REALIZATIONS OF REGULAR ABSTRACT POLYHEDRA OF
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ABSTRACT. This paper classifies and gives methods for computing the irre-
ducible realizations of the abstract polyhedra corresponding to regular maps
of type {3,6} and {6,3}. A complete list of irreducible realizations is given for
polyhedra of type {3,6}.

RisuME. Cet article classifie et donne des méthodes pour calculer les réalisations
irréductibles des polyédres abstraits correspondant aux cartes réguliéres de
type {3,6} et {6,3}. Une liste compléte des réalisations irréductibles des
polyédres de type {3,6} est donnée.

1. INTRODUCTION

A regular abstract polyhedron is a poset with certain symmetry properties. By
considering the permutation action of its automorphism group on an appropriate
set, one can geometrically realize the abstract polyhedron in Euclidean space. Each
irreducible representation of this group gives an irreducible realization of the regular
abstract polyhedron. In this paper we carry out this program for four infinite
families of regular abstract polyhedra.

These four families are {3,6} 4,0y, {3,6}.,5), 16,3} (b,0) and {6,3} ). A list
of the distinct irreducible realizations of {3,6} ) is given in Section 3; results
for {3,6}(, are presented in the following section. There are infinitely many
irreducible realizations of the abstract polyhedra {6,3} 0y and {6,3} (). A listing
of the distinct symmetry group actions on these realizations is given in Sections 5
and 6.

2. DEFINITIONS

An abstract polyhedron is a graded poset P with ranks {—1,0,1,2,3} having
the four properties listed below (see [11]). The rank zero elements of P are called
vertices of P; this set is denoted by Py. Elements of rank one are edges, denoted
P1, and the rank two elements P, are referred to as faces of P. A flag of P is
a maximal totally ordered subset of P. We say two flags are adjacent when they
differ by just one face.

1. P is afinite ranked poset with unique minimum and maximum elements whose
ranks are —1 and 3, respectively.

2. Each flag of P must contain five elements; in particular, each flag contains
the —1 and 3 faces of P.
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3. The polyhedron P must be strongly flag connected; for every pair of flags ¢
and v there must be a chain of flags ¢ = ¢, ¢1, ..., o = 1 such that ¢; and
¢i+1 are adjacent, with ¢ N C ¢; for each ¢.

4. For all ¢, if F' is an ¢ face and G is an ¢ + 2 face of P, there are exactly two
faces H such that F' < H < G.

Abstract polyhedra are a special case of the more general abstract polytopes dis-
cussed in detail in [11], [10] and [9].

We now define the notion of regularity for abstract polyhedra P. Choose some
base-flag ® in P. If there exist three automorphisms pg, p1 and ps of P such that
each p; fixes all but the it* face of ®, the automorphism group A(P) of P will be
flag-transitive, and we say that P is a regular abstract polyhedron [11].

A realization of an abstract regular polyhedron is a collection of points called
vertices V in some Euclidean space R? which has the property that there is a
surjection 3 : Py — V such that the action of each element of A(P) induces an
isometry of V. Since this isometry can be extended to the entire space (uniquely, iff
Aff(V) = R?), this gives us a representation of the group A(P) on the vector space
R? [10, Theorem 6]. Note that the vertices of a realization need not be centered at
the origin.

We say that the realization is vertex faithful or simply faithful if the map 3 is
bijective. One example of a faithful realization of a polyhedron is the simplex real-
ization. This is obtained by sending each vertex of P to one of the orthogonal unit
basis vectors of R”, where n = |Py| (see [10]). The corresponding representation of
A(P) is called the simplex representation. The trivial realization is the non-faithful
realization in which all vertices of the realization coincide at a single point.

For convenience, we refer to appropriate segments joining elements of V' as edges
of the realization of P, and consider the faces of the realization of P to be described
by appropriate unions of edges of the realization. Note that these “faces” are not
necessarily planar.

The edges of P are a special case of the more general notion of diagonals of P.
These are described by unordered pairs {v, w} of vertices of P. The diagonal classes
{A1,...,A;} of P are the equivalence classes of the diagonals under the action of
A(P). The diagonal vector {0,1,...,6,} of a realization of P is given by squares
of distances between vertices in diagonals of each class; §; = |8(v) — B(w)|?, where
{v,w} € A; [10]. Two non-trivial realizations are defined to be equivalent if their
diagonal vectors are the same up to a scalar multiple.

