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Abstract

We evaluate several integrals involving generating functions of continuous g-Hermite polynomials
in two different ways. The resulting identities give new proofs and generalizations of the Rogers-
Ramanujan identities. Two quintic transformations are given, one of which immediately proves the
Rogers-Ramanujan identities without the Jacobi triple product identity. Similar techniques lead to
new transformations for unilateral and bilateral series. The quintic transformations lead to curious

identities involving primitive 5th roots of unity which are then extended to primitive pth roots of unity

for odd p.
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1. Introduction. The Rogers-Ramanujan identities
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play a central role in the theory of partitions [6] and [3]. (We have used the standard notation found in
[19].) Rogers used the ¢-Hermite and g-ultraspherical polynomials to prove (1.1) and (1.2). He did not
realize that these polynomials are orthogonal polynomials. (This was established in the 1970’s, see [11],
[12].) In this paper we use the orthogonality of the ¢-Hermite and g-ultraspherical polynomials to prove

the Rogers-Ramanujan identities and give some new generalizations.

The idea is to evaluate integrals involving ¢g-Hermite polynomials in two different ways, then equate
the results. The proof of the Rogers-Ramanujan identities given in §2 is not fundamentally different from

Rogers’. He found a constant term in a certain expansion without using integration. However the integrals
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do provide motivation and a different viewpoint in this theory. For example a very natural integral gives
(3.4), which generalizes the Rogers-Ramanujan identities. Along the way explicit polynomials of Schur also

immediately appear, see (3.5) and (3.6). Another natural integral gives the inverse to (3.4), Theorem 3.1.

Another byproduct of the integrals are new transformation formulas which generalize the Rogers-
Ramanujan identities, for example Theorem 5.1 and (6.3). Of special note is Theorem 7.1, a quintic
transformation which immediately proves the Rogers-Ramanujan identities without using the Jacobi triple
product identity. A second quintic transformation is given in Theorem 7.2. Special cases of the second
quintic transformation give curious looking formulas involving primitive fifth roots of unity, see (7.11)
and (7.12). In §8, Proposition 8.1, we give a common extension of these formulas to primitive pth roots
of unity for odd p. Section 9 discusses Schur’s involution and the numerators and denominators of the

Rogers-Ramanujan continued fraction.

We believe the contribution of this work to the old and rich subject of partition identities is the realiza-
tion that partition identities follow from evaluating integrals in two different ways. The technical details
of proofs employ orthogonality of functions, theory of g-series, and explicit knowledge of the connection
coefficients between g-ultraspherical polynomials with different parameters. It has been known for a long
time that connection coefficients can be used to prove partition identities. For example Andrews [4], and
earlier Andrews and Askey [9], explored the role played by connection coefficient problems in partition iden-
tities. Rogers’ original proof utilized his evaluation of the connection coefficients of the g-ultraspherical

polynomials.

For the rest of this section we recall facts about the ¢g-Hermite and g-ultraspherical polynomials. The

¢-Hermite polynomials H, (z|¢q) may be defined by the the generating function
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or the explicit formula
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Their orthogonality relation is
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The g-ultraspherical polynomials have the explicit representation
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which implies the special and limiting cases
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Rogers established the following connection formula for the g-ultraspherical polynomials, [11], [19],
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Therefore (1.8) implies the connection coefficient relationship
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We also note that the g-ultraspherical polynomials have the generating function
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which, in view of (1.7), implies (1.3) and the generating function
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The orthogonality relation for the g-ultraspherical polynomials is, [11], [19],

(6226, 6—229

: i : cos f; @)
(1.12) /0 Cm (cos8; Blq)Cr (cos 0; Blq) (Be2if | Be—27; )Oodg

_ 28,48 0)ec (1 =B)(B*50)n
(0.8% 0o (1=Bg")(G;0)n

2. The Rogers-Ramanujan identities. In this section we reinterpret Rogers’ proof of the Rogers-
Ramanujan identities as an integral evaluation. The sum side evaluates an integral I(¢, q) using ¢g-Hermite
orthogonality (1.5), while the product side evaluates I(t, q) for special choices of ¢ using the usual Fourier
orthogonality.

