QUADRATIC ¢-EXPONENTIALS AND
CONNECTION COEFFICIENT PROBLEMS

MouraD E.H. IsmMAIL(Y, M1zaAN RAHMAN(?) AND DENNIS STANTON(®)

ABSTRACT. We establish expansion formulas of g-exponential functions in terms
of continuous g-ultraspherical polynomials, continuous g-Hermite polynomials and
Askey-Wilson polynomials. The proofs are based on solving connection coefficient
problems.

1. Introduction.
The g-exponential function on a g-quadratic grid is

ag(=m/2¢i8 qq(1=n)/2o=i. )

n n?/4;n
q" ’eo",
(45 9)n

(1.1) Eq(z5a,b) := Z (

where z = cos 0, [Is:Zh], [At:Su]. Ismail and Zhang [Is:Zh] gave a g-analogue of the
expansion of the plane wave in spherical harmonics. Their formula is

(1.2)
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where J,Ei)n are g-Bessel functions [Is], [Ga:Ra] and Cy,(z; B|q) are the continuous
g-ultraspherical polynomials [As:Is|, [Ga:Ra]. This formula has attracted some at-
tention and two different proofs were given in [F1:Vi] and [Is:Ra:Zh]. The proof by
Floreanini and Vinet [F1:Vi] is group theoretic and is of independent interest. Equa-
tion (1.2) was extended to continuous g-Jacobi polynomials in [Is:Ra:Zh], where the

following expansion was established

(1.3a) Eqlz; —i,r) = Z AmPm (230, bg1 2, —c, —cqt/?),

m=0
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with the a,,’s given by

_(b2627b2q1/2;Q)m (qu1/27Q)OO . m m?/4
A, = 172 7 . (ir/b)™q
(q, bcq . bC, Q)m (_'”13 Q)oo
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cqm/2+1/4, _qu/2+1/4
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The purpose of this paper is to extend (1.3) to an Askey-Wilson polynomial
expansion (see (2.7)), and thereby also several special cases: (4.1), (4.4), (4.6). We
also specialize (2.7) to find expansions of g-Bessel functions instead of the quadratic
g-exponential function, see (3.2), (3.3). The fundamental technique is a connection
coefficient result for Askey-Wilson polynomials (Theorem 1), which is established
from the Nassrallah-Rahman integral [Ga:Ra,(6.3.9)]

It is known that expansions of the type treated in this paper are equivalent
to inversions of certain lower triangular matrices [Fi:Is] and to Lagrange and g-
Lagrange inversion [Ge:St]. In §6 we give the matrices and inverse relations lying
behind the expansions established in this paper. We explain a positivity result for
the connection coefficients for certain Askey-Wilson polynomials in §5.

We record here the definitions and properties of the ¢-Bessel functions that will
be required. The g-Bessel functions J,Sl)(:z:; q) and J,SZ)(.T:; q) are defined by

(1.3b)

(1.4a) IV (z;q) = ’qooz —1)» x/2)1/+2'n’

—= (¢, a)n

u+1 0 1) x/2)u—|—2n
1.4b I (z; n(vtn)
(1.4b) (w;q) = 7;) G

They are related through

(1.5) I (@;9) = (—2°/4; @)oo ISV (73 0).

We will also need

v+l 2v 2 2 (4 9o (2/b)" (2) (3.
(16) 2¢1( q + 3 q 2 14 + —b /4) (qy+1;q)oo (_b2/4aq2)oo Jl/ (b’ Q)a

which follows from (1.23) of [Ra] (note a misprint) via [Ga:Ra,(IIL.4)].