Given two realizations P C R? and Q C R? of a polyhedron P with vertex sets
V = Bp(Py) and W = Bq(Py), we obtain a third realization P# C RP x R? called
the blend P#Q by defining Bpxo(p) = (Bp(p), Bo(p)). A realization is said to be
irreducible or pure if it is not the blend of two non-trivial realizations. A realization
of P is pure exactly when the representation of A(P) on Aff(V) is irreducible [10,
p. 47].

Define the Wythoff space W of a representation G of A(P) to be the subspace of
points fixed by the action of both p; and ps (see [10]). The dimension of the Wythoff
space of an irreducible representation equals the multiplicity of that representation
in the simplex representation.

From any representation G of A(P), we can obtain a realization of P by applying
Wythoff’s construction. Given a point w € W¢, we define a set V' of vertices and
amap 3 : Py = V by B(v) = w, B(g(v)) = g(w), for some fixed v € V. If
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FIGURE 1. Net for {3,6} 4,0

dim(W¢) > 1, different choices of p and ¢ in W can yield inequivalent realizations
P and @ of P. The linear combination AP + p@ is defined to be the realization
determined by applying Wythoff’s construction to Ap + ug (see [10]).

In the case that all the irreducible components G of the simplex representation
of P have wg = 1, we can enumerate the distinct irreducible realizations of the
simplex realization of P. By Theorems 9 and 10 of [10], we know we can reconstruct
any realization of P by scaling and taking blends of these irreducible component
realizations.

If w is the dimension of the Wythoff space of the simplex realization, then:
Zwé =w, and ngdg = |Pol,
G G

where the sum is over the distinct irreducible orthogonal representations G of A(P)
and d¢ is the dimension of representation G [10, Theorem 17].

In the case of polyhedra of type {3,6}, we will have wg = 1 for each G. Using
the fact that wg equals the multiplicity of an irreducible representation G in the
simplex realization, we shall conclude that these representations are irreducible and
inequivalent. Our observations are confirmed by the fact that ), wgda = |Pol.
Here, Wythoff’s construction generates a complete list of irreducible realizations
up to scalar multiples.

In the case of polyhedra of type {6,3}, wg = 2 does occur. We generate a list of
component representations and determine that the list is complete and its elements
are irreducible by comparison with the case {3,6} and by confirming ), wadg =
|Po|. Because Wythoff’s construction can produce inequivalent realizations from
the same representation, it is impossible to provide a complete list of irreducible
realizations.

3. IRREDUCIBLE REALIZATIONS OF {3,6} 0

In this section we consider the regular abstract polyhedra {3,6} ). Consider
the tiling of the plane by triangles depicted in Figure 1. Identify opposite edges of
the parallelogram in Figure 1 as in a torus. Then the edges and triangles of this
tiling are the one and two faces of {3,6}4,0).

We can also define it in terms of the translational symmetries of the tiling labeled
T, and T,. Taking the quotient of the triangle tiling by the symmetry group
generated by T and T, yields the abstract polyhedron {3,6}40). The —1 face
of {3,6}(4,0) corresponds to the empty set, the 3-face corresponds to the entire
polyhedron, and the ordering on the poset is given by inclusion.
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FIGURE 2. Generators of the automorphism group of {3,6} 4,

In the example above, replacing 4 by a positive integer b yields the regular
abstract polyhedron {3,6} ;). The rhombus in Figure 1 has four equilateral tri-
angles along each edge; identifying opposite edges of this rhombus gives the regular
abstract polyhedron {3, 6} 0). Identifying opposite sides of a rhombus with b equi-
lateral triangles along an edge gives us the regular abstract polyhedron {3,6}.0),
which has 2b? faces, 3b* edges, and b? vertices [5].

Our goal is to describe the irreducible realizations of the polyhedra in this family.
To this end, we shall decompose the simplex representation of {3, 6} 0) in C** into
its irreducible parts.