Our integral (¢, ¢) below is a g-analogue of the easily established
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We see that I(¢) is the integral, with respect to the Hermite weight, of the inverse of the Hermite generating
function. For the g-analogue, we integrate the inverse of the g-Hermite generating function against the

g-Hermite weight




Proof of (1.1). From the generating function (1.11), the connection coefficient formula (1.9), and the

orthogonality relation (1.5), we have
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For the product side choose t = /g, and expand the infinite products by the Jacobi triple product

identity
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Since the integrand in I(¢, ¢) is an even function of #, we integrate on [—m, 7], and use the Fourier orthonor-
mality of {¢™?/\/27 : —0o < n < 0o} to find
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where the Jacobi triple product identity (2.3) was used in the last step. Now (2.2) and (2.5) establish (1.1)

and the proof is complete.

Proof of (1.2). The other Rogers-Ramanujan identity is proven by choosing ¢ = ¢ and writing the
integrand as (e?, ge=% qe?? €721 q) o (1 + €'?). The rest of the proof is similar to the proof of (1.1) and

1s omitted.

3. A generalization of the Rogers-Ramanujan identities. In this section we generalize the integral
I(t,q) of §2. What results are two generalizations of the Rogers-Ramanujan identities, (3.4) and Theorem
3.1, which are inverses of each other. Polynomials that Schur considered in his work on the Rogers-
Ramanujan continued fraction naturally appear. Moreover one is led to the finite forms of the Rogers-

Ramanujan identities due to Andrews [2].

Consider the integral
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Clearly Iy(t,q) = I(t,q). As in the proof of (1.1) using ¢g-Hermite orthogonality we find that I, (¢, q) is
given by
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Again choosing t = /7, using (1.4), (2.3), and (2.4) we find
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Note that the terms 4s—2m = 2 (mod 5) in (3.4) vanish. On the other hand if 4s—2m = 0,4 (mod 5) in
(3.4), the infinite products may be rewritten as a multiple of the Rogers-Ramanujan product 1/(q, ¢*; ¢°) o,
while 45 — 2m = 1, 3 (mod 5) leads to a multiple of 1/(¢%, ¢%;¢°)oo. Thus the left side of (3.4) is a linear

combination of these two functions, which we shall write as
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for some Laurent polynomials ap,(q) and by, (q). Tt is clear from (3.4) that explicit formulas for a,, (¢) and

bm(q) can be given using sums of ¢-binomial coefficients [m] , for example
s
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However a more elegant expression for asn,(¢) may be found using the ¢-Pascal triangle relationships
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namely
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Similarly we establish explicit formulas for asm+1(q), bam (), and baymy1(q). From these representations

one can then obtain the general formulas
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These polynomials were considered by Schur [22], [8], [3] as numerators and denominators of the Rogers-

Ramanujan continued fraction.

The left side of (3.5) is the generating function for partitions with difference at least two whose smallest
part is at least m + 1. Andrews [2] gave a polynomial generalization of the Rogers-Ramanujan identities

by showing that
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They have the following combinatorial interpretations: am,(q) (bm(q)) is the generating function for par-
titions with difference at least 2 whose largest part is at most m — 2 and whose smallest part is at least
2 (1). The representations in (3.7) also makes it easy to determine the large m asymptotics of a,, (¢) and

bm(q), hence express the Rogers-Ramanujan continued fraction as a quotient of two infinite series.

Andrews’ proof of the relationships (3.7) consists of first showing that the left-hand side I, of (3.6)
satisfy the recurrence relation l,, — l41 = qm+1lm+2. This implies that amys = @m41 + ¢ am and
brmt2 = bmt1 + ¢ by, which the alternate forms (3.7) satisfy. The initial conditions are ag = 1 = by,

(11:b0:0.

