q + q3 + 1)y3.

A combinatorial interpretation of these q-Laguerres polynomials can be derived from the
Simion and Stanton’s combinatorial model for the a = s = u = 1 and r = t = q special case of
the quadrabasic Laguerre polynomials [19, p.313].

3. Moments of the q-Laguerre polynomials

Let Sn be the set of permutations of [n] := {1, 2, . . . , n}. For σ ∈ Sn the number of crossings
of σ is defined by

cr(σ) =
n∑

i=1

#{j|j < i ≤ σ(j) < σ(i)} +
n∑

i=1

#{j|j > i > σ(j) > σ(i)},

while the number of weak excedances of σ is defined by

wex(σ) = #{i|1 ≤ i ≤ n and i ≤ σ(i)}.

It is useful to have a geometric interpretation of these statistics by associating with each
permutation σ of [n] a diagram as follows: arrange the integers 1, 2, . . . , n on a line in increasing
order from left to right and draw an arc i → σ(i) above (resp. under) the line if i < σ(i) (resp.
i > σ(i)). For example, the permutation σ = 93 7 4 6 11 5 8 1 10 2 can be depicted as follows:

!
1

!
2

!
3

!
4

!
5

!
6

!
7

!
8

!
9

!
10

!
11

Thus, the number of weak excedances of σ is the number of edges drawn above the line plus
the number of isolated points, while the number of crossings of σ is the number of pairs of edges
above the line that cross or touch ( " "" " or " " " ), plus the number of pairs of edges
under the line that cross ( " "" " ).
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Let µ($)
n (y, q) be the enumerating polynomial of permutations in Sn with respect to numbers

of weak excedances and crossings:

µ($)
n (y, q) :=

∑

σ∈Sn

ywex(σ)qcr(σ). (16)

It has been proved in [3, 17, 19] that the generating function of the moment sequence has the
following continued fraction expansion:

E(y, q, t) :=
∑

n≥0

µ($)
n (y, q)tn =

1

1− b0t−
λ1t2

1− b1t−
λ2t2

. . .

, (17)

where bn = y[n + 1]q + [n]q and λn = y[n]2q .
We derive then from the classical theory of orthogonal polynomials the following interpretation

for the moments of the q-Laguerre polynomials.

Theorem 2. The n-th moment of the q-Laguerre polynomials is equal to µ($)
n (y, q). More pre-

cisely, let Lq be the linear functional defined by Lq(xn) = µ($)
n (y, q), then

Lq(Ln1(x; q)Ln2(x; q)) = yn1(n1!q)2δn1 n2 . (18)

The first values of the moment sequence are as follows:

µ($)
1 (y, q) = y,

µ($)
2 (y, q) = y + y2,

µ($)
3 (y, q) = y + (3 + q)y2 + y3,

µ($)
4 (y, q) = y + (6 + 4q + q2)y2 + (6 + 4q + q2)y3 + y4.

Combining the results of Corteel [3], Williams [21, Proposition 4.11] and the classical theory
of orthogonal polynomials, one can write the moments of the above q-Laguerre polynomials as
a finite double sum (cf. (33)). Here we propose a direct proof of this result. Actually we shall
give such a formula for the moments of Al-Salam-Chihara polynomials.

Definition 3. Define the y-versions of the q-Stirling numbers of the second kind by

Xn =
n∑

k=1

Sq(n, k, y)
k−1∏

j=0

(X − [j]q(1− yq−j)). (19)

The y-versions of q-Stirling numbers of the first kind can be defined by the inverse matrix or
equivalently

n−1∏

j=0

(X − [j]q(1− yq−j)) =
n∑

k=1

sq(n, k, y)Xk.

Remark 1. We have

Sq(n, k, y)|q=1 = S(n, k)(1− y)n−k, Sq(n, k, 0) = Sq(n, k),



THE COMBINATORICS OF AL-SALAM-CHIHARA q-LAGUERRE POLYNOMIALS 7

where S(n, k) and Sq(n, k) are, respectively, the Stirling numbers of the second kind and their
well-known q-analogues, see [11].

Consider the rescaled Al-Salam-Chihara polynomials Pn(x):

Pn(X) = Qn(((q − 1)X + 1/α2 + 1)α/2; α, β|q)

= α−n
n∑

k=0

(q−n; q)k

(q; q)k
qk(αβqk; q)n−k(1− q)kq(

k
2)α2k

×
k−1∏

j=0

(
X − [i]q(1− q−i/α2)

)
. (20)

Lemma 1. The moments of the rescaled Al-Salam-Chihara polynomials Pn(X) are

µn(α, β) =
n∑

k=1

Sq(n, k, 1/α2)(αβ; q)kq
−(k

2)(1− q)−kα−2k. (21)

Proof. Let L : Xn *→ µn(α, β) be the linear functional. We check that these moments do satisfy
L(Pn(X)) = 0 for n > 0. Let ak be the coefficients in front of the product in (20), then we have,
using y-Stirling orthogonality,

L(Pn(X)) =
n∑

k=0

ak

k∑

j=1

sq(k, j, 1/α2)
j∑

t=1

Sq(j, t, 1/α2)(αβ; q)tq
−(t

2)(1− q)−tα−2t

=
n∑

k=0

ak(αβ; q)kq
−(k

2)(1− q)−kα−2k

= α−n(αβ; q)n

n∑

k=0

(q−n; q)k

(q; q)k
qk = 0.