It is relatively simple to find basis vectors { f;,;m} C ct* , each of which is an eigen-
vector of T, and T),. The orbits of these vectors under the action of A({3,6}.0))
are bases of the irreducible realization spaces of {3,6};,0)- A change of coordinates
will allow us to consider these as realizations over R, and to apply the theorems
mentioned in the previous section.

Recall that T? = T} = I when these elements of the automorphism group act on
the simplex realization. Hence, the eigenvalues of 7, and T}, must be b** roots of
unity. If we use the labeling of the vertices v; of {3,6};,0) indicated in Figure 1,
a simple calculation shows that the vectors { fim }o<i,m<s defined by:

1i k 27i
frm= Y TRy,

0<j,k<b

. . . . _727ni o 27
are simultaneous eigenvectors of T, and T}, with eigenvalues e '"¢" and e ™75,
respectively.

We can use this information to compute the eigenvalues of the adjacency matrix
Ay of the edge graph of {3,6},0)-

THEOREM 1. The adjacency matriz A, of the one-skeleton of the abstract polyhe-
dron {3,6}(s,0) is given by:

A =T, +T.T,+ T, + T, "+ (I,T,) "+ T,
The multiset of eigenvalues of this matriz is:

2n(l +m)

27l 2
{2cos(%)+2005(ﬂTm)+2cos( )|0§l<b,0§m<b}

= {SCOS(%I) cos(%) COS(L—:m)) —-2/0<1<b,0<m< b} .
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The transformations T, and Ty originate in translational symmetries of {3,6}.
Figure 2 indicates a convenient choice of the generating “reflections” pg, p1 and p»
of A({3,6}(4,0))- These automorphisms act as follows:

PO Uk V1—k1—j, P1:UjkP2>Vji—k and P2V = Vk,j-
Note that T, = p1po(p1p2)? and Ty = p2p1pop1p2pr- Also,
2mi
(1) pO(fl,m) = el+m)% fem,~1, p1 (fl,m) = fi+m,—m, and P2(fl,m) = fm,1-

A subspace of C*” is invariant under the action of A({3,6}(s,0)) exactly when it
is invariant under the action of the p;. Since py = p1T,(p2p1)? and T, = py ' Typo,
it is equivalent to require that the subspace be invariant under the action of T, p;
and p,. In particular, the spaces spanned by the orbits of the vectors f; ,, under
the action of p; and p, will be fixed by A({3,6},0)). For arbitrary I and m, this
orbit is:

fl7m; f*hfm; fl+m7fm; fflfmﬂn;
(2) fotiems  fr—tiem»  fm—t—ms  fomitm,
foticmts, fiem—ts fem,—ts fmi

For each choice of [ and m these vectors span a space V; ,, on which the represen-
tation of A({3,6},0)) is irreducible; we will prove this by the method outlined in
Section 2. Note that for some values of I and m, dim(V; ) < 12.

The Wythoff subspace W ,,, of V , is spanned by the sum of the vectors of (2)
and has dimension wy ,,, = 1. This fact will continue to hold once we have converted
to representations over R, so we need only show that the number of different V; ,
equals W to see that ), w?, = w. But because all the W, are one dimensional,
W is just the number of diagonal classes of {3,6};,0) (see [10]). We now describe
a bijection between diagonal classes and choices of [ and m which yield distinct
representation spaces Vj .

To determine the different diagonal classes, fix vy ¢ and study its relationship to
the other vj ;. If (vo,0,vj%) is in diagonal class A and v 4 is sent to v; by some
action of p; and py, then (voo,vj 1) € A. We can classify the different diagonal
classes by the vertices in the smallest region that completely covers {3,6} ;) when
acted on by p; and p2. Such a region is shown in Figure 3.