Our next result is an inverse relation to (3.4). Consider the integral
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where Uy (cos §) = H(cos #]0) is the Chebyshev polynomial of the 2nd kind. We can expand the Chebyshev

polynomials in terms of the g-Hermite polynomials (one way is to use (7.2) below)
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The value of J(k) may be found directly using Fourier orthogonality, (2.3), (2.4),
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and the Jacobi triple product identity
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Theorem 3.1 The following identity holds
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Observe that Theorem 3.1 provides an infinite family of extensions to the two Rogers-Ramanujan identities,

because the cases k = 0, 1 yield (1.1) and (1.2) respectively.
Carlitz [16] had results closely related to (3.4) and Theorem 3.1.

4. Multisum versions of the Rogers-Ramanujan identities. The analytic generalization of the
Rogers-Ramanujan identities to modulus 2k + 3 is a k-fold sum [3, p. 111], [5]
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where b is an integer, 0 < b < k. These may also be proven by evaluating an integral two different ways:
using ¢-Hermite orthogonality and Fourier orthogonality. In this section we sketch two proofs of (4.1). Each
uses a connection coefficient problem for polynomials related to the g-Hermite. Our proof uses integration,

while the other proof (due to Bressoud for b = 0), evaluates polynomials.

Both proofs use the Laurent polynomials in z defined by
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These polynomials are related to g-Hermite polynomials by

Hgn(e2i6,0|q) = Hap(cosf|q) and H2n(e2i9, 1lq) = q”2H2n(cos 6|q_1).

The connection coefficient result that we use was given by Bressoud [14]
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Note that if a = 1, (4.3) is (1.9), which was the key result used in §2. We have, upon iterating (4.3) k£ + 1
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Bressoud chooses a = 1/2, whence Ha,(z,1/2|q) = (—q"/%2,—¢"/%/2;q),, and choosing z = —¢q~1/?
forces Has,,,(2,alg) = 0 for sp11 > 0. Then the n — oo limit of (4.4) becomes (4.1) for b = 0.

The integral version of this proof is to consider @ = 0, force sx41 = 0 by integrating with respect to the
q-Hermite measure, and then let n — oco. This operation immediately gives the right side of (4.1). The

product side is found by evaluating the integral
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from Fourier orthogonality. Here we used
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A small variation allows both proofs for 1 < b < k. The following identity is easily established
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For Bressoud’s proof of (4.1), rewrite (4.7) as
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for any c¢. If we apply (4.3) k times to Hgn(—q_?’/Q,k + 3/2|q), we have an expansion in terms of
Has, (—q~3%,3/2|q). Then use (4.8) to switch to ¢** Hay, (—q~'/%,3/2|q), and apply (4.3) once more to
force sg41 = 0. This is the b = 1 case of (4.1). For the general b case we apply (4.3) k — b+ 1 times, to
Hon(—q~?7% k 4 3/2|q) then alternatively apply (4.8) and (4.3) b times.
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For the integration proof we slightly modify the integrand and note that if z = e
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For the b = 1 case, we begin by integrating Hs,(2/q, k+ 1|¢). Apply (4.3) k times to evaluate the integral
of Has, (2/q,1]|q). Then apply (4.10) to switch to the integral of ¢°* Has, (2, 1|q), and finally apply (4.3) to
force si41 = 0. The general b case is proven as before, integrating Ha,(2/¢% k + 1|q).

One new ingredient, a change of base from ¢ to ¢%, is needed to prove the even modulus identities
of Bressoud. Such a change of base is investigated more generally with Bailey pairs [15]. New Rogers-

Ramanujan identities result.

5. Further generalizations of the Rogers-Ramanujan identities. In this section we evaluate
another integral in two different ways. We use g-ultraspherical orthogonality and Fourier orthogonality.
The integral generalizes I(,/q, ¢), thus we find a transformation which generalizes the Rogers-Ramanujan

1dentities.

Let
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Clearly the case v = 0, # — oo was considered in §2.

From the generating function for the g-ultraspherical polynomials (1.10) we obtain
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Using the Rogers connection coefficient formula for the g-ultraspherical polynomials, (1.8), we rewrite
I(8,7,q) in the form

(4,9/5% ¢) oo

(9,9/8% )0 o )
(4/8,4/8; 1) oo 201(8, /734714, 47/ 7).