Note that the last equality follows by applying the q-binomial formula. !
Lemma 2. Let p = 1/q. We have

∞∑

k=0

(αβ; q)kq
−(k

2)(1− q)−kα−2ktk
∏k

i=1(1− [i]qt(1− q−i/α2))
=

∑

i≥0

ci(α, β)
1− [i]qt(1− q−i/α2)

, (22)

where

ci(α, β) =
(αβ; q)i

(q; q)i

qi−i2α−2i

(q1−2i/α2; q)i

(p1+iαβ/α2; p)∞
(p1+2i/α2; p)∞

.

Proof. Note the following partial fraction decomposition formula:

tk

(1− a1t)(1− a2t) . . . (1− akt)
=

(−1)k

a1 · · · ak
+

k∑

i=1

a−1
i

∏k
j=1,j &=i(ai − aj)−1

1− ait
.

Therefore

tk
∏k

i=1(1− [i]qt(1− q−i/α2))
=

k∑

i=0

γk(i)
1− [i]qt(1− q−i/α2)

, (23)
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where

γk(i) =
1

k!q

[
k

i

]

q

α2(k−i)q(
k
2)+k−i2

(q1−2i/α2; q)i(q1+2iα2; q)k−i
(0 ≤ i ≤ k).

Substituting this in (22) yields

ci(α, β) =
∑

k≥i

(αβ; q)k

(q; q)k

[
k

i

]

q

qk−i2α−2i

(q1−2i/α2; q)i(q1+2iα2; q)k−i

=
(αβ; q)i

(q; q)i

qi−i2α−2i

(q1−2i/α2; q)i

∑

k≥0

(αβqi; q)k

(q; q)k

qk

(q1+2iα2; q)k
.

The result follows then by applying the 1Φ1 summation formula (see [10, II.5]). !
Theorem 4. The moments µn(α, β) have the explicit formula

µn(α, β) =
n∑

k=1

k∑

i=1

[
k

i

]

q

qk−i2α−2i

(q; q)k

([i]q(1− q−i/α2))n(αβ; q)k

(q1−2i/α2; q)i(q1+2iα2; q)k−i
. (24)

Proof. By definition (19) we have

Sq(n, k, y) = Sq(n− 1, k − 1, y) + [k]q(1− yq−k)Sq(n− 1, k, y).

Therefore
∑

n≥k

Sq(n, k, y)tn =
tk

∏k
i=1(1− [i]qt(1− q−iy))

. (25)

It follows from (23) and (25) that

Sq(n, k, y) =
q−(k

2)

k!q

k∑

i=1

[
k

i

]

q

yi−kqk2−i2 ([i]q(1− q−iy))n

(q1−2iy; q)i(q1+2i/y; q)k−i
. (26)

Substituting this into (21) yields the desired formula. !

By Lemma 1 and (25) we obtain the generating function for the moments µn(α, β):
∞∑

n=0

µn(α, β)tn =
∞∑

k=0

(αβ; q)kq
−(k

2)(1− q)−kα−2ktk
∏k

i=1(1− [i]qt(1− q−i/α2))
. (27)

The moment of q-Charlier polynomials corresponds to the β = 0, α = −1/
√

a(1− q) case,
while that of q-Laguerre polynomials corresponds to the α = 1/

√
y, αβ = q case. Therefore,

∞∑

n=0

µ(c)
n (a, q)tn =

∞∑

k=0

(aqt)k

∏k
i=1(qi − qi[i]qt + a(1− q)[i]qt)

; (28)

∞∑

n=0

µ($)
n (y, q)tn =

∞∑

k=0

k!q(qty)k

∏k
i=1(qi − qi[i]qt + [i]qty)

. (29)
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By Lemma 2, we obtain, setting p = 1/q,
∞∑

n=0

µ(c)
n (a, q)tn =

∑

i≥0

aiq2i(1− a(1− q)p2i)/(a(1− q)pi; p)∞
i!qqi2(qi − qi[i]qt + a[i]qt(1− q))

, (30)

∞∑

n=0

µ($)
n (y, q)tn =

∑

i≥0

yi(q2i − y)
qi2(qi − qi[i]qt + [i]qty)

. (31)

We derive then the following polynomial formulae in a and y for the corresponding moments:

µ(c)
n (a, q) =

n∑

k=1

ak
k∑

l=0

[k − l]nq (−1)l

(k − l)!q

l∑

j=0

(1− q)j

(l − j)!q
q(

l−j+1
2 )−k(k−l)

((
n

j

)
qk−l +

(
n

j − 1

))
; (32)

µ($)
n (y, q) =

n∑

k=1

yk
k−1∑

i=0

(−1)i[k − i]nq qk(i−k)

((
n

i

)
qk−i +

(
n

i− 1

))
. (33)

Note that (32) is simpler than the formula given in [15, Proposition 5].

4. Linearization coefficients of the q-Laguerre polynomials

Define the linearization coefficients of the q-Laguerre polynomials by

I(n1, . . . , nk) = Lq(Ln1(x; q) . . . Lnk(x; q)) (k ≥ 1, n1, . . . , nk ≥ 0).

The following is our main result of this section.

Theorem 5. We have

I(n1, . . . , nk) =
∑

σ∈D(n1,...,nk)

ywex(σ)qcr(σ). (34)

For brevity, if n1 = . . . = nk = 1, we shall write (1k) := (n1, . . . , nk) and Dk := D(1k). Hence
Dn is just the set of usual derangements of [n]. Define also

dn(y, q) =
∑

σ∈Dn

ywex(σ)qcr(σ).

A proof à la Viennot (cf. [12,15]) of (34) would use the combinatorial interpretations for the
moments and q-Laguerre polynomials to rewrite the left-hand side of (34) and then construct
an adequate killing involution on the resulting set. For the time being we do not have such a
proof to offer, instead we provide an inductive proof.