2. A Basic Expansion Formula.
We prove Theorem 1, which is the fundamental theorem in this paper. It allows

one to expand any function of (ae®®, ae™%;q),, in terms of Askey-Wilson polyno-

mials which are defined by (see [As:Wi] or [Ga:Ra])
Pn(cosb;a, b, c,d) = (ab,ac,ad; q)pa™"r,(cosb;a,b,c,d),

where
g~ ", abedg™ 1, ae®, e

’l‘n(COSH;a,b, c, d) = 4¢3 q,9
ab, ac, ad
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The main difference between p,, and r,, is that p,, is symmetric in all four parameters
while 7, is symmetric in b, c, d but not in a. The basic expansion formula that we
shall prove in this section is

n
(2.1) (e®, ae™: q), = ZAnJ-pj(:c; a,b,c,d).
§=0

Theorem 1. The coefficients A,, ; in (2.1) are given by

_(g,0d;9)n (@/d; @)n—; (abed/q;q);
" (g, 0d; 4); (g5 4)n—j (abed/q; q)2;
(2.2) ¢, adg’, bdg’, cdg’
% (—a)igii=1/2, ¢ .
adg’, dg* =19 [a, abedq?

Proof. From the orthogonality relation of the Askey-Wilson polynomials, (7.5.15)-
(7.5.17) in [Ga:Ra), we find that

Y h(z;1,-1,¢"2, —¢'/2 ) dx
An; =h; e ’ i(xz;a,b,¢,d) ——
Widng =hs /_1 h(z;a,b,c,d, ag™) Pi(@ia;b,e,d) 1— 22

~J, abedg’ Y ) ¢F

(g
2.3 -
(2.3) =(ab, ac, ad; q)ja™h; kzo (g, ab, ac, ad; q)x,

x/ h(z;1,—-1,¢Y2, —¢'/?,0)  dx
—1 h(xa aq aba C, d7 aqn) V 1-— -’172’

where
. . n
h(cos0; ) := (e®, ae™: q)0o, h(z;a1,...,0an H T; a;),
7j=1
the h;’s are
b — 1 — abedg®—1 (abed/q; q);
7" 1—abed/q (q,ab,ac,ad,bc,bd,cd;q);
and k is

21 (abed; q) 0o
(q,ab,ac,ad, be,bd, cd; @)oo

This is valid if max(|al, |b],|c|,|d|]) < 1. The integral in (2.3) can be evaluated by
the Nassrallah-Rahman integral, [Ga:Ra,(6.3.8)], and is equal to

K=

2m (ab, ac, ad, abedg®, abedg™; q) oo

(g, be, bd, cd, abg®, acq®, adg®, abg™, acq™, adq™, abed; q) oo
x §Wr(abed/q; be, bd, cd, aq*/a, g7 ™; ¢, acg™ ")
=K (ada Of/d, Q)n(aba ac; Q)k

y z”: (g™, bd, cd; @)m ¢™  (ad; @)ktm
—~ (¢, ad, dg' ™" /c; q)m (abed; @)k4m’
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where (IIL.17) of [Ga:Ra] was used in the last step. Thus the A, ;’s have the
representation

~i - a~™, ad, bd, cd; q)m
An,j =(ab, ac, ad; q) ;a7 hj (ad, a/d; 4)n Z (q ((101 dgi—" /o abc; q) !

m=0

m

(2.4)

m

q_j, abcdqj_l, adq

X 362 2,9
abedq™, ad

The 3¢2 in (2.4) is now summed by (I1.12) in [Ga:Ra]. After some simplification
we establish (2.2), completing the proof of Theorem 1. O

Application of the Sears transformation [Ga:Ra,(III.15)] gives an alternate rep-
resentation of A, ;, which we will find useful later in this work. It is

. ca) _ 2j—1
A’n,j — (Q3 ca, da’a ab, Q)n (ade/q’ Q)g 1 (ledq J (—a)j qj(j—l)/2
(g, ca, da, ab; q)j (q; @)n—j (abed; )nyj; 1 — abed/q
(2:5) ¢, edg?, afa, afb
X 4¢3 . . q,q
acg?, adg’, ¢ 7" /ab

It is clear from (2.1) that A,, ; must be symmetric in a, b, ¢, d which, however, is not
obvious in either of the two forms (2.2) or (2.5). The symmetry becomes explicit
when we apply the Watson transformation [Ga:Ra,(II1.17)] to obtain the following
representation

_ (g,00,ba, ca, da; q) (abed/q, 0% q); 1 — abedg™ " (—a)ig/U—D/2
(2.6) "7 (g, a0, ba, ca, da; q) (025q)n (45 @)n—y 1 —abed/q  (abed; q)ny;
X 8W7(a2qj—1; qj—n’ a/a, a/b, a/c, a/d; abcdq"+j).