(63) (B9 =

For the Fourier orthogonality, we use Ramanujan’s 11 evaluation [19, (II.28)]
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instead of the Jacobi triple product identity. The sum (5.4) holds for |c/a| < |z| < 1. We apply (5.4) with
a=p8c=q/B, z= \/ﬁem/ﬂ, and a = 1/5, c = 7, z = ve?*? to find
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This leads to Theorem 5.1.



Theorem 5.1 If |y| < 1 and |3| > /g, then
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The assumptions in Theorem 5.1 can relaxed to |gy/3%] < 1 by analytic continuation.

It is interesting to note that the limiting case § — oo of Theorem 5.1 gives a generating function for
the integrals I, (,/q,q). This is the case since as 3 — oo then (5.3) and (5.5) give, after replacing m by
—m, the relationship
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Theorem 5.1 is a well-disguised special case of the well-poised 3¢; transformation [19, (3.4.7)]. To see this

write the 515 as
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This can be easily shown to be a multiple of a 3¢, via the limiting case v — 17 of [19, (3.4.7)] with the
choices z = u/y,a = 3,b = B/~.

6. An integral evaluation. In this section we consider a generalization of Theorem 5.1, (6.3), by
introducing a Chebyshev polynomials of the second kind in the integrand. In other words we consider the

integral
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Using (5.4), the Fourier orthogonality evaluation of I(3,~, ¢q) of §4 implies
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We now evaluate J(8, v, k) using g-ultraspherical orthogonality. Use the generating function (1.10), the
fact Ck(z;qlq) = Uk(z), the connection coefficient formula (1.8) and the orthogonality relation (1.12) to
find
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which establishes the expansion formula
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In other words
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We believe the identity (6.4) to be new.

7. Two quintic transformations. One may ask if the Rogers-Ramanujan identities follow immediately
from a quintic transformation for a basic hypergeometric series. One would also hope for a proof thereby
of the Rogers-Ramanujan identities which does not use the Jacobi triple product identity. In this section
we give in Theorem 7.1 such a result. It is again motivated by an integral with ¢g-Hermite polynomials.
Another integral of a variant of g-Hermite polynomials leads to yet another quintic transformation and is

in Theorem 7.2.
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Theorem 7.1 We have
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Observe that the Rogers-Ramanujan identities (1.1) and (1.2) correspond to the special cases f = ¢~

(20 ¢) oo fq8, f4qS

1

and f = ¢~'/2 in the last two forms of (7.1). Thus Theorem 7.1 implies the Rogers-Ramanujan identities
without using the Jacobi triple product identity [7].

Our proof of Theorem 7.1 relies on the connection coefficient formula

n [n/2]-k . (I+1
(7.2) E ) (_1)JP( ? )(p§p)n—2k—j Hy o —2j(2|p)
= (@ -kt (p;p); (P;P)n—2k—2j

= j=0
which follows from a two-fold application of (1.8) combined with the observation that Cy(z;q|q) = Un(z),
hence is independent of q. This observation is due to Bressoud [13, (4.11)].

Proof of Theorem 7.1. Consider the integral

. (g% 0) o (P; D)oo /” (% e=21% p)
(7.3) S(t) = - R de.

Expand the integrand as a power series in ¢, for [t| < 1, using (1.3) then apply (7.2) and the orthogonality
relation (1.5). The result is that

g8 (1 — g% =241 (—1)i—+p( ") (77

Zt ZZ (k0 @) 25—k 41 (;9)Nn—;j

If 7 1s replaced by j + k the resulting k-sum is evaluable by a special case of the terminating 2¢;

summation theorem [19, (I1.6)] to obtain

—)(N+i+2), (1) (—1)7

(7.4) St = Zt?NZ

N=0

(2:9)25 (0 0)N—j (22 q) N

Choosing p = ¢°, the j-sum in (7.4) is evaluable by a limiting case of the very-well poised g¢5 summation
theorem [19, (T1.21)] to obtain

iq

N=0

N2+‘)Nt9N
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This is the left side of Theorem 7.1, if * = f. The first equality is obtained using the Nassrallah-
Rahman g¢7 representation of the integral [19, (6.3.7)]. The 3¢5 versions in (7.1) follow from (3.2.11) (or
(3.8.9)) and (I11.9) in [19]. The evaluation of the integral in (7.3) as a multiple of a 3¢5 when p = ¢° was
proved combinatorially in [20].