Since L1(x; q) = x− y, writing (14) as

L1(x; q)Ln(x; q) = Ln+1(x; q) + (yq + 1)[n]qLn(x; q) + y[n]2qLn−1(x; q),

we see immediately that

I(1, n, n1, . . . , nk) = I(n + 1, n1, . . . , nk)

+ (yq + 1)[n]q I(n, n1, . . . , nk) + y[n]2q I(n− 1, n1, . . . , nk). (35)

Therefore, the sequence (I(n1, . . . , nk)) (k ≥ 1, n1, . . . , nk ≥ 0) is completely determined by the
recurrence relation (35) and the following items:

(i) the special values I(1k) for all k ≥ 1,
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(ii) the symmetry of I(n1, . . . , nk) with respect to the indices n1, . . . , nk.
Our proof of Theorem 5 will consist in verifying that the right-hand side of (34) has the same
special values at (1k) as the right-hand side, is invariant by rearrangement of the indices and
satisfies the same recurrence relation.

Lemma 3. We have I(1n) = dn(y, q) for all n ≥ 1.

Proof. Since L1(x; q) = x− y, by definition,

I(1n) = Lq((x− y)n) =
n∑

k=0

(−1)n−k

(
n

k

)
yn−kµ($)

k (y, q).

By binomial inversion and (16), it suffices to prove that
∑

σ∈Sn

ywex(σ)qcr(σ) =
n∑

k=0

(
n

k

)
ykdn−k(y, q).

But the latter identity is obvious. !
Since the two cyclic permutations (1, 2) and (1, 2, 3, . . . , k) generate the symmetric group Sk,

the invariance of
∑

σ∈D(n1,n2,...,nk) ywex(σ)qcr(σ) by permuting the n′is will be a consequence of
the following two special cases.

Lemma 4. We have ∑

σ∈D(n1,n2,...,nk)

ywex(σ)qcr(σ) =
∑

σ∈D(n2,n3,...,nk,n1)

ywex(σ)qcr(σ). (36)

Lemma 5. We have ∑

σ∈D(n1,n2,...,nk)

ywex(σ)qcr(σ) =
∑

σ∈D(n2,n1,n3...,nk)

ywex(σ)qcr(σ). (37)

We postpone the proof of the above two lemmas to the next two sections.

Proof of Theorem 5. By Lemmas 3, 4 and 5, it suffices to check that
∑

σ∈D(1,n,n1,...,nk)

w(σ) =
∑

σ∈D(n+1,n1,...,nk)

w(σ) + (yq + 1)[n]q
∑

σ∈D(n,n1,...,nk)

w(σ) (38)

+y[n]2q
∑

σ∈D(n−1,n1,...,nk)

w(σ),

where w(σ) = ywex(σ)qcr(σ).
For derangements σ ∈ D(1, n, n1, . . . , nk) we will distinguish four cases. In each case, we

shall describe a mapping to compute the corresponding enumerative polynomial. The reader is
refereed to Table 1 and Table 4 in Section 5 for an illustration of these mappings in order to
have a better understanding of their properties.

a) σ(1), σ−1(1) > n + 1. We can identify such a derangement in D(1, n, n1, . . . , nk) with a
derangement in D(n + 1, n1, . . . , nk). So the corresponding enumerative polynomial is

∑

σ∈D(n+1,n1,...,nk)

ywex(σ)qcr(σ).
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b) σ(1) ∈ {2, . . . , n + 1} and σ−1(1) > n + 1. Let σ(1) = *. We define the mapping
σ *→ σ′ ∈ D(n, n1, . . . , nk) by






σ′(i) = σ(i + 1)− 1, if 1 ≤ i ≤ n;
σ′−1(i) = σ−1(i)− 1 if 1 ≤ i ≤ *− 1;
σ′−1(i) = σ−1(i + 1)− 1 if * ≤ i ≤ n;
σ′(i− 1) = σ(i)− 1 if σ(i) > i > n + 1;
σ′−1(i− 1) = σ−1(i)− 1 if σ−1(i) > i > n + 1;

Clearly w(σ) = yq$−1w(σ′). Moreover, for each given * ∈ {2, . . . , n + 1}, the above
mapping is a bijection from permutations σ ∈ D(1, n, n1, . . . , nk) satisfying σ(1) = * and
σ−1(1) > n + 1 to permutations in D(n, n1, . . . , nk). Summing over all * = 2, . . . , n + 1
yields the generating function:

qy[n]q
∑

σ∈D(n,n1,...,nk)

ywex(σ)qcr(σ).

c) σ(1) > n + 1 and σ−1(1) ∈ {2, . . . , n + 1}. Let σ−1(1) = *. We define the mapping
σ *→ σ′ ∈ D(n, n1, . . . , nk) by






σ′(i) = σ(i)− 1, if 1 ≤ i ≤ *− 1;
σ′(i) = σ(i + 1)− 1 if * ≤ i ≤ n;
σ′−1(i) = σ−1(i + 1)− 1 if 1 ≤ i ≤ n;
σ′(i− 1) = σ(i)− 1 if σ(i) > i > n + 1;
σ′−1(i− 1) = σ−1(i)− 1 if σ−1(i) > i > n + 1;

Clearly w(σ) = q$−2w(σ′). Moreover, for each given * ∈ {2, . . . , n + 1}, the above
mapping is a bijection from permutations σ ∈ D(1, n, n1, . . . , nk) satisfying σ−1(1) = *
and σ(1) > n+1 to permutations in D(n, n1, . . . , nk). Summing over all * = 2, . . . , n+1
yields the generating function:

[n]q
∑

σ∈D(n,n1,...,nk)

ywex(σ)qcr(σ).

d) σ(1), σ−1(1) ∈ {2, . . . , n + 1}. Let σ(1) = *1 and σ−1(1) = *2. Then we define the
mapping σ *→ σ′ ∈ D(n− 1, n1, . . . , nk) by