In the subsequent sections we shall use Theorem 1 in the following way. We have

e o]

(27) Z Cn (aeiea ae_w; Q)n = ij (COS 9; a, b, ¢, d) Z An—l—j,jcn—}—ja
n=0

j=0 n=0

which is obtained from (2.1) by multiplying by ¢, and and summing over n, where
{¢n} is an arbitrary sequence, provided that the left-hand side of (2.7) converges and
interchanging the sums is justifiable. If we choose o = eq(!=™)/2 for some constant
e and ¢, in accordance with (1.1), then (2.7) is an expansion for a g-exponential
function &£;. We will specialize the parameters in such a way that the 4¢3 series in
(2.2) and (2.5), or the gW7 series in (2.6) can be summed. We will also choose «
independent of n, obtaining basic hypergeometric series expansions.

3. Expansions in continuous ¢g-ultraspherical polynomials.
In this section we first find two general Askey-Wilson polynomial expansions
with g-Bessel functions, (3.2) and (3.3). First, if @ = a, then A, ; is summable
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by (2.5). Next we specialize to o = —3g(1=")/2 and the continuous g-ultraspherical
polynomials, and prove (1.2).
If = a, and
(E1, E2;q)n

(g,ab, ac,ad; q)p,

(_32/4)n7

Cp =

then (2.5) and (2.7) imply

= (aeieaae_ieaEhEZ;Q)n 2
— B2 /4"
= (q,ab,ac,ad;q)n (=B/4)
o~ (abed/q, Ev, E2;q)j 1 — abedg¥~t
_ ) ; ) B2/4 J(j— 1)/2 b d
(3.1) ; (g,ab,ac,ad;q); 1 —abed/q (aB*/4)’q (3 a:b; ¢, d)
Evg’, Exq’
X 2¢1 ) q, _B2/4
abedq®

Setting abed = ¢?* 1, By = —¢*TY/2, and Fy = —¢**!, in (3.1) and using (1.6) we
find
(3.2)
aeie’ ae—ig’ _qu—l—l/Z’ _qu+1 32
4¢3 q, _T
ab, ac, ad

(@2 4"?) o 25q); (T2 1) 1 — g2 2

(g J(i=1)/2 43
= q (45
(¢F1/2412) 00 (=b%/4; @) o ;0 (¢, ab, ac, ad; q); 1— g%

x (2/6)2 I, 5 (Bs aM2)pj (3 a,b, ¢, d).

We may find another ¢-Bessel expansion by choosing F; = Fs = 0 in (3.1), and
using (1.4a) and (1.5). The result (again for abed = ¢® 1) is

ae®® ae=% 0,0

B2
4¢3 q, _I
ab, ac, ad
(3'3) _ (q, ) 2/B 2” i U 2”“#]) i 1 —‘12y+23 qj(j—l)/2aj
(¢?*+1, —B2/4; q) oo (q, ab ac, ad; q) 1— g%

j=0

X JZ(V)—i—2_7 (B? Q)pj(ma a, ba c, d)

The continuous g-ultraspherical polynomials C,(x;a?|q) are obtained from the
Askey-Wilson polynomials by

o = GO
pn(z; a,a4/q, V) = (a2, 0% q), Cr(z;a|q).