A bijection between the spaces V;,, and the vertices v; shown in this funda-
mental region is given by € : fi , + Uiym,, where the subscripts are interpreted
modulo b. Although the roles of p; and py are reversed (Q(p2(fi,m)) = p1 (2 fi,m))
and Q(p1(fim)) = p2(Q(fi,m))), the orbit of fi ,, under the action of p; and ps
will be of the same order as that of vjym,; = Q(fi,m). Since a representative vertex
from each orbit appears in Figure 3, the number of distinct V; ,,, is the same as the
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TABLE 1. Number and dimension of realizations of {3,6} 0

b mod 6 Dimension over R Total
1 2 3 6 12
0 1 1 1 b-3 (b —6b+12)/12| (b* +6b+ 12)/12
1 1 00 b—1 (B —-6b+5)/12 | (b>+6b+5)/12
2 1 01 b—2 (b—-6b+8)/12 | (b*>+6b+8)/12
3 1 1.0 b—2 (B —-6b+9)/12 | (b>+6b+9)/12
4 1 01 b—2 (¥®—-6b+8)/12 | (b*>+6b+8)/12
5 1 00 b—1 (P—=6b+5)/12 | (b>+6b+5)/12

number of vertices appearing in Figure 3. The dimension of V; ,, is the order of the
orbit of vi4,; Table 1 summarizes this information.

To this point we have been working with representations of A({3,6},0)) over
C. In order to apply the formula > w2 = W, we must consider representations
over R. The chief obstacle to this is the fact that py acts on the f; ,,, with complex
coeflicients. We circumvent this by breaking the action down into its real and
imaginary parts. Notice that the coefficient of po(fi,,) is the complex conjugate of
the coefficient of po(f_i,—n); in particular, po(fi,m + f-ti,—m) = a(fmi + fom,—1) —
b(ifm,i — tf—m,—1) for some a,b € R. If we change basis to:

fl7m +.ffl,fm; i.fl,m _'L’ffhfm;
fl+m7fm + f*lfm,ma Z-.fl+m,7m - if*lfmﬂn;
fotiem + fi—t—m>  f—titm — fi,—i—m»
(3) . .
fm,—l—m + f—m,H—m: me,—l—m - Zf—m,l—i—m:
fotemi+ fitm—t,  Uf—i—mi = Ufi4m,—1;
fm7l + f*m,fla ifmJ - Z-.f*m,fl

the p; act on the basis vectors with real coefficients. Each of our original complex
representations breaks down into equivalent “real” and “imaginary” representations
of A({3,6}s,0)) over R. Because the pairs are equivalent, we know that those corre-
sponding to inequivalent V; ,, are also inequivalent. The dimension of the Wythoff
space of each of these real representations is still one. Hence this representation
corresponds to a unique realization of {3,6}; ) which we shall call R .

We may now use the results in Table 1 to confirm that ) ,w = w and
ZG wgdg = b2, and so conclude that the Ry, enumerated by the vertices shown in
Figure 3 are all of the irreducible orthogonal realizations of {3,6};,0) up to scaling.
Furthermore, we can express the action of 7, and T} on the basis described above,
which allows us to calculate locations of the vertices of the R .

Given a block diagonal matrix M with matrices {My, M, ..., M} on its di-
agonal, we write M = (M;|Ma]|...|My). If we let R(#) be the rotation matrix
( CoNO) e ) and identify T}, and T}, with the matrices describing their action,
we can concisely describe the irreducible realizations of {3,6} ) as follows:

THEOREM 2. The vertices of a generic irreducible realization Ry, of {3,6}0) are
given by the orbit of the point p = (1,0,1,0,1,0,1,0,1,0,1,0) under the action of
the matrices:
T: = (R()|R(¢ + )| R(—=9)|R(¢)|R(=¢ — ¢)|R(¢)) and
Ty = (R()|R(=)|R(¢ + ¢)|R(—¢ — )| R($) | R(¢)),
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FIGURE 4. The faces of {3,6}4,0) embedded in a cube

where ¢ = —2wl/b and ¢y = —27m/b. Here B(vj ) = TgT;(p).

The matrices of the p; are easily calculated from (1) and (3). In the generic case,
each p; acts by fixing some six dimensional subspace and reflecting its complement
through the origin.

Contemplating the descriptions of T, and T}, we see that the vertices of R, lie
on the surface of a 6-torus in R'?. Since {3,6},,0) is topologically a 2-torus, they
lie on an embedding of 72 in T°. Although this twelve dimensional figure is difficult
to visualize, we can describe the lower dimensional realizations of {3,6} ).