σ′(i) = σ(i + 1)− 2, if 1 ≤ i ≤ *2 − 2;
σ′(i) = σ(i + 2)− 2 if *2 − 1 ≤ i ≤ n− 1;
σ′−1(i) = σ−1(i + 1)− 2 if 1 ≤ i ≤ *1 − 2;
σ′−1(i) = σ−1(i + 2)− 2 if *1 − 1 ≤ i ≤ n− 1;
σ′(i− 2) = σ(i)− 2 if σ(i) > i > n + 1;
σ′−1(i− 2) = σ−1(i)− 2 if σ−1(i) > i > n + 1;

Clearly w(σ) = yq($1+$2−4)w(σ′). Moreover, for each given *1, *2 ∈ {2, . . . , n + 1}, the
above mapping is a bijection from permutations σ ∈ D(1, n, n1, . . . , nk) satisfying σ(1) =
*1 and σ−1(1) = *2 to permutations in D(n − 1, n1, . . . , nk). Summing over all *1, *2 ∈
{2, . . . , n + 1} yields the generating function:

y[n]2q
∑

σ∈D(n−1,n1,...,nk)

ywex(σ)qcr(σ).
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Summing up we obtain (38). !
When k = 2, Theorem 5 reduces to the orthogonality of the q-Laguerre polynomials (18).

When k = 3, we can derive the following explicit formula from Theorem 1.

Theorem 6. We have

I(n1, n2, n3) =
∑

s

n1!q n2!q n3!q s!q ys

(n1 + n2 + n3 − 2s)!q(s− n3)!q(s− n2)!q(s− n1)!q

×
∑

k

[
n1 + n2 + n3 − 2s

k

]

q

ykq(
k+1
2 )+(n1+n2+n3−2s−k

2 ).

Proof. By Theorem 1 with a = 1√
y and b = √yq we have

I(n1, n2, n3) = Lq(Ln3(x; q)2)
( √

y

q − 1

)n1+n2−n3

Cn3
n1,n2

(a, b; q)

=
∑

m2,m3

n1!q n2!q n3!q (n1 + m3)!q yn2+n3−m2−m3 q(
m2
2 )+(M+1

2 )

M !q m2!q (m3 + n1 − n3)!q (m3 + n1 − n2)!q m3!q
,

where M = n3 +n2−n1−m2−2m3. Substituting s = n1 +m3 and k = n3 +n2−n1−m2−2m3

in the last sum yields the desired formula. !
Remark 2. It would be interesting to give a combinatorial proof of the above result as in [12,15].
When q = 1 such a proof was given in [23].

We end this section with an example. If n = (2, 2, 1), by Theorem 6 we have

I(2, 2, 1) =
∑

s

2!q2!q1!qs!qys

(5− 2s)!q(s− 1)!q(s− 2)!q(s− 2)!q

∑

k≥0

[
5− 2s

k

]

q

ykq(
k+1
2 )+(5−2s−k

2 )

= (1 + q)3(1 + qy)y2. (39)

On the other hand, the sixteen generalized derangements in D(2, 2, 1), depicted by their
diagrams and the corresponding weights are tabulated as follows:

"
1

"
2

"
3

"
4

"
5

y2q2 "
1

"
2

"
3

"
4

"
5

y3q3

"
1

"
2

"
3

"
4

"
5

y3q "
1

"
2

"
3

"
4

"
5

y2

"
1

"
2

"
3

"
4

"
5

y2q2 "
1

"
2

"
3

"
4

"
5

y3q3

"
1

"
2

"
3

"
4

"
5

y3q3 "
1

"
2

"
3

"
4

"
5

y2q2
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"
1

"
2

"
3

"
4

"
5

y3q2 "
1

"
2

"
3

"
4

"
5

y2q

"
1

"
2

"
3

"
4

"
5

y3q4 "
1

"
2

"
3

"
4

"
5

y3q2

"
1

"
2

"
3

"
4

"
5

y2q3 "
1

"
2

"
3

"
4

"
5

y3q2

"
1

"
2

"
3

"
4

"
5

y2q "
1

"
2

"
3

"
4

"
5

y2q

Summing up we get
∑

σ∈D(2,2,1) ywex σqcr σ = y2(1 + qy)(1 + q)3, which coincides with (39).

5. Proof of Lemma 4

For each fixed k ∈ [n] define the two subsets of Sn:
kSn = {σ ∈ Sn |σ(i) > k for 1 ≤ i ≤ k},
Sk

n = {σ ∈ Sn |σ(n + 1− i) < n + 1− k for 1 ≤ i ≤ k}.

We first define a simple bijection Φk : σ *→ σ′ from kSn to Sk
n as follows: for 1 ≤ i ≤ n,

σ′(i) =






σ(i + k)− k, if 1 ≤ i ≤ n− k and σ(i + k) > k;
σ(i + k) + n− k, if 1 ≤ i ≤ n− k and σ(i + k) ≤ k;
σ(i + k − n)− k, if n− k + 1 ≤ i ≤ n.

The map is illustrated by the diagrams of permutations in Table 1.

σ −→ σ′

"
1

"
k

"
k + 1

"
ni σ(i) −→

"
1

"
n−k

" "
ni−k σ(i)−k

"
1

"
k

" "
n

σ(i) i

−→
"

1
"

n−k
" "

n

σ(i)−k i−k

"
1

"
k

" "
ni σ(i) −→

"
1

"n−k " "σ(i)−k n− k+i

"
1

"k " "
n

σ(i) i

−→
"

1
"

n−k
" "

i−k n− k+σ(i)

Table 1. The mapping Φk : σ *→ σ′.

