
REALIZATIONS OF REGULAR ABSTRACT POLYHEDRA OFTYPES f3; 6g AND f6; 3gH. BURGIEL AND D. STANTONAbstract. This paper classi�es and gives methods for computing the irre-ducible realizations of the abstract polyhedra corresponding to regular mapsof type f3; 6g and f6; 3g. A complete list of irreducible realizations is given forpolyhedra of type f3; 6g.R�esum�e. Cet article classi�e et donne des m�ethodes pour calculer les r�ealisationsirr�eductibles des poly�edres abstraits correspondant aux cartes r�eguli�eres detype f3; 6g et f6; 3g. Une liste compl�ete des r�ealisations irr�eductibles despoly�edres de type f3; 6g est donn�ee.1. IntroductionA regular abstract polyhedron is a poset with certain symmetry properties. Byconsidering the permutation action of its automorphism group on an appropriateset, one can geometrically realize the abstract polyhedron in Euclidean space. Eachirreducible representation of this group gives an irreducible realization of the regularabstract polyhedron. In this paper we carry out this program for four in�nitefamilies of regular abstract polyhedra.These four families are f3; 6g(b;0), f3; 6g(b;b), f6; 3g(b;0) and f6; 3g(b;b). A listof the distinct irreducible realizations of f3; 6g(b;0) is given in Section 3; resultsfor f3; 6g(b;b) are presented in the following section. There are in�nitely manyirreducible realizations of the abstract polyhedra f6; 3g(b;0) and f6; 3g(b;b). A listingof the distinct symmetry group actions on these realizations is given in Sections 5and 6. 2. DefinitionsAn abstract polyhedron is a graded poset P with ranks f�1; 0; 1; 2; 3g havingthe four properties listed below (see [11]). The rank zero elements of P are calledvertices of P ; this set is denoted by P0. Elements of rank one are edges, denotedP1, and the rank two elements P2 are referred to as faces of P . A 
ag of P isa maximal totally ordered subset of P . We say two 
ags are adjacent when theydi�er by just one face.1. P is a �nite ranked poset with unique minimum and maximum elements whoseranks are �1 and 3, respectively.2. Each 
ag of P must contain �ve elements; in particular, each 
ag containsthe �1 and 3 faces of P .Date: April 15, 1998.Key words and phrases. Polyhedra. 1



2 H. BURGIEL AND D. STANTON3. The polyhedron P must be strongly 
ag connected; for every pair of 
ags �and  there must be a chain of 
ags � = �0; �1; :::; �k =  such that �i and�i+1 are adjacent, with � \  � �i for each i.4. For all i, if F is an i face and G is an i + 2 face of P , there are exactly twofaces H such that F < H < G.Abstract polyhedra are a special case of the more general abstract polytopes dis-cussed in detail in [11], [10] and [9].We now de�ne the notion of regularity for abstract polyhedra P . Choose somebase-
ag � in P . If there exist three automorphisms �0; �1 and �2 of P such thateach �i �xes all but the ith face of �, the automorphism group A(P) of P will be
ag-transitive, and we say that P is a regular abstract polyhedron [11].A realization of an abstract regular polyhedron is a collection of points calledvertices V in some Euclidean space Rd which has the property that there is asurjection � : P0 7! V such that the action of each element of A(P) induces anisometry of V . Since this isometry can be extended to the entire space (uniquely, i�A�(V ) = Rd ), this gives us a representation of the group A(P) on the vector spaceRd [10, Theorem 6]. Note that the vertices of a realization need not be centered atthe origin.We say that the realization is vertex faithful or simply faithful if the map � isbijective. One example of a faithful realization of a polyhedron is the simplex real-ization. This is obtained by sending each vertex of P to one of the orthogonal unitbasis vectors of Rn , where n = jP0j (see [10]). The corresponding representation ofA(P) is called the simplex representation. The trivial realization is the non-faithfulrealization in which all vertices of the realization coincide at a single point.For convenience, we refer to appropriate segments joining elements of V as edgesof the realization of