Thus g-ultraspherical versions of (3.2) and (3.3) can be found be putting

{a,b,c,d} = {g*/2, q+D/2 _g/2 _q+D)/2y
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The left-hand sides then become other g-analogues of the Bessel function J, /5.
Next we consider (2.7) for the continuous g-ultraspherical polynomials, (b =
a\/q,c = —a,d = —a,/q) for an arbitrary a. Using (3.4.7) in [Ga:Ra], we have

sWr(a?¢ 547", aq™? [a, —aq™ ' [a, afa, —a/a; ¢, a'q" Y

2/ 2 —n/ 2
2§ 42541, a’/qa*,q " /a
(a®q?,a%q 1) oo Y ’ g, alqrtitt

 (a%a?¢%, a7t q) oo o2

According to (II1.2) in [Ga:Ra] the above 2¢1 can be transformed to

j— - 2
2.5 2.2.2n .4 .2j+1. ¢ " q "/a

a“g ,a"a"q",a7q q

( ) ) ’ )oo 2¢1 q’a2a2q2n

(a2qn, a?2a2¢?, a*qn it ¢) o a2qit

From this we find that Theorem 1 reduces to

n
0 (@59)n ( 2
(ae®, ae™; q), = Cj(z;a’|q)
" JZO (¢ Dn—yj (a%0); 7
(34) qj—n’ q—n/a2
X o1 q,a’a’q*"
a2git

There are several choices for a? for which the 2¢; series in (3.4) is summable.

The choice of interest here is o = —ig{!=™)/2 50 that the Bailey-Daum formula
[Ga:Ra,(I1.9)] implies

¢ ", q"/a? - 0 if n — j is odd,
201 q,—a"q" = —2m 44,02 : :
a’gitl (Q‘(’?}z2,q1/_a"/7((112);:1n2)m ifn —j=2m.
The appropriate choice of ¢, leads to
.2
¢ 4 (ib)2)
5‘1(377 ?’7b/2) :Z ( 2(_ / ) CJ(xa a2|Q)
=0 a=; Q)J
(3.5) a2t _g2git? 2
X 2¢1 q2a Z
atq2i+?

Setting a = ¢*/? in (3.5) and using (1.6), we see that (1.2) follows from (3.5).
By taking the limit ¥ — oo in (1.3) we find that

, 1 S 214 Hp(z|q)
3.6 Eg(x; —1,b) = ———F— 1b)" "/47,
30 al )= o) HX;;( S 9.
where

Hy(z|q) = (¢; 9)nChn(z;0lq),

are the continuous g-Hermite polynomials.
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4. £, expansions in special Askey-Wilson polynomials.

In this section we evaluate A,, ; using special balanced 4¢3’s. This naturally leads
to expansions in special families of Askey-Wilson polynomials, see (4.1), (4.2), (4.3),
(4.4). We also choose two specializations so that A, ; is transformable, yielding &,
expansions, including (1.3). At the end of the section we also prove the Al-Salam-
Chihara polynomial result by generating functions.

Andrews’ terminating g-analogue of the Watson’s 3F» sum is, [Ga:Ra,(I1.17)]

q—n’Aqn7C7_C 0 ifn is Odd,
4¢3 9] =

4 T C™(q,9A/C?:0°) /2
VvV Ag, —/ 9

@A ,aC7)n s if nis even.
This suggests that after replacing n by n + j in (2.5), we take

a=—igt 2 g=_b, c=—d, C==igt I /2/q, A=_c2g "
Therefore Asp,4j41,; =0, and

Aomsji _ (@°/00); (6 @)jz2m(=a’¢*, =@ ¢*)m 3 (1ymgm?-mi
(45 @) 2m+j (459); (a2c2/q;q)25(q?, a2c2q¥+1;¢2),,

This leads to the expansion

N @Pae);
gq(ﬂf, Z,b) —J;O (q,q)J (a2c2/q; Q)j pj(xaaa a, c, C)

(4.1) o _a2¢itl — it
x (ib)7 7 /* 3¢ g%, —b?
4222+
In [Is:Ma:Su] it was pointed out that

q(u+1)/2ei97 q(u—{—l)/Qe—iG

2¢1 q, —— ’
v 4
¢!

r\ v 1/—1—1’ —7'2 : .
(5> . (q;Q)Zo4 :

is a g-analogue of J,(zr), = cosf. The 2¢1’s in (4.1) can be expressed in terms
of the above ¢g-Bessel function.