For example, consider the permutation σ ∈ 3S15, whose diagram is given below.
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"
1

"
2

"
3

"
4

"
5

"
6

"
7

"
8

"
9

"
10

"
11

"
12

"
13

"
14

"
15

Then the diagram of Φ3(σ) is given by

"
1

"
2

"
3

"
4

"
5

"
6

"
7

"
8

"
9

"
10

"
11

"
12

"
13

"
14

"
15

The main properties of Φk are summarized in following proposition.

Proposition 7. For each positive integer k ∈ [n], the map Φk : kSn → Sk
n is a bijection such

that for any σ ∈ kSn there holds

(wex, cr)Φk(σ) = (wex, cr)σ. (40)

We first show how to derive Lemma 4 from Proposition 7. Let n = n1 + · · · + nk. Then
D(n1, n2, . . . , nk) ⊆ n1Sn. By definition of Φn1 , for any σ ∈ n1Sn and i ∈ [n − n1] satisfy-
ing σ(i + n1) > n1, we have i − Φn1(σ)(i) = i + n1 − σ(i + n1), so Φn1(D(n1, n2, . . . , nk)) ⊆
D(n2, n3, . . . , nk, n1). Since the cardinality of D(n1, n2, . . . , nk) is invariant by permutations of
the ni’s and Φn1 is bijective, we have Φn1(D(n1, n2, . . . , nk)) = D(n2, n3, . . . , nk, n1). The result
follows then by applying (40).

i Li(σ) Ri(σ′)

1
"

1
"

k
" "

n
"

1
"

n− k
" "

n"
1

"
k

" "
n

"
1

"
n− k

" "
n"

1
"

k
" "

n
"

1
"

n− k
" "

n

2
"

1
"

k
" "

n
"

1
"

n− k
" "

n"
1

"k " "
n

"
1

"n− k " "
n

3
"

1
"

k
" "

n
"

1
"

n− k
" "

n"
1

"
k

" "
n

"
1

"
n− k

" "
n"

1
"k " "

n
"

1
"n− k " "

n

Table 2. Forms of crossings in Li(σ) and Ri(σ′).
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Proof of Proposition 7. It is easy to see that Φk is a bijection. Let σ ∈ kSn and σ′ = Φk(σ).
The equality wex(σ′) = wex(σ) follows directly from the definition of Φk. It then remains to
prove that cr(σ′) = cr(σ). We first decompose the crossings of σ and σ′ into three subsets. Set

L1(σ) = {(i, j) | k < i < j ≤ σ(i) < σ(j) or i > j > σ(i) > σ(j) > k},
L2(σ) = {(i, j) | i < j ≤ k < σ(i) < σ(j) or i > j > k ≥ σ(i) > σ(j)},
L3(σ) = {(i, j) | i ≤ k < j ≤ σ(i) < σ(j) or i > j > σ(i) > k ≥ σ(j)},

and
R1(σ′) = {(i, j) | i < j ≤ σ′(i) < σ′(j) ≤ n− k or n− k ≥ i > j > σ′(i) > σ′(j)},
R2(σ′) = {(i, j) | i < j ≤ n− k < σ′(i) < σ′(j) or i > j > n− k ≥ σ′(i) > σ′(j)},
R3(σ′) = {(i, j) | i < j ≤ σ′(i) ≤ n− k < σ′(j) or i > n− k ≥ j > σ(i) > σ(j)}.

The crossings in Li’s and Ri’s are illustrated in Table 2. Clearly, we have cr(σ) =
∑3

i=1 |Li(σ)|
and cr(σ′) =

∑3
i=1 |Ri(σ′)| since σ ∈ kSn and σ′ ∈ Sk

n.
By the definition of Φk, it is readily seen (see Row 1 in Table 3) that (i, j) ∈ L1(σ) if and

only if (i − k, j − k) ∈ R1(σ′), and thus |L1(σ)| = |R1(σ′)|. Similarly, we have (see Row 2 in
Table 3) that |L2(σ)| = |R2(σ′)|. It then remains to prove that |L3(σ)| = |R3(σ′)|. Let

L4(σ) = {(i, j) | σ(i) ≤ k < j < i ≤ σ(j) or i ≤ k < σ(j) < σ(i) < j}.

Then it is not difficult to show (see Row 4 of Table 3) that |R3(σ′)| = |L4(σ)|. The result will
thus follow from the following Lemma.

Lemma 6. For all σ ∈ kSn we have |L3(σ)| = |L4(σ)|.

Proof. Suppose σ([1, k]) = {i1, i2, . . . , ik}< and σ−1([1, k]) = {j1, j2, . . . , jk}<. Then

|L3(σ)| =
k∑

s=1

(|{* | k < * ≤ is < σ(*)}| + |{* | * >j s > σ(*) > k}|),

|L4(σ)| =
k∑

s=1

(|{* | * > is > σ(*) > k}| + |{* | k < * < js ≤ σ(*)}|).