P , and consider the faces of the realization of P to be describedby appropriate unions of edges of the realization. Note that these \faces" are notnecessarily planar.The edges of P are a special case of the more general notion of diagonals of P .These are described by unordered pairs fv; wg of vertices of P . The diagonal classesf�1; :::;�jg of P are the equivalence classes of the diagonals under the action ofA(P). The diagonal vector f0; �1; :::; �rg of a realization of P is given by squaresof distances between vertices in diagonals of each class; �i = j�(v)� �(w)j2, wherefv; wg 2 �i [10]. Two non-trivial realizations are de�ned to be equivalent if theirdiagonal vectors are the same up to a scalar multiple.Given two realizations P � Rp and Q � Rq of a polyhedron P with vertex setsV = �P (P0) andW = �Q(P0), we obtain a third realization P#Q � Rp �Rq calledthe blend P#Q by de�ning �P#Q(p) = (�P (p); �Q(p)). A realization is said to beirreducible or pure if it is not the blend of two non-trivial realizations. A realizationof P is pure exactly when the representation of A(P) on A�(V ) is irreducible [10,p. 47].De�ne the Wytho� spaceWG of a representation G of A(P) to be the subspace ofpoints �xed by the action of both �1 and �2 (see [10]). The dimension of the Wytho�space of an irreducible representation equals the multiplicity of that representationin the simplex representation.From any representation G of A(P), we can obtain a realization of P by applyingWytho�'s construction. Given a point w 2 WG, we de�ne a set V of vertices anda map � : P0 ! V by �(v) = w, �(g(v)) = g(w), for some �xed v 2 V . If
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TxFigure 1. Net for f3; 6g(4;0)dim(WG) > 1, di�erent choices of p and q in WG can yield inequivalent realizationsP and Q of P . The linear combination �P + �Q is de�ned to be the realizationdetermined by applying Wytho�'s construction to �p+ �q (see [10]).In the case that all the irreducible components G of the simplex representationof P have wG = 1, we can enumerate the distinct irreducible realizations of thesimplex realization of P . By Theorems 9 and 10 of [10], we know we can reconstructany realization of P by scaling and taking blends of these irreducible componentrealizations.If w is the dimension of the Wytho� space of the simplex realization, then:XG w2G = w; and XG wGdG = jP0j;where the sum is over the distinct irreducible orthogonal representations G of A(P)and dG is the dimension of representation G [10, Theorem 17].In the case of polyhedra of type f3; 6g, we will have wG = 1 for each G. Usingthe fact that wG equals the multiplicity of an irreducible representation G in thesimplex realization, we shall conclude that these representations are irreducible andinequivalent. Our observations are con�rmed by the fact that PG wGdG = jP0j.Here, Wytho�'s construction generates a complete list of irreducible realizationsup to scalar multiples.In the case of polyhedra of type f6; 3g, wG = 2 does occur. We generate a list ofcomponent representations and determine that the list is complete and its elementsare irreducible by comparison with the case f3; 6g and by con�rming PGwGdG =jP0j. Because Wytho�'s construction can produce inequivalent realizations fromthe same representation, it is impossible to provide a complete list of irreduciblerealizations. 3. Irreducible Realizations of f3; 6g(b;0)In this section we consider the regular abstract polyhedra f3; 6g(b;0). Considerthe tiling of the plane by triangles depicted in Figure 1. Identify opposite edges ofthe parallelogram in Figure 1 as in a torus. Then the edges and triangles of thistiling are the one and two faces of f3; 6g(4;0).We can also de�ne it in terms of the translational symmetries of the tiling labeledTx and Ty. Taking the quotient of the triangle tiling by the symmetry groupgenerated by T 4x and T 4y yields the abstract polyhedron f3; 6g(4;0). The �1 faceof f3; 6g(4;0) corresponds to the empty set, the 3-face corresponds to the entirepolyhedron, and the ordering on the poset is given by inclusion.