The realizations Ry o (I # 0,b/2) are six dimensional, with T, = (R(¢)|R(—¢)|I2)
and T, = (I2|R(¢)|R(—¢)). They can be visualized as follows. Consider the action
of the parametric equation

P: (z,y,z) — (sin(x), cos(x), sin(y), cos(y), sin(z), cos(z))

on the cube of edge length 27 shown in Figure 4; under this action, opposite faces
of the cube shown there are identified to form a 3-torus. Opposite edges of the
two shaded triangles shown in Figure 4 are identified to form a 2-torus embedded
in that 3-torus. The shaded triangles can be subdivided into b? smaller triangles;
in the example shown, b = 4. The images of the vertices, edges and faces of this
subdivision under the action of P correspond to those of the realization R, of
{3,6}5,0- (See also [2].)

4. ABSTRACT POLYHEDRA OF TYPE {3,6} )

Identifying opposite sides of the rhombus shown in Figure 5 describes the abstract
regular polyhedron {3,6} 5 2), which has 3 x 2 vertices and 6 x 2? faces. In general,
{3,6}(s,5) is obtained by identifying points of {3,6} that are equivalent under the
the action of the symmetry group < T2°, T3% (T2T,)* >, where T}, and T, transform
{3,6} as was described in Section 2 (see [5]).

There is a natural map from {3,6} ;4 to {3,6}(;,0) given by identifying TY =
T; = 1. In other words, {3,6}; ) collapses onto {3,6}( ). So, every realization
of {3,6}(,0) gives rise to a realization of {3,6} ;). Also, {3,6}ss,0) collapses onto
{3,6}(s,5)- For example, the six dimensional realizations of {3,6} ;) correspond to
the realizations I3;0 and R;; described in Section 3.
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TABLE 2. Number and dimension of realizations of {3,6} s

b Dimension over R Total
1 23 6 12
even |1 1 1 2b—3 (30 —12b+12)/12] (3b% + 12b+ 12)/12
odd [1 1 0 26—2 (3> —12b+9)/12 | (3b* + 12b+9)/12

FIGURE 6. A Net for {6,3} 3,0

The chief difference between these two families of abstract polyhedra is the ex-
istence of a group element 777, with order lower than that of 7, and T,. If
we construct a set of simultaneous eigenvectors of T, and 12T, analogous to the
{fi,m} of the previous section, repeating the calculations of that section yields the
enumeration of irreducible realizations presented in Table 2.

5. ABSTRACT POLYHEDRA OF TYPE {6, 3} 0)

The combinatorial dual of the abstract polyhedron {3,6} ) is {6,3}5,0) (see
[5]); identifying opposite sides of the dotted rhombus shown in Figure 6 yields the
polyhedron {6, 3} 3. Since {6,3},0) has 2b% vertices, the simplex representation
of its automorphism group is over the space cz®

The generating reflections of A({6,3},0) are indicated in Figure 7. Once again
the polyhedron has “translational” symmetries 7, and 7}, which are given by T, =
pop1p2p1popr and Ty = pipopi1popip2- It is evident from Figure 6 that the edge
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graph of {6, 3}; o) is bipartite. The symmetries p2, T, and T}, permute the vertices
labeled {v;}o<jk<s in exactly the same way that p;,T, and T, permuted the
vertices of {3,6};,0) in Section 3. The vertices {w;«}o<jr<p of the other half of
the graph form a separate orbit under the action of T}, and T,.

The simultaneous eigenvectors of the action of 7, and T} on 2" are {fim>91,m}
where 0 < I,m < b and fi,, and g; ,, are defined as follows:

: 2m
(Li+mk) 25 Wy k-

fl,m = Zogj,k<b e(lj"rmk) b Vjk, Gim = 20§j7k<b e
It is not difficult to check that:
Ta:(.fl,m) = el

27

To(gim) = €7 gim, and Ty(gr,m) = e™

27 27

bl.fl,m;T‘y(.fl,m) =em blfhm;

2ri
b gi,m-

Since T, and T, no longer send vertices to their neighbors, we cannot directly
compute the eigenvalues of A;. However, we can compute the eigenvalues of the
matrix Ay = T, + T.T, + T, + T, ' + (T.T,) ' + T, '; the computation is identical
to that of Theorem 1. A simple calculation verifies that A? = 61 + A, leading us
to conclude:

THEOREM 3. The multiset of eigenvalues of the adjacency matriz of {6,3} (.0 is:
l l
{ j:\/S cos(%) COS(%) cos(@) +4

The generators p; of the automorphism group of {6,3} ) permute the eigen-
vectors fi ., and g, as follows:

0§l,m<b}.

pO(fLm) =9—1—m,m, pO(ng) = f*l;nlz,ma
p1(fim) = f-tptm, p1(gm) =€ 70 gt i4m,
p2(fi,m) = firm,—ms  P2(91,m) = Gi+m,—m-
Proceeding as in Section 3, we see that the following vectors form a basis for a
representation V7 ,,, of A({6,3},0)):

fl,m; 9—1,—m, fl+m7fm; 9—i—m,m;
fotitms Gl—1—-ms Sfm—t1—ms G—m,itm,
fotcmts Gem—ts fem,—1s Im,l

In general, the Wythoff spaces of these representations are two-dimensional. Note
that if we replace each g,, with f,, we get exactly the basis we had for the
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representation spaces Vi, of A({3,6},0)). This will help us to enumerate these
representations.

It is no longer true that the different representations V; ,, are inequivalent; in
some cases the spaces V; ,,, and V_; _,, are distinct vector spaces that are equivalent
representations. The equivalence is given by defining T : fi., = Gim;9-1,—m —
f=1,—m in the following commutative diagram:

T
‘/l7m — W’7m’
(4) gl gl
‘/l7m — Vvlﬂm’
T

We will show that any multiplicity is at most two, and classify which spaces V ,,
are equivalent. Suppose V; ,, and Vj ., are distinct but equivalent representation
spaces of A({6,3},0)).- Then there exists a non-singular linear transformation
T : Viym = Vir v such that (4) commutes for all g € A({6,3},0)). In particular,
the diagram holds when g is replaced by T}, or Ty. So,

ToT(fim) = TTe(fim) = €5 T (frm);

5 "T(fi,m). Hence, Vi, contains a vector T'(f; m) which
!

similarly T, T (fi,m) = e
is a simultaneous eigenvector of T}, and Ty on Vj ., with eigenvalues X! and
e%m, respectively. But this implies that T'(f; ) must be a multiple of either f; ,,
or gi,m- Either Vi, = Vir pr or T(fi,m) = G1,m, implying Vi y = V_; _y,. In other
words, when V; ,,, = V_; _;, the representation occurs with multiplicity one in the
simplex representation of A({3,6},0))-

The representation spaces V; ,, fall into the following three categories:

1. Vi.m # V_i,—m has Wythoff dimension two and multiplicity two in the simplex
representation,

2. V3,673 has Wythoff dimension one and multiplicity one, and

3. Vim = V_i,—m = Vi,x has Wythoff dimension two and multiplicity one.

When V; ,, # V_i _n, the basis:

Jim +e 2Tl o, ifrm —ie 2T gy o,
fl+m,7m + 6727”’771/bgfl7m7m; i.fler,fm - ZéiZﬁim/bgflfm,m;
fotiem +e2milt=m/tg . it gpm — G2 g

.fm,—l—m + e2ﬂi(l_m)/bg—m,l+ma Z'fm,—l—m - ie2ﬂi(l_m)/bg—m,l+m:
Fetmmg + g iftmmy — 1€ g,
f—m,—l + e2ﬂil/bgm,l: i.f—m,—l - Z'€2ﬂ'il/bgm,l

provides a representation of A({6,3},0)) in which the p; act with coefficients in R.
When !l =0, m =0, or I+m = 0, this representation has dimension six. Otherwise,
its dimension is twelve. In either case, the Wythoff space is two dimensional; its
basis is obtained by summing the elements of each of the two orbits of the basis
vectors under the action of < p1,p2 >

The space Vy/3,4/3 = V_4/3,p/3 corresponds to an irreducible four dimensional
realization of A({6,3}(,0)). Its Wythoff space is one dimensional and is spanned
by fo/s,6/3 + f-b/3,—6/3- The p; act with real coefficients on the elements of the
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TABLE 3. Number and dimension of irreducible representations of
A({6,3}(5,0)), counted without multiplicity