If we set ¢ = 0 then the 2¢; in (4.1) becomes a 1¢g, which can be summed by
the ¢g-binomial theorem [Ga:Ra,(I1.3)]. We find

. ) o0 (_a2;q)n (a2b2qn+1;q2)oo ’Lb n n2/4 .
(4.2) 5q($, —i,b) = Z R — q rn(x;a,—a,0,0).

a
n=0

Since (7.5.34) of [Ga:Ra| implies

ra(z3¢"2, —¢"?,0,0) =
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we find that

43 i = Y S g (o),

which may be compared with (3.6).
Another balanced 4¢3 evaluation is [An,(4.3)]

q~ ", A%¢*™, B, Bq .
43 q°,q¢" | =B"
Aq, Aq®, B?

(Ag/B,—q;q)n, 1—-A
(A, —B;q), 1— Ag®™

1/2 1/2-n 3/2—n

So (2.2) is summable if b = ag/?, d = c¢'/?, and o? = ¢ ,ora’=gq
After replacing ¢ by —¢, the o = ¢(1=2")/4 result with ¢,, = q”("+1)/4 (it/2)"/(q;q)n
is

/4 . > (ac?;q)n 2 it\"
Eq(wiq 1/477115511/4/2 Z )2 g/ (—5)

r (a*c®q
(4.4) Xpn(a:;a,aq Y2 —c,—cq'/?)
agPntD/4 _cq(2n+1)/4 ”
X 26 12 YW
201 a’, 9
acqn—i—l/Z

The choice of @ = ¢®~2™/4 (thus expanding &,(z;q'/4,itg='/*/2)) gives the
same expansion as (4.4). These two &, functions are identical from [Su,(3.4)].

If, instead, we take a = —ig('=™)/2 then the 4¢3 series in (2.5) can no longer be
summed. However the 4¢3 series in (2.5) can still be transformed to another 4¢3
series in base ¢'/2 by [Ga:Ra,(II1.21)]. It turns out that the series over n in (2.7), a
double sum, can be simplified further by an interchange of the order of summation
and finally reduced to a single sum. The result is equivalent to (1.3),

1/2 2: o n?/4 i\ "
gq(x; —’i,t/2) (th / Q) Z 0, c? aq nq (_Z_>

(—it/2;9) oo (a%c%q)an \ 2
(4.5) X pn (23 a,aq"/?, —c, —cqm)
(2n+1)/4 _ . (2n+1)/4 .
aq ,—cq e it
X 2¢1 q ) 5
acq™ /2

The right sides of (4.4) and (4.5) are identical. This follows from Suslov’s addition
theorem for the &, functions, see [Su, Theorem 3.1].

We have another example when a 4¢3 transformation, not a summation, leads
to an &, expansion. The Al-Salam-Chihara polynomials are defined by

Pn(z;0,b) :=r,(2;50,b,0,0).
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We have

- N (—7202™; ¢%) oo
gq(”/'; —i,b) = Z (=525 ¢%) oo
(4.6) n=0 ’

—n_—ing \V 5q)n (’Y aQ)n L n/2
% e Eq(cos ¢; —1,vbq .
K (¢ Dn a(cos 5 =i,y )

(ib)"q™ /4y (376, ye ™)

To prove (4.6) we find the coefficient of b"p;(x; ve =%, ye'®) on both sides. The
left side coefficient (by (2.7) and (2.5)) is a 3¢2 on base ¢ with one denominator
parameter equal to 0. The right side coefficient (by the g-binomial theorem) gives
a 3¢2 on base ¢2. These are equal using [Ga:Ra,(3.10.13), (3.2.2)].

The preceding sketch of the proof of (4.6) is not transparent, so we also prove
(4.6) from earlier results in this paper.