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Figure 2. Generators of the automorphism group of f3; 6g(4;0)In the example above, replacing 4 by a positive integer b yields the regularabstract polyhedron f3; 6g(b;0). The rhombus in Figure 1 has four equilateral tri-angles along each edge; identifying opposite edges of this rhombus gives the regularabstract polyhedron f3; 6g(b;0). Identifying opposite sides of a rhombus with b equi-lateral triangles along an edge gives us the regular abstract polyhedron f3; 6g(b;0),which has 2b2 faces, 3b2 edges, and b2 vertices [5].Our goal is to describe the irreducible realizations of the polyhedra in this family.To this end, we shall decompose the simplex representation of f3; 6g(b;0) in C b2 intoits irreducible parts.It is relatively simple to �nd basis vectors ffl;mg � C b2 , each of which is an eigen-vector of Tx and Ty. The orbits of these vectors under the action of A(f3; 6g(b;0))are bases of the irreducible realization spaces of f3; 6g(b;0). A change of coordinateswill allow us to consider these as realizations over R, and to apply the theoremsmentioned in the previous section.Recall that T bx = T by = I when these elements of the automorphism group act onthe simplex realization. Hence, the eigenvalues of Tx and Ty must be bth roots ofunity. If we use the labeling of the vertices vj;k of f3; 6g(b;0) indicated in Figure 1,a simple calculation shows that the vectors ffl;mg0�l;m<b de�ned by:fl;m = X0�j;k<b e(lj+mk) 2�ib vj;kare simultaneous eigenvectors of Tx and Ty with eigenvalues e�l 2�ib and e�m 2�ib ,respectively.We can use this information to compute the eigenvalues of the adjacency matrixA1 of the edge graph of f3; 6g(b;0).Theorem 1. The adjacency matrix A1 of the one-skeleton of the abstract polyhe-dron f3; 6g(b;0) is given by:A1 = Tx + TxTy + Ty + T�1x + (TxTy)�1 + T�1y :The multiset of eigenvalues of this matrix is:�2 cos(2�lb ) + 2 cos(2�mb ) + 2 cos(2�(l +m)b )j0 � l < b; 0 � m < b�= �8 cos(�lb ) cos(�mb ) cos(�(l +m)b )� 2j0 � l < b; 0 � m < b� :
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Figure 3. Fundamental region for f3; 6g(6;0)The transformations Tx and Ty originate in translational symmetries of f3; 6g.Figure 2 indicates a convenient choice of the generating \re
ections" �0; �1 and �2of A(f3; 6g(4;0)). These automorphisms act as follows:�0 : vj;k 7! v1�k;1�j ; �1 : vj;k 7! vj;j�k and �2 : vj;k 7! vk;j :Note that Tx = �1�0(�1�2)2 and Ty = �2�1�0�1�2�1. Also,�0(fl;m) = e(l+m) 2�ib f�m;�l; �1(fl;m) = fl+m;�m; and �2(fl;m) = fm;l:(1)A subspace of C b2 is invariant under the action of A(f3; 6g(b;0)) exactly when itis invariant under the action of the �i. Since �0 = �1Tx(�2�1)2 and Ty = ��12 Tx�2,it is equivalent to require that the subspace be invariant under the action of Tx; �1and �2. In particular, the spaces spanned by the orbits of the vectors fl;m underthe action of �1 and �2 will be �xed by A(f3; 6g(b;0)). For arbitrary l and m, thisorbit is: 8<: fl;m; f�l;�m; fl+m;�m; f�l�m;m;f�l;l+m; fl;�l�m; fm;�l�m; f�m;l+m;f�l�m;l; fl+m;�l; f�m;�l; fm;l 9=; :(2)For each choice of l and m these vectors span a space Vl;m on which the represen-tation of A(f3; 6g(b;0)) is irreducible; we will prove this by the method outlined inSection 2. Note that for some values of l and m, dim(Vl;m) < 12.The Wytho� subspace Wl;m of Vl;m is spanned by the sum of the vectors of (2)and has dimension wl;m = 1. This fact will continue to hold once we have convertedto representations over R, so we need only show that the number of di�erent Vl;mequals w to see that PGw2G = w. But because all the Wl;m are one dimensional,w is just the number of diagonal classes of f3; 6g(b;0) (see [10]). We now describea bijection between diagonal classes and choices of l and m which yield distinctrepresentation spaces Vl;m.To determine the di�erent diagonal classes, �x v0;0 and study its relationship tothe other vj;k. If (v0;0; vj;k) is in diagonal class � and vj0;k0 is sent to vj;k by someaction of �1 and �2, then (v0;0; vj0;k0) 2 �. We can classify the di�erent diagonalclasses by the vertices in the smallest region that completely covers f3; 6g(b;0) whenacted on by �1 and �2. Such a region is shown in Figure 3.A bijection between the spaces Vl;m and the vertices vj;k shown in this funda-mental region is given by 
 : fl;m 7! vl+m;l, where the subscripts are interpretedmodulo b. Although the roles of �1 and �2 are reversed (
(�2(fl;m)) = �1(
(fl;m))and 
(�1(fl;m)) = �2(
(fl;m))), the orbit of fl;m under the action of �1 and �2will be of the same order as that of vl+m;l = 
(fl;m). Since a representative vertexfrom each orbit appears in Figure 3, the number of distinct Vl;m is the same as the



6 H. BURGIEL AND D. STANTONTable 1. Number and dimension of realizations of f3; 6g(b;0)b mod 6 Dimension over R Total1 2 3 6 120 1 1 1 b� 3 (b2 � 6b+ 12)=12 (b2 + 6b+ 12)=121 1 0 0 b� 1 (b2 � 6b+ 5)=12 (b2 + 6b+ 5)=122 1 0 1 b� 2 (b2 � 6b+ 8)=12 (b2 + 6b+ 8)=123 1 1 0 b� 2 (b2 � 6b+ 9)=12 (b2 + 6b+ 9)=124 1 0 1 b� 2 (b2 � 6b+ 8)=12 (b2 + 6b+ 8)=125 1 0 0 b� 1 (b2 � 6b+ 5)=12 (b2 + 6b+ 5)=12number of vertices appearing in Figure 3. The dimension of Vl;m is the order of theorbit of vl+m;l; Table 1 summarizes this information.To this point we have been working with representations of A(f3; 6g(b;0)) overC . In order to apply the formula Pw2G = w, we must consider representationsover R. The chief obstacle to this is the fact that �0 acts on the fl;m with complexcoe�cients. We circumvent this by breaking the action down into its real andimaginary parts. Notice that the coe�cient of �0(fl;m) is the complex conjugate ofthe coe�cient of �0(f�l;�m); in particular, �0(fl;m + f�l;�m) = a(fm;l + f�m;�l)�b(ifm;l � if�m;�l) for some a; b 2 R. If we change basis to:8>>>>>><>>>>>>: fl;m + f�l;�m; ifl;m � if�l;�m;fl+m;�m + f�l�m;m; ifl+m;�m � if�l�m;m;f�l;l+m + fl;�l�m; if�l;l+m � ifl;�l�m;fm;�l�m + f�m;l+m; ifm;�l�m � if�m;l+m;f�l�m;l + fl+m;�l; if�l�m;l � ifl+m;�l;fm;l + f�m;�l; ifm;l � if�m;�l
9>>>>>>=>>>>>>; ;(3)the �i act on the basis vectors with real coe�cients. Each of our original complexrepresentations breaks down into equivalent \real" and \imaginary" representationsof A(f3; 6g(b;0)) over R. Because the pairs are equivalent, we know that those corre-sponding to inequivalent Vl;m are also inequivalent. The dimension of the Wytho�space of each of these real representations is still one. Hence this representationcorresponds to a unique realization of f3; 6g(b;0) which we shall call Rl;m.We may now use the results in Table 1 to con�rm that PG w2G = w andPG wGdG = b2, and so conclude that the Rl;m enumerated by the vertices shown inFigure 3 are all of the irreducible orthogonal realizations of f3; 6g(b;0) up to scaling.Furthermore, we can express the action of Tx and Ty on the basis described above,which allows us to calculate locations of the vertices of the Rl;m.Given a block diagonal matrix M with matrices fM1;M2; :::;Mkg on its di-agonal, we write M = (M1jM2j:::jMk). If we let R(�) be the rotation matrix� cos(�) �sin(�)sin(�) cos(�) � and identify Tx and Ty with the matrices describing their action,we can concisely describe the irreducible realizations of f3; 6g(b;0) as follows:Theorem 2. The vertices of a generic irreducible realization Rl;m of f3; 6g(b;0) aregiven by the orbit of the point p = (1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0) under the action ofthe matrices:Tx = (R(�)jR(� +  )jR(��)jR( )jR(�� �  )jR( )) andTy = (R( )jR(� )jR(� +  )jR(���  )jR(�)jR(�));