Another quintic transformation may be found by considering the polynomials

n

] n .
H,(cos(8)]q) = Z [k] gF(nk)gi(n=2k)8
q

k=0

whose generating function is

Z (cos 6|q (% 9) o

— N (te”,te—”; 7)o

Theorem 7.2 We have the quintic transformation

o 5n°42n 4, 5
¢ 1% 4°) oo
(75 Y A = (54

(4%;¢%)n (125 4%) oo (w5, w575, q) o
L (w3 g, 1215, wt?l3 W25, w215 ),
(g, w375 W3t475 235 1375 q),,

X
n=0
(1 —w4t6/5q2n_1)
(1 —wit5/5/q)
(t4;q5)oo(t2/5; )oo ( 1215 t2l5 44205
(12 45) oo (1475, witA/5 w475 ) 3¢¥2 W5 y3AL5

(_(_‘))nq(Z)t4n/57

thZ/S) )

We sketch the proof of Theorem 7.2. Analogous to the proof of Theorem 7.1, when ffgn(cos(59)|q5) is

5n+5. ¢%),,. This is equivalent

where w 1s a primitive fifth root of unity.

expanded in terms of the ¢g-Hermite polynomials, the constant term is q5"2(q

to the integral
(7.6) (1900 (4:9)o0 [T (7,77 q i ¢ t2"
. 2m o (tedif te—sza 4

The integral in (7.6) is a special case of the Nassrallah-Rahman integral. In this special case the integral

is a multiple of a 3¢2, as was proved in [20] combinatorially. This result gives the equality between the
left-hand side and the extreme right-hand side. To see that the middle term in (7.5) equals the extreme
right-hand side apply (3.2.11) in [19]. Another way to see the same thing is to observe that the integral is
a limiting case of an gW7 function. For example [19, (6.3.7), (IT1.23)] implies

_ (* 4°) oo
(1% 45) oo (w5, w575, ¢) o
x hH(l) 8W7(w4t6/5/q; t2/57 Wt2/57w2t2/5, (.u‘4t2/5, t/g;q, wgt_1/5).
g—

13



This is equivalent to the first equality in (7.5). The second equality in (7.5) follows from (3.2.11) in [19].

If 2 = 1,¢° in (7.5) we can use the Rogers-Ramanujan identities to find two unusual results:

2 1A ( 4/qwq (1 —wg2n—1) .
7.7 i )
( ) (w7w47qoo 22::1 qw’q (1_@4/q) ( (.d)q
1
= (4%, ¢%% ¢%)
1 r,Wr,wer
~ _ 1 3 ) t2/5
(7 8) ((“)Jw4; q)oo 7‘—13’1— 3¢2 ( W27”2,(-037“2 1 )
and
1
7.9
i (1= ¢°)(we?,w*¢%; ¢)eo
X i (w4q2,wq2; q)n(l — q5) (1— w4q°”+9) (_w)nq(;‘)+2n
n=0 ((],(.03(]; q)n(l - q5n+5) (1 — q )
1
VAN
(wqu)oo wq’WZq’q
1 —
(7.10) (1— qs)(w2q2,w3q2,wq2;q)m3¢2 Wi g q,wq |,

respectively. To get (7.10) we set t2/5 = wq in (7.5).