For i ∈ [n] define the set Ai(σ) = {j | j ≤ i < σ(j)}. Then it is easily seen that

|Ai(σ)| = |{j | j > i ≥ σ(j)}| = |Ai(σ−1)|. (41)

Noticing that, for s ∈ [k],

|{* | k < * ≤ is < σ(*)}| = |{* | * ≤ is < σ(*)}| − |{* |* ≤ k < is < σ(*)}|
= |Ais(σ)| − |{t |it > is}|,

|{* | * >j s > σ(*) > k}| = |{* | * > js > σ(*)}| − |{* | * > js > k ≥ σ(*)}|
= |{* | * > js > σ(*)}| − |{t |jt > js}|
= |Ajs(σ

−1)| − χ(σ−1(js) > js)− |{t |jt > js}|,
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σ −→ σ′

"
k i j σi σj i-k σi-kj-k σj-k

"
n-k"

k i j σj i-k j-k σj-k
"

n-k"k σj σi j i σj-k j-kσi-k i-k "n-k

"
ki j σi σj

"n-kσi-k σj-k n-k+i n-k+j

"kσj σi j i "
n-kj-k i-k n-k+σj n-k+σi

"
ki j σi σj j-k

σi-k
σj-k

n-k+i"n-k

"
ki j σj j-k σj-k

n-k+i"n-k

"kσj σi j i σi-k

j-k

i-k
n-k+σj

"
n-k

"kσi

j
i

σj j-k i-k σj-k n-k+σi

"
n-k"k

σi j i j-k i-k n-k+σi

"
n-k

"
ki

σj

σi

j σj-k σi-k j-k n-k+i"n-k

Table 3. Effects of the mapping Φk on the crossings of σ and σ′.

and

|{* | * > is > σ(*) > k}| = |Ais(σ
−1)| − |{t | jt > is}|,

|{* | k ≤ * < js ≤ σ(*)}| = |Ajs(σ)| + χ(σ−1(js) < js)− |{t | it ≥ js}|,

we can rewrite |L3(σ)| and |L4(σ)|, using (41), as follows:

|L3(σ)| = A−
k∑

s=1

(χ(σ−1(js) > js) + |{t | it > is}| + |{t | jt > js}|), (42)

|L4(σ)| = A +
k∑

s=1

(χ(σ−1(js) < js)− |{t | jt > is}| − |{t | it ≥ js}|), (43)

where A =
∑k

s=1(|Ais(σ)| + |Ajs(σ)|.
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Since |{t | it > is}| = |{t | jt > js}| = k − s, we have

k∑

s=1

(|{t | it > is}| + |{t | jt > js}|) = k(k − 1).

Also,

k∑

s=1

(|{t | jt > is}| + |{t | it ≥ js}|) =
k∑

s,t=1

(χ(jt > is) + χ(it ≥ js)) = k2.

Substituting the above values into (42) and (43) leads to

|L3(σ)| −| L4(σ)| = k −
k∑

s=1

(χ(σ−1(js) > js) + χ(σ−1(js) < js)) = 0,

where the last equality follows from the fact that σ−1(js) ,= js for all s ∈ [k]. !

6. Proof of Lemma 5

Let N2 := n1 + n2 ≤ n and define

S (n1,n2)
n := {σ ∈ Sn : (i, σ(i)) /∈ [1, n1]2 ∪ [n1 + 1, N2]2}.

Hence, in the graph of any permutation in S (n1,n2)
n there is no arc between any two integers in

[1, n1] or [n1 + 1, N2].
We now construct a mapping Γ(n1,n2) : σ *→ σ′ from S (n1,n2)

n to S (n2,n1)
n as follows. For

i = 1, . . . , n,
(1) If i > N2 and σ(i) > N2, set σ′(i) = σ(i).
(2) Suppose

{(i, σ(i)) | i < σ(i) ≤ N2} = {(i1, N2 + 1− j1), . . . , (ip, N2 + 1− jp)},
{(σ(i), i) | σ(i) < i ≤ N2} = {(k1, N2 + 1− *1), . . . , (kq, N2 + 1− *q)}.

Then set σ′(js) = N2 + 1− is and σ′(N2 + 1− kt) = *t for any s ∈ [p] and t ∈ [q].
(3) Let C = {i ∈ [1, N2] : σ(i) > N2} and D = {i ∈ [1, N2] : σ−1(i) > N2}. It is clear that

|C|=|D|. Suppose C = {c1, c2, . . . , cu}<, D = {d1, d2, . . . , du}<, σ(C) = {r1, r2, . . . , ru}<

and σ−1(D) = {s1, s2, . . . , su}<. Then, there are (unique) permutations α, β ∈ Su

satisfying σ(ci) = rα(i) and σ−1(di) = sβ(i) for each 1 ≤ i ≤ u. Let

E = [1, N2] \ {j1, . . . , jp, N2 + 1− k1, . . . , N2 + 1− kq},
F = [1, N2] \ {N2 + 1− i1, . . . , N2 + 1− ip, *1, . . . , *q}.

Clearly, we have |E| = |C| and |F | = |D|. Suppose E = {e1, . . . , eu}< and F =
{f1, . . . , fu}<. Then set σ′(ei) = rα(i) and σ′(si) = fβ(i) for each 1 ≤ i ≤ u.

The mapping is illustrated in Table 4.
For example, if we consider the permutation in S (3,4)

15 whose diagram is given by
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σ −→ σ′

"
1

"
N2

" "
ni σ(i) −→

"
1

"
N2

" "
ni σ(i)

"
1

"
N2

" "
n

σ(i) i

−→
"

1
"

N2

" "
n

σ(i) i

"
1

"
n1

"N2 "
n

"
it N2 + 1− jt −→

"
1

"
n2

"N2 "
n

"
jt N2 + 1− it

"
1

"n1 "
N2

"
n

"kt N2 + 1− "t

−→
"

1
"n2 "

N2

"
n

""t N2 + 1− kt

"
1

"
N2

" "
ncj rα(j) −→

"
1

"
N2

" "
nej rα(j)

"1 "N2 " "nej sβ(j)

−→
"1 "N2 " "nfj sβ(j)

Table 4. The mapping Γ(n1,n2) : σ *→ σ′

"
1

"
2

"
3

"
4

"
5

"
6

"
7

"
8

"
9

"
10

"
11

"
12

"
13

"
14

"
15

then the diagram of Γ(n1,n2)(σ) is given by

"
1

"
2

"
3

"
4

"
5

"
6

"
7

"
8

"
9

"
10

"
11

"
12

"
13

"
14

"
15

It is not hard to check that Γ(n1,n2) : S (n1,n2)
n → S (n2,n1)

n is well defined and bijective because
each step of the construction is reversible, Actually we can prove, the details are left to the
reader, that (Γ(n1,n2))−1 = Γ(n2,n1).