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Figure 4. The faces of f3; 6g(4;0) embedded in a cubewhere � = �2�l=b and  = �2�m=b. Here �(vj;k) = T jxT ky (p):The matrices of the �i are easily calculated from (1) and (3). In the generic case,each �i acts by �xing some six dimensional subspace and re
ecting its complementthrough the origin.Contemplating the descriptions of Tx and Ty, we see that the vertices of Rl;m lieon the surface of a 6-torus in R12 . Since f3; 6g(b;0) is topologically a 2-torus, theylie on an embedding of T 2 in T 6. Although this twelve dimensional �gure is di�cultto visualize, we can describe the lower dimensional realizations of f3; 6g(b;0).The realizationsRl;0 (l 6= 0; b=2) are six dimensional, with Tx = (R(�)jR(��)jI2)and Ty = (I2jR(�)jR(��)). They can be visualized as follows. Consider the actionof the parametric equationP : (x; y; z)! (sin(x); cos(x); sin(y); cos(y); sin(z); cos(z))on the cube of edge length 2� shown in Figure 4; under this action, opposite facesof the cube shown there are identi�ed to form a 3-torus. Opposite edges of thetwo shaded triangles shown in Figure 4 are identi�ed to form a 2-torus embeddedin that 3-torus. The shaded triangles can be subdivided into b2 smaller triangles;in the example shown, b = 4. The images of the vertices, edges and faces of thissubdivision under the action of P correspond to those of the realization R1;0 off3; 6gb;0. (See also [2].)4. Abstract Polyhedra of type f3; 6g(b;b)Identifying opposite sides of the rhombus shown in Figure 5 describes the abstractregular polyhedron f3; 6g(2;2), which has 3�22 vertices and 6�22 faces. In general,f3; 6g(b;b) is obtained by identifying points of f3; 6g that are equivalent under thethe action of the symmetry group< T 3bx ; T 3bx ; (T 2xTy)b >, where Tx and Ty transformf3; 6g as was described in Section 2 (see [5]).There is a natural map from f3; 6g(b;b) to f3; 6g(b;0) given by identifying T bx =T by = 1. In other words, f3; 6g(b;b) collapses onto f3; 6g(b;0). So, every realizationof f3; 6g(b;0) gives rise to a realization of f3; 6g(b;b). Also, f3; 6g(3b;0) collapses ontof3; 6g(b;b). For example, the six dimensional realizations of f3; 6g(b;b) correspond tothe realizations R3l;0 and Rl;l described in Section 3.
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Figure 5. Net for f3; 6g(2;2)Table 2. Number and dimension of realizations of f3; 6g(b;b)b Dimension over R Total1 2 3 6 12even 1 1 1 2b� 3 (3b2 � 12b+ 12)=12 (3b2 + 12b+ 12)=12odd 1 1 0 2b� 2 (3b2 � 12b+ 9)=12 (3b2 + 12b+ 9)=12
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2,1Figure 6. A Net for f6; 3g(3;0)The chief di�erence between these two families of abstract polyhedra is the ex-istence of a group element T 2xTy with order lower than that of Tx and Ty. Ifwe construct a set of simultaneous eigenvectors of Tx and T 2xTy analogous to theffl;mg of the previous section, repeating the calculations of that section yields theenumeration of irreducible realizations presented in Table 2.5. Abstract Polyhedra of type f6; 3g(b;0)The combinatorial dual of the abstract polyhedron f3; 6g(b;0) is f6; 3g(b;0) (see[5]); identifying opposite sides of the dotted rhombus shown in Figure 6 yields thepolyhedron f6; 3g(3;0). Since f6; 3g(b;0) has 2b2 vertices, the simplex representationof its automorphism group is over the space C 2b2The generating re
ections of A(f6; 3gb;0) are indicated in Figure 7. Once againthe polyhedron has \translational" symmetries Tx and Ty which are given by Tx =�0�1�2�1�0�1 and Ty = �1�0�1�0�1�2. It is evident from Figure 6 that the edge