We can rewrite (7.7) by writing the quantity in square brackets as

q,q”w) :

The 5¢4 is summed by (I1.20) in [19] and the result is the curious formula

1 1 . w/q, Sqw?, — g, w, g
Lol fim o ?/q\/ﬁ ?\/53 Q4
2 2n_>00 W‘/\/‘ja_wﬂ/\/ﬁaw aqnw

1 . 1 B 1
(W, 9)e  (W2,0% 9o (4°,4%%¢%)

(7.11)

The identities (7.11) also follows from (7.8) by writing the 3¢3, as r — 17 as

1+(1—7’) i(wvw4§Q)n(q Q)n 1 P +O(1—T)

(QJWQ:W aq)n

n=1

By Abel’s summability the 3¢5 tends to 1+ (w,w?; ) /(w?, w3; ¢) oo, which leads to (7.11). A direct proof
of an extension of formula (7.11) to odd moduli is given in Proposition 8.1.
Another curious identity arises from (7.9) or (7.10). First rewrite the left-hand side of (7.9) as

(1+w?)(1—¢°)7! S~ (we,wlqwiqiq)n (1 —wiq™+?)
(wg?,w*q?; ) oo (W%, w3¢%,¢% ) (1+w?)

(—wq)"g("),

n=0

14



which simplifies to

(1=l =w?9(1 -’91 +w?)
(1-¢°)(1 —w)(1 —w)(we?,wie?; @)oo (—wq)

4
-1+ lim 4¢3 ( q,qm"'lw)] .
m—00

W ,—w2q w,q"
The 4¢3 can be summed by the g-analogue of Dixon’s theorem [19, (I1.14)] and the result when combined
with (7.9) is the second curious identity

2 m, 4
—quwaq w

(7.12) whg™! [ 1 1 ] _ 1
' (1—w)(l —w?) |(wg, w9 (W2, 0 0)ee]  (4'°,¢%5;¢%)

The above identity also follows from (7.10) by noting that the 3¢5 is

(7.13) (=g —wg) [2% ( w q,wq) - 1] :

(1 =w)(1 —w?)wg wq,
The ¢-Gauss theorem [19, (T1.8)] sums the 53¢ and establishes (7.12).

We now relate the results of this section to Schur’s polynomials of §3.

Corollary 7.3 For m = 1,2,..., the transformation

(qIOm’ q )

( 5m’q5) (qum w? Sm’q)

Xi w1 g™ we™, w2q™ W™ q)
= (g,wig?m, w?’q””,w?q?m,q?m;q)n
_ 3m+2n—1 .
(1 W q m n )(_w)nq(2)q2mn
(1 _ w4q3m 1)
_ (q10m.q5) (qqu) ¢ qmjwqm’wllqm . qm
(65 05) o0 (127, W™, w2q?™; q)oo3 2 w2q2mjw3q2m )
=) B an(67) (—1)m+1q-5<’%"‘>bm<q5>
(4°,4%% ¢%°) o (019, ¢%;¢%%)0e

holds, where w is a primitive fifth root of unity.

Proof. Put t = ¢°*”/? in (7.5) and apply (3.5).
Similarly the choice f = ¢~'*+"/2 in Theorem 7.1 and (3.5) give

(7.14) (@7 0)ce
: (q2m+1 q3m+4. q )oo(qm-l-l; q)oo
3m+10n 1( 3m—1 _2n+46.

5 m—2.
« E q Q_‘). 0 q )Tl (q? ;Q)Sn qS(Z)(_l)nq(2m+6)n.
3m 1 (qS’ qm 2 qS)n (q~m+2 q)Sn

_ (7 ) o (0715 0%) o 262 qmrs, gt gmt?
(qm-l—l; q)oo(qu-}-l’ q2m+2’ q2m+3; qs)oo q2m+5’ q2m+4

07 Bante) | 0™+ B ()
(7,9% ¢°) oo (0%,¢%0¢%) 0
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8. Remarks. One may translate the Fourier orthogonality of the integrals into constant term identities.

For example I(,/q, q), which gives the Rogers-Ramanujan identities, becomes

(81)  CT(1/z,92;9)e0(92",4/2% 47 )00 = 2 (9%

where CTf(z) is the constant term in the Laurent expansion of f(z) around z = 0. Of course (8.1) is
immediate from the Jacobi triple identity. Do other root systems also give well-known theorems in this
way"?

It is remarkable that the j-sum in (7.4) factors for six other values, p = a2 %% % 43, q%, q'. The

5/2

p = ¢7/? case should give a ¢'* transformation similar to Theorem 7.1, while the p = ¢%/2 case will be a

transformation on ¢'°.