Dimension over R
b mod 6 wg =1 wg = 2 Total
1 3 4 6 6 12
0 2 2 1 b—4|(b-2)/2 (b*—-6b+12)/12] (b*> +12b+6)/12
1 2 0 0 b—1|(-1)/2 (> —-6b+5)/12 | (b* +12b+11)/12
2 2 2 0 b—2|(b-2)/2 (> —6b+8)/12 | (b* +12b+ 20)/12
3 2 01 b-3|0B-1/2 (B*-6b+9)/12 | (b*>+ 120+ 3)/12
4 2 2 0 b—2|(B-2)/2 (b*>—-6b+8)/12 | (b*+ 12b+ 20)/12
5 2 0 0 b—1|(B-1)/2 (b*—=6b+5)/12 | (b*+12b+ 11)/12

basis:
{ fosspys + fovyz,—v/3>s  0foy3,0/3 — 0f—p/3,—8/35 }
Go/3,6/3 t 9-b/3,-b/35  19b/3,6/3 — 19—b/3,—b/3 )

The remaining representations V;; have Wythoff dimension two, but are not
irreducible as representations of A({6,3},)). The representation decomposes:
Vig = Wiy & Wy, where W;; and W/, are inequivalent irreducible representation
spaces with Wythoff dimension one. If { = e 27#/? the p; act on the following
basis of W;; with coefficients in R.

Juo+Cg—t,—1+ fot—1 + Cgus ifig = iCg—t,—1 — if—t,—1 +iCgu 1,
for,—1 + €910 + fonig +Cg20,—1, ifor,—1 — iCg_21y — if 210 + (g2, 1,
fot20 + g1,—20 + fi,—20 + 9—1,21, if—120 — 991,—20 — Uf1,—2 + t9—1,2

The basis for T/Vl’J is similar. Note that Wy is one dimensional, and Wy,3 /2 1s
three dimensional.

Recall the surjection from bases of the V; ,, to bases of the irreducible repre-
sentations of A({3,6};,0)) given by replacing the g; ,, with f; ,,. We will use this
to enumerate the irreducible representations of A({6,3},)); our conclusions are
presented in Table 3.

The two dimensional realization of {3,6} .0y corresponds to Vy/35/3. The one,
three and six-dimensional realizations R;; of {3,6} ) correspond to the inequiva-
lent pairs of one, three, and six-dimensional irreducible representations of A({6,3} (5 0))
for which V; ,, = V4 # Viy3,5/3- The remaining realizations of {3,6} o) corre-
spond to equivalent pairs V; ,, = V_; _,, of six- or twelve-dimensional irreducible
representations with Wythoff dimension two.

The representations V; ,, = V_; _,, have one dimensional Wythoff spaces and
are clearly irreducible. The fact that Y wgde = 2b? confirms that the realizations
Viom # V_i,—m are irreducible as well. Table 3 tallies the irreducible components of
the simplex representation of A({6,3},0))-

When the Wythoff space of a representation is two dimensional, there are un-
countably many different realizations associated with the same representation [10],
so it is impossible to enumerate the irreducible realizations of {6, 3},0). However,
by taking linear combinations of realizations generated by applying Wythoft’s con-
struction to the representations described above, we can construct any realization

of {6, 3}(b70)-
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TABLE 4. Number and dimension of irreducible representations of
A({6,3}(5,4)), counted without multiplicity
Dimension over R
b wg =1 wg = 2 Total

1 3 4 6 6 12

even [2 2 1 3b—4|(b—2)/2 (3b%—12b+12)/12 | (3b% + 30b + 12)/12

odd |2 0 1 3b—-3|(b-1)/2 (3b2—12b+9)/12 | (3b* +30b+ 3)/12

6. REALIZATIONS OF {6,3} )

The regular abstract polyhedron {6, 3} ) is the dual of {3,6}; 4), with 6b2 ver-

tices. The techniques used to determine its irreducible realizations are a combina-
tion of those presented in the previous sections. In particular, some representations
of A({3,6}s,,)) have Wythoff spaces of dimension two. The distinct irreducible
representations of A({3,6};,)) with non-trivial Wythoff spaces are enumerated in
Table 4.
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