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Figure 7. Generators of A(f6; 3g(3;0))graph of f6; 3g(b;0) is bipartite. The symmetries �2; Tx and Ty permute the verticeslabeled fvj;kg0�j;k<b in exactly the same way that �1; Tx and Ty permuted thevertices of f3; 6g(b;0) in Section 3. The vertices fwj;kg0�j;k<b of the other half ofthe graph form a separate orbit under the action of Tx and Ty.The simultaneous eigenvectors of the action of Tx and Ty on C 2b2 are ffl;m; gl;mgwhere 0 � l;m < b and fl;m and gl;m are de�ned as follows:fl;m =P0�j;k<b e(lj+mk) 2�ib vj;k; gl;m =P0�j;k<b e(lj+mk) 2�ib wj;k:It is not di�cult to check that:Tx(fl;m) = el 2�ib fl;m; Ty(fl;m) = em 2�ib fl;m;Tx(gl;m) = el 2�ib gl;m; and Ty(gl;m) = em 2�ib gl;m:Since Tx and Ty no longer send vertices to their neighbors, we cannot directlycompute the eigenvalues of A1. However, we can compute the eigenvalues of thematrix A2 = Tx+TxTy+Ty+T�1x +(TxTy)�1+T�1y ; the computation is identicalto that of Theorem 1. A simple calculation veri�es that A21 = 6I + A2, leading usto conclude:Theorem 3. The multiset of eigenvalues of the adjacency matrix of f6; 3g(b;0) is:(�r8 cos(�lb ) cos(�mb ) cos(�(l +m)b ) + 4 ����� 0 � l;m < b) :The generators �i of the automorphism group of f6; 3g(b;0) permute the eigen-vectors fl;m and gl;m as follows:�0(fl;m) = g�l�m;m; �0(gl;m) = f�l�m;m;�1(fl;m) = f�l;l+m; �1(gl;m) = e� 2�ilb g�l;l+m;�2(fl;m) = fl+m;�m; �2(gl;m) = gl+m;�m:Proceeding as in Section 3, we see that the following vectors form a basis for arepresentation Vl;m of A(f6; 3g(b;0)):8<: fl;m; g�l;�m; fl+m;�m; g�l�m;m;f�l;l+m; gl;�l�m; fm;�l�m; g�m;l+m;f�l�m;l; gl+m;�l; f�m;�l; gm;l 9=; :In general, the Wytho� spaces of these representations are two-dimensional. Notethat if we replace each gp;q with fp;q we get exactly the basis we had for the



10 H. BURGIEL AND D. STANTONrepresentation spaces Vl;m of A(f3; 6g(b;0)). This will help us to enumerate theserepresentations.It is no longer true that the di�erent representations Vl;m are inequivalent; insome cases the spaces Vl;m and V�l;�m are distinct vector spaces that are equivalentrepresentations. The equivalence is given by de�ning T : fl;m 7! gl;m; g�l;�m 7!f�l;�m in the following commutative diagram:TVl;m �! Vl0 ;m0g # g #Vl;m �! Vl0 ;m0T(4)We will show that any multiplicity is at most two, and classify which spaces Vl;mare equivalent. Suppose Vl;m and Vl0;m0 are distinct but equivalent representationspaces of A(f6; 3g(b;0)). Then there exists a non-singular linear transformationT : Vl;m ! Vl0;m0 such that (4) commutes for all g 2 A(f6; 3g(b;0)). In particular,the diagram holds when g is replaced by Tx or Ty. So,TxT (fl;m) = TTx(fl;m) = e 2�ib lT (fl;m);similarly TyT (fl;m) = e 2�ib mT (fl;m). Hence, Vl0;m0 contains a vector T (fl;m) whichis a simultaneous eigenvector of Tx and Ty on Vl0;m0 with eigenvalues e 2�ib l ande 2�ib m, respectively. But this implies that T (fl;m) must be a multiple of either fl;mor gl;m. Either Vl;m = Vl0;m0 or T (fl;m) = gl;m, implying Vl0;m0 = V�l;�m. In otherwords, when Vl;m = V�l;�m the representation occurs with multiplicity one in thesimplex representation of A(f3; 6g(b;0)).The representation spaces Vl;m fall into the following three categories:1. Vl;m 6= V�l;�m has Wytho� dimension two and multiplicity two in the simplexrepresentation,2. Vb=3;b=3 has Wytho� dimension one and multiplicity one, and3. Vl;m = V�l;�m = Vk;k has Wytho� dimension two and multiplicity one.When Vl;m 6= V�l;�m, the basis:8>>>>>><>>>>>>: fl;m + e�2�im=bg�l;�m; ifl;m � ie�2�im=bg�l;�m;fl+m;�m + e�2�im=bg�l�m;m; ifl+m;�m � ie�2�im=bg�l�m;m;f�l;l+m + e2�i(l�m)=bgl;�l�m; if�l;l+m � ie2�i(l�m)=bgl;�l�m;fm;�l�m + e2�i(l�m)=bg�m;l+m; ifm;�l�m � ie2�i(l�m)=bg�m;l+m;f�l�m;l + e2�il=bgl+m;�l; if�l�m;l � ie2�il=bgl+m;�l;f�m;�l + e2�il=bgm;l; if�m;�l � ie2�il=bgm;l