Recall that the polynomials an,(g) and b,,(g) of §3 are linear independent solutions of a recurrence

relation. Al-Salam and Ismail [1] studied the more general recurrence relation

Yma1 = 2(1+ aq™)ym — bg™ 1.
They gave an explicit formula for the solution Uy, (z; a, b) satisfying Uy (z; a,b) = 1 and Uy (z; a,b) = z(1+a).
They also showed that the numerators of the corresponding continued J-fraction are (14 a)Un—_1(z; ag, bq).
The an’s and by,’s are embedded in the family of the Uy’s since by (q) = Um—1(1;0,—¢) and an(q) =
Um—2(1;0,—¢?). Furthermore Uy, (z;a,b) and Uy, (z;aq,bq) are linear independent solutions of the above
recurrence relation. For properties of the polynomials U, (z;a,b), and the associated continued fraction,
see [1].

We now come to the extension of (7.11) and (7.12).

Proposition 8.1 If p > 5 is odd, w is a primitive pth root of unity, and j < (p— 1)/2 is a fized positive

winteger, then

1 (p—-1)/2 (p—1)/2 1
8.2 - w1 — WY1 — ™21
(8.2) P IR VL e
= (—l)jq(g) H %
~ . (9775 47" ) oo
1<a<p-1,a#(p£(2j-1))/2
(‘ 3) (19—21:/2 wm(l_j)(l —wm(2j_1)) (p—1)/2 1
8.: =
m=1 (W =1) k=1k#m (kWP q)
Proof. Let
G(2) = (0. 5,0/50) = . 4 (=2)".
Then
1.
(84) = Glaw™) = (¢ q ¥ D 2ar 02 g0
pm:O
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If z = ¢/, the m = 0 term of (8.4) vanishes. Dividing both sides of (8.4) by (¢7;¢”)e and combining the
m and p — m terms yields the result since p = [0 (1 —wm).

The case j = 1 of (8.3) takes the form
1 1

(8.5) OF oo II Tap gp?)

m=1 k=1k#m (w WP ’q)°° 1<a<p—1,a#(p£(2j-1))/2 (47347 oo
and reduces to (7.11) when p = 5. On the other hand when j = (p — 1)/2 (8.2) becomes
P2 (=102 g me41)/2 _ ym(p=3)/2 _ ym(p43)/2]

1)/2 _

m=1 Hkp 1 k/;ém( L WPR ) oo

1
-7 11 (975 ¢P") oo’

1<a<p—1,a(px(2j-1))/2

(8.6)

which reduces to (7.12) when p = 5 since in this case the numerator on the left-hand side of (8.6) is
(—)m 1t w? + w? —w —w?).

9. Appendix. In this section we recapitulate Schur’s involution which proves the Rogers-Ramanujan

identities. We also restrict his involution to prove (3.5)-(3.6)

o0

9.1) (©59) Z

n +mn

(=1)"¢™ (%) [am(9)(6°, 4% 6% 0% oo — b () (0%, 0", 0% 07)e0)] -

Schur defines an involution ¢ on the set of ordered pairs of partitions (A, p), where A has distinct parts,
and p has parts differing by at least two. If the sign of (A, p) is (—1)#Parts of X the left side of (9.1) is the
generating function of all such (A, pt), where the smallest part of y is at least m 4+ 1. The right side of (9.1)

is the generating function of the fixed points when Schur’s involution ¢ is restricted to this set.
The involution ¢ is defined in stages.

For the first stage, compare the largest part of A and the largest part of u, find the larger of the two
parts, and move that part to the other partition. This fails only if the largest parts are equal, or the largest
part of A is one more than the largest part of u. We call these two cases A and B respectively.

We define three parameters p, ¢, and r: p is the smallest part of A, ¢ is the length of the leading run
of A (as in Franklin’s involution for the pentagonal number theorem, [6, p. 10]), and 7 is the length of the
leading “double run” of pu.