The Al-Salam-Chihara polynomials have the generating function [As:Is2]

(tt1,tt2;9) oo
(te?, te=; q) oo

Z M(t/tl) " (cos B, ty,ts) =

The continuous g-Hermite polynomials, see (3.10), have the generating function
[As:Is]

> Hy(cos0q)t"/(q;q)n = 1/ (te” te™"; q) oo

n=0

Evidently the above two generating functions imply

Hp(zlq) _ x~ Hj(cos dlg) 6 ity 2i—n —i(n—i)¢ (173 Dn—j
(4.7) =2 — L i (x;yet?, ye i)y e i(n—j)¢ LI 1H/n=y
(4 @)n Jz:% (¢50); ’ (45 @)n—;
We then combine (4.7) and (3.6) to obtain
00 2,
Eq(x;—1,b (ib)"q" /4 (z;ve'?, ye™t _”e_i"“l’L 1 @n
ol )= b2,q nz% 7€, 70 (@ Dn
H(cos
X Z 79(( )¢|q> )y qi /4 (ibg"/2)i.
7=0

The j sum can be expressed in terms of £, by (3.6) to obtain (4.6).
It is not hard to see that choosing ¢ = 7/2, v = —i /q in (4.6) gives (4.3).

5. Connection coefficients for Askey-Wilson polynomials.
From (2.2) and (2.7) we have

Tm(xa a, /87 v 6) = ZBm,jTj(xa a, b7 c, d)7
7=0
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where
5 _(abac,ad,¢"™ aByé g™, abed/q; q);
™ (B, ay, q,abcd/q; q);
a = (g, aB¢?, ayq?, adq?; q)n
,adq’, bdg’, cdg?
X 493 <dq1 "/, adg’ , abedg® q,q) '

We shall assume that
max(|al, |b],[c|,|d]) <1

and that o and a are of the same sign. Askey and Wilson [As:Wi] have shown that
the connection coefficients are positive when

0<a<a<l, b=p, c=v, d=0o.

This can be iterated using the symmetry of p,(z;a,b, ¢, d) in its parameters. Thus
we have proven that the By, ; of (5.1) is nonnegative for

Il<a<a<l, 0<fB<b<]l, 0<y<e<l, 0<o<d<].

6. Matrix Inversion.
In this section we prove Theorem 1 from an explicit matrix inversion.
Let
bn(z;0) = (ae®, ae™;q)n, = cosé.

It follows from [Ga:Ra,(I1.12)] that
¢n(z,0) =Y Crrdr(z,a).
k=0

where .
7" (¢7"; @r(ae, a/a; q)n

(¢, a0, aq' ="/ c; @),

To establish Theorem 1, it remains to expand ¢(z,a) in terms of the Askey-
Wilson polynomials p;(z; a, b, ¢, d) by inverting

an =

pn(z;a,b,c,d) :ZD"J )eidi(x,a),
7=0

where
D,;(t) = (¢ ", tq";q)j, t=abcd/q, 1/c;= q_j(q, ab, ac, ad; q) ;.
It is known (see for example (3.6.19) and (3.6.20) in [Ga:Ral) that

t—kqj—k2
(4,0 2%/t; @)1 (g, tq*+2%; q) i

(6.1) DZH(t) =



CONNECTION COEFFICIENTS 11

Thus Theorem 1 follows from the matrix inversion (6.1). Since there is bibasic
version of (6.1), there is also a bibasic version of Theorem 1.

We can also find the inverse of the lower triangular matrix A,, ; of Theorem 1 by
expanding the polynomials p;(z;a,b,c,d) in terms of ¢;(z; ). Using (6.1) we find

(abedg?=1,q77; q);
(;9n

Q7Q)7

A7} =¢'a" o~ (abg!, acq', adg'; q) i

5t
¢" 7, abedg’ 1 a/a, acg’
X 4¢3 I R
abq’, acq’, adq

which gives a discrete orthogonality relation for a 4¢3.
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