9>>>>>>=>>>>>>;provides a representation of A(f6; 3g(b;0)) in which the �i act with coe�cients in R.When l = 0, m = 0, or l+m = 0, this representation has dimension six. Otherwise,its dimension is twelve. In either case, the Wytho� space is two dimensional; itsbasis is obtained by summing the elements of each of the two orbits of the basisvectors under the action of < �1; �2 >The space Vb=3;b=3 = V�b=3;�b=3 corresponds to an irreducible four dimensionalrealization of A(f6; 3g(b;0)). Its Wytho� space is one dimensional and is spannedby fb=3;b=3 + f�b=3;�b=3. The �i act with real coe�cients on the elements of the



REALIZATIONS OF REGULAR ABSTRACT POLYHEDRA OF TYPES f3; 6g AND f6; 3g 11Table 3. Number and dimension of irreducible representations ofA(f6; 3g(b;0)), counted without multiplicityDimension over Rb mod 6 wG = 1 wG = 2 Total1 3 4 6 6 120 2 2 1 b� 4 (b� 2)=2 (b2 � 6b+ 12)=12 (b2 + 12b+ 6)=121 2 0 0 b� 1 (b� 1)=2 (b2 � 6b+ 5)=12 (b2 + 12b+ 11)=122 2 2 0 b� 2 (b� 2)=2 (b2 � 6b+ 8)=12 (b2 + 12b+ 20)=123 2 0 1 b� 3 (b� 1)=2 (b2 � 6b+ 9)=12 (b2 + 12b+ 3)=124 2 2 0 b� 2 (b� 2)=2 (b2 � 6b+ 8)=12 (b2 + 12b+ 20)=125 2 0 0 b� 1 (b� 1)=2 (b2 � 6b+ 5)=12 (b2 + 12b+ 11)=12basis: � fb=3;b=3 + f�b=3;�b=3; ifb=3;b=3 � if�b=3;�b=3;gb=3;b=3 + g�b=3;�b=3; igb=3;b=3 � ig�b=3;�b=3 � :The remaining representations Vl;l have Wytho� dimension two, but are notirreducible as representations of A(f6; 3g(b;0)). The representation decomposes:Vl;l = Wl;l �W 0l;l, where Wl;l and W 0l;l are inequivalent irreducible representationspaces with Wytho� dimension one. If � = e�2�il=b, the �i act on the followingbasis of Wl;l with coe�cients in R.8<: fl;l + �g�l;�l + f�l;�l + ��gl;l; ifl;l � i�g�l;�l � if�l;�l + i��gl;l;f2l;�l + �g�2l;l + f�2l;l + ��g2l;�l; if2l;�l � i�g�2l;l � if�2l;l + i��g2l;�l;f�l;2l + gl;�2l + fl;�2l + g�l;2l; if�l;2l � igl;�2l � ifl;�2l + ig�l;2l 9=;The basis for W 0l;l is similar. Note that W0;0 is one dimensional, and Wb=2;b=2 isthree dimensional.Recall the surjection from bases of the Vl;m to bases of the irreducible repre-sentations of A(f3; 6g(b;0)) given by replacing the gl;m with fl;m. We will use thisto enumerate the irreducible representations of A(f6; 3g(b;0)); our conclusions arepresented in Table 3.The two dimensional realization of f3; 6g(b;0) corresponds to Vb=3;b=3. The one,three and six-dimensional realizations Rl;l of f3; 6g(b;0) correspond to the inequiva-lent pairs of one, three, and six-dimensional irreducible representations ofA(f6; 3g(b;0))for which Vl;m = V�l;�m 6= Vb=3;b=3. The remaining realizations of f3; 6g(b;0) corre-spond to equivalent pairs Vl;m �= V�l;�m of six- or twelve-dimensional irreduciblerepresentations with Wytho� dimension two.The representations Vl;m = V�l;�m have one dimensional Wytho� spaces andare clearly irreducible. The fact that PwGdG = 2b2 con�rms that the realizationsVl;m 6= V�l;�m are irreducible as well. Table 3 tallies the irreducible components ofthe simplex representation of A(f6; 3g(b;0)).When the Wytho� space of a representation is two dimensional, there are un-countably many di�erent realizations associated with the same representation [10],so it is impossible to enumerate the irreducible realizations of f6; 3g(b;0). However,by taking linear combinations of realizations generated by applying Wytho�'s con-struction to the representations described above, we can construct any realizationof f6; 3g(b;0).
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