Proposition 8. For each positive integers n1, n2, n, with N2 ≤ n, the map Γ(n1,n2) is a bijection
from S (n1,n2)

n to S (n2,n1)
n such that for each σ ∈ S (n1,n2)

n , we have

(wex, cr)Γ(n1,n2)(σ) = (wex, cr)σ. (44)

We first derive Lemma 5 from the above proposition. Let n = n1 + n2 + · · · + nk. Then
D(n1, n2, . . . , nk) ⊆ S (n1,n2)

n . By definition of Γ(n1,n2), for any σ ∈ S (n1,n2)
n and i > N2

satisfying σ(i) > N2, we have i − Γ(n1,n2)(σ)(i) = i − σ(i), so Γ(n1,n2)(D(n1, n2, . . . , nk)) ⊆
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D(n2, n3, . . . , nk, n1). Since the cardinality of D(n1, n2, . . . , nk) doesn’t depend on the order of
the ni’s and Γ(n1,n2) is a bijection, we have

Γ(n1,n2)(D(n1, n2, . . . , nk)) = D(n2, n3, . . . , nk, n1).

Lemma 5 then follows from (44).

i G(n1,n2)
i (γ) G(n2,n1)

i (γ)

1
"

1
"

N2

"
n

"
1

"
N2

"
n

"
1

"
N2

"
n

"
1

"
N2

"
n

"
1

"N2 "
n

"
1

"N2 "
n

2
"

1
"

N2

"
n

"
n1

"
1

"
N2

"
n

"
n2

"
1

"N2 "
n

"n1 "
1

"N2 "
n

"n2

3
"

1
"

N2

"
n

"
1

"
N2

"
n

"
1

"N2 "
n

"
1

"N2 "
n

4
"

1
"

N2

"
n

"
1

"
N2

"
n

"
1

"
N2

"
n

"
1

"
N2

"
n

"
1

"N2 "
n

"
1

"N2 "
n

5
"

1
"

N2

"
n

"
n1

"
1

"
N2

"
n

"
n2

"
1

"
N2

"
n

"
n1

"
1

"
N2

"
n

"
n2

"
1

"N2 "
n

"n1 "
1

"N2 "
n

"n2

Table 5. Forms of the crossings in G(n1,n2)
i (γ) and G(n2,n1)

i (γ).

Proof of Proposition 8. It was shown above that Γ(n1,n2) is bijective. Let σ ∈ S (n1,n2)
n and

σ′ := Γ(n1,n2)(σ). The equality wex(σ′) = wex(σ) is an immediate consequence of the definition
of Γ(n1,n2). It then remains to prove that cr(σ′) = cr(σ). The idea is the same as for the proof of
Eq. (4). We first decompose the number of crossings of σ and σ′. For each permutation γ ∈ Sn,
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set

G(n1,n2)
1 (γ) = {(i, j) | N2 < i < j ≤ γ(i) < γ(j) or i > j > γ(i) > γ(j) > N2},

G(n1,n2)
2 (γ) = {(i, j) | i < j < γ(i) < γ(j) ≤ N2 or N2 ≥ i > j > γ(i) > γ(j)},

G(n1,n2)
3 (γ) = {(i, j) | i < j ≤ N2 < γ(i) < γ(j) or i > j > N2 ≥ γ(i) > γ(j)},

G(n1,n2)
4 (γ) = {(i, j) | i ≤ N2 < j ≤ γ(i) < γ(j) or i > j > γ(i) > N2 ≥ γ(j)},

G(n1,n2)
5 (γ) = {(i, j) | i < j ≤ γ(i) ≤ N2 < γ(j) or i > N2 ≥ j > γ(i) > γ(j)}.

Clearly, for any γ ∈ S (n1,n2)
n , we have cr(γ) =

∑5
i=1 |G

(n1,n2)
i (γ)|. In particular,

cr(σ) =
5∑

i=1

|G(n1,n2)
i (σ)| and cr(σ′) =

5∑

i=1

|G(n2,n1)
i (σ′)|. (45)

The crossings of G(n1,n2)
i ’s and G(n2,n1)

i ’s are illustrated in Table 5. By the definition of Γ(n1,n2),
it is readily seen (see Row 1 in Table 6) that G(n1,n2)

1 (σ) = G(n2,n1)
1 (σ′) and thus |G(n1,n2)

1 (σ)| =
|G(n2,n1)

1 (σ′)|. Similarly, we can prove (see Table 6) that |G(n1,n2)
i (σ)| = |G(n2,n1)

i (σ′)| for i =
2, 3, 4. It remains to prove that |G(n1,n2)

5 (σ)| = |G(n2,n1)
5 (σ′)|. This will follow from the following

lemma.