In each case the definition of ¢ depends upon inequalities between p, ¢, and r. In case A,

1. if p = min{p, ¢, 7}, apply Franklin’s involution to A,

2. if = min{p, ¢,7} < p, remove 1 from each of the first r parts of u, and create a new smallest part
of X of size r,

3. if ¢ = min{p, ¢, 7} < min{p, r}, remove one from each of the ¢ largest parts of A, add one to the 2nd
through ¢ + 1 parts of g, and move the largest part of y to the largest part of A.

The definition of ¢ in case B is
17



1. if ¢ = min{p, q,7} < p, apply Franklin’s involution to A,

2. if p = min{p, ¢, 7}, add 1 to each of the first p parts of y, and delete the smallest part of A of size p,

3. if r = min{p, ¢,r} < min{p, ¢}, add one to the 2nd through r + 1 parts of A, subtract one from each
of the r largest parts of u, and move the largest part of A to the largest part of u.

Tt is easy to see that ¢ interchanges cases (1), (2), and (3) of case A with cases (1), (2), and (3) of case
B respectively.

What are the fixed points, namely where is ¢ not well-defined? For case A they occur at Franklin fixed
points ((2p—1,---,p),(2p—1,2p—3,---,1)),p > 0, and for case B at the other family of Franklin fixed
points ((2p,---,p+1),(2p—1,2p—3,---,1)),p > 1. The generating function for these fixed points is the
right side of (9.1) for m = 0, by the Jacobl triple product identity.

If we restrict to the case m = 1, so that the smallest part of u is at least two, the fixed points change.
They are ((2p,---,p+1),(2p,2p—2,---,2)),p >0, (2p+1,---,p),(2p,2p—3,---,2)),p > 1, and (1,0).
Again (9.1) for m = 1 results from the Jacobi triple product identlty.

We now consider the fixed points for the general m > 2 case. Any pair (), @), where the largest part of
A is < m is fixed. The remaining fixed points are from case A(2) and case B(3): (m+ 2r — 1,m + 2r —
2, m4rf),(m+2r—1,--- m4+1)), (m+2r,m+2r—1,--- m+rb),(m+2r—1--- m+1))

where 6 is any partition with distinct parts, part sizes between r + 1 and m +r — 1.

So the generating function of the fixed points is

FP(m) — S Z r 5r2/2+r(2m 1/2)(qr+1;q)m_1
r>1
+Z r+1 5r2/2+r(2m+3/2)+m(qr+1;q)m_l
r>1

— Z(_l)rqi’)r /2+r(2m—1/2)(qr+1;q)m_1

r>0

(92) +Z T‘+1 5r°/24r(2m+3/2)+m (qr+1;q)m_1.
r>0

If we expand (¢"*'; ¢)m—1 by the ¢g-binomial theorem we have

m—1 2 s
FP — _1\r+s 57 /2+r(2m—1/2)+(r+1)s+(2)
(m) Z[ ) ] -1+
s,r>0 q
(9.3) + Z [ ] 1)T‘+S+1q51‘2/2+T‘(2m+3/2)+m+(r+1)s+(;).
s,r>0 q

Upon replacing s by m — 1 — s, and » by —m — r the exponent of ¢ in the second term of (9.3) becomes
the exponent of ¢ in the first term of (9.3), thus

m—1
-1 s
(9.4) FP(m) = [m ] (=1)2q(3)
s=0 § q
[e'e] 1-m
><< Z (_1)1‘q5r2/2+r(2m—1/2)+(r+1)s _ Z (_1)rq57~2/2+r(2m—1/2)+(r+1)s>.
r=—00 r=—1

18



For each r between —1 and 1 — m the s-sum of the second term in (9.4) is zero by the ¢-binomial theorem.

If we apply the Jacobi triple product formula to the first term in (9.4) we have

(9.5) FPm)= > lms_l] (=1)2q(3) (g%, g2H2m+s B=2m=s. 45)

s=0

Considering residue classes mod 5 one sees that (9.5) is (9.1).

Andrews and Baxter [10] also found (9.2), although they did not give the equivalent form (9.1). Kadell
[21] gave an involution for the the case m = 2 and pointed out that his involution is different from the

involution used earlier by Garsia and Milne [17], [18].

Acknowledgment. We thank Steve Milne for detailed comments on a preliminary version of this paper.
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