Lemma 7. Let n1, n2 and n be positive integers with N2 ≤ n and γ ∈ S (n1,n2)
n . Suppose that

B(γ) :={(i, γ(i)) | i < γ(i) ≤ N2} = {(i1, j1), (i2, j2), . . . , (ip, jp)}, (46)

B(γ−1) ={(γ(i), i) | γ(i) < i ≤ N2} = {(k1, *1), (k2, *2), . . . , (kq, *q)}, (47)

with i1 < i2 < · · · < ip and k1 < k2 < · · · < kq. Then we have

|G(n1,n2)
5 (γ)| =

p∑

r=1

(jr − ir) +
q∑

r=1

(*r − kr − 1)−
(

p + q

2

)
. (48)

Indeed, suppose

B(σ) = {(i1, N2 + 1− j1), . . . , (ip, N2 + 1− jp)},
B(σ−1) = {(k1, N2 + 1− *1), . . . , (kq, N2 + 1− *q)},

then, by construction of σ′, we have

B(σ′) = {(j1, N2 + 1− i1), . . . , (jp, N2 + 1− ip)},
B(σ′ −1) = {(*1, N2 + 1− k1), . . . , (*q, N2 + 1− kq)}.

By symmetry, the identity (48) is also valid on S(n2,n1)
n . Applying (48) to σ′ and σ leads to

|G(n1,n2)
5 (σ)| = |G(n2,n1)

5 (σ′)|. The proof of Lemma 8 is thus completed.
Proof of Lemma 7. For any γ ∈ S (n2,n1)

n , by definition, we have

|G(n1,n2)
5 (γ)| = |{(i, j) | i < j < γ(i) ≤ N2 < γ(j)}| + |{(i, j) | γ(j) < γ(i) < j ≤ N2 < i}|

+ |{i | i < γ(i) ≤ N2 < γ2(i)}|. (49)
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σ −→ σ′

"
1

"N2 "n"
i

"
σi

"
j

"
σj

"
1

"N2 "n"
i

"
σi

"
j

"
σj

"
1

"N2 "n"
i

"
j

"
σj

"
1

"N2 "n"
i

"
j

"
σj

"
1

"N2 "
n

"σj "j"σi "i "
1

"N2 "
n

"σj "j"σi "i
"

1
"N2 "

n
"

n1
"

is

"
N2+1-js

"
it

"
N2+1-jt

"
1

"N2 "
n

"
n2

"
jt

"
N2+1-it

"
js

"
N2+1-is"

1
"

N2

"
n

"n1"ks "N2+1-"s"kt "N2+1-"t "
1

"
N2

"
n

"n2""t "N2+1-kt""s "N2+1-ks

"
1

"
N2

"n"
ci

"
cj

"
rαi

"
rαj

"
1

"
N2

"n"
ei

"
ej

"
rαi

"
rαj

"
1

"N2 "n"di "dj "sβi "sβj "
1

"N2 "n"fi "fj "sβi "sβj

"
1

"
N2

"n"
ci

"
rαi

"
j

"
σj

"
1

"
N2

"n"
ei

"
rαi

"
j

"
σj

"
1

"
N2

"n"
ci

"
rαi

"
j

"
1

"
N2

"n"
ei

"
rαi

"
j

"1 "N2 "n"di "sβi"σj "j "1 "N2 "n"fi "sβi"σj "j
Table 6. Effects of the mapping Γ(n1,n2) on the crossings of σ and σ′.

Now, by the definition of B(γ) we get

|{(i, j) | i < j < γ(i) ≤ N2 < γ(j)}|

=
p∑

r=1

|{x | ir < x < jr ≤ N2 < γ(x)}|

=
p∑

r=1

(|{x | ir < x < jr}| − |{x | ir < x < jr , γ(x) ≤ N2}|).

For any r ∈ [1, p], we have |{x | ir < x < jr}| = jr − ir − 1 and

|{x | ir < x < jr , γ(x) ≤ N2}|
=|{x | ir < x < jr , x < γ(x) ≤ N2}| + |{x | ir < x < jr , γ(x) < x ≤ N2}|
=|{t | ir < it < jr}| + |{t | ir < *t < jr}| (by definition of B(γ) and B(γ−1))
=|{t | ir < it}| + |{t | *t < jr}|,
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because, by definition of S(n1,n2)
n , (46) and (47), for any integers r and t, we have it ≤ n1,

kt ≤ n1, jr > n1 and *t > n1, therefore it < jr and ir < *t.
Summing over all r yields

|{(i, j) | i < j < γ(i) ≤ N2 < γ(j)}| =
p∑

r=1

(jr − ir − 1− |{t | ir < it}| − |{t | *t < jr}|). (50)

It follows that

|{(i, j) | γ(j) < γ(i) < j ≤ N2 < i}|
= |{(i, j) | i < j < γ−1(i) ≤ N2 < γ−1(j)}|

=
q∑

r=1

(*r − kr − 1− |{t | kr < kt}| − |{t | jt < *r}|). (51)

As |{i | i < γ(i) ≤ N2 < γ2(i)}| = |{t | γ(jt) > N2}|, plugging (50) and (51) into (49) leads to

|G(n1,n2)
5 (γ)| =

p∑

r=1

(jr − ir − 1) +
q∑

r=1

(*r − kr − 1) + |{t | γ(jt) > N2}| −
p∑

r=1

|{t | ir < it}|

−
p∑

r=1

|{t | *t < jr}| −
q∑

r=1

|{t | kr < kt}| −
q∑

r=1

|{t | jt < *r}|. (52)

Since the ir’s and kr’s are distinct we have
p∑

r=1

|{t | ir < it}| =
(

p

2

)
and

q∑

r=1

|{t | kr < kt}| =
(

q

2

)
. (53)

On the other hand,
p∑

r=1

|{t | *t < jr}| +
q∑

r=1

|{t | jt < *r}| =
p∑

r=1

|{t | *t ,= jr}|

= pq − |{t | jt ∈ {*1, *2, . . . , *q}|

= pq −
k∑

s=1

|{t | γ(jt) ≤ N2}|, (54)

where the last identity follows from the definitions of B(γ) and B(γ−1). Inserting (53) and (54)
in (52) we get (48). This concludes the proof of Lemma 